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Abstract—Influenza is an acute viral respiratory disease
that is currently causing severe financial and resource strains
worldwide. With the COVID-19 pandemic exceeding 153 mil-
lion cases worldwide, there is a need for a low-cost and
contactless surveillance system to detect symptomatic indi-
viduals. The objective of this study was to develop FluNet,
a novel, proof-of-concept, low-cost and contactless device for
the detection of high-risk individuals. The system conducts
face detection in the LWIR with a precision rating of 0.98,
a recall of 0.91, an F-score of 0.96, and a mean intersection
over union of 0.74 while sequentially taking the temperature
trend of faces with a thermal accuracy of ± 1 K. In parallel,
determining if someone is coughing by using a custom light-
weight deep convolutional neural network with a precision
rating of 0.95, a recall of 0.92, an F-score of 0.94 and an AUC
of 0.98. We concluded this study by testing the accuracy of
the direction of arrival estimation for the cough detection
revealing an error of ± 4.78◦. If a subject is symptomatic,
a photo is taken with a specified region of interest using a
visible light camera. Two datasets have been constructed, one for face detection in the LWIR consisting of 250 images
of 20 participants’ faces at various rotations and coverings, including face masks. The other for the real-time detection
of coughs comprised of 40,482 cough / not cough sounds. These findings could be helpful for future low-cost edge
computing applications for influenza-like monitoring.

Index Terms— Cough detection, COVID, COVID-19, SARS, face detection, machine learning.

I. INTRODUCTION

INFLUENZA is an acute viral respiratory disease with an
estimated 35.5 million cases, 16.5 million medical visits,
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490,000 hospitalizations, and a death toll of 34,200 between
2018 - 2019 in the American flu season [1]. With the arrival
of the notable coronavirus disease (COVID-19) exceeding
153 million cases worldwide and over 3.2 million con-
firmed deaths [2], there is a need to limit the spread of
the highly infective virus, even more so in countries where
health care resources are sparse [3], [4]. Symptoms of
COVID-19 typically include; elevated temperatures > 37.8◦C,
coughing, shortness of breath, fatigue, muscle and body aches,
headaches, loss or altered perception of taste and/or smell, sore
throat, nose congestion, nausea or vomiting, and diarrhea [5].
Some of the biosignals relating to infected individuals can be
detected using sensors, including a thermal camera to detect
elevated temperatures and a microphone array to capture cough
sounds. The measured biosignals need to be coupled with
artificial intelligence (AI) for real-time prediction. AI systems,
such as machine learning, deep learning and convolutional
neural networks have a crucial part to play in the large-scale
screening, detection, monitoring and reduction of workload
in mitigating COVID-19. However, the use of AI for many
bio-clinical applications requires an increased amount of data
sharing, to enable reliable and precise predictions [6], [7]
in endeavor to detect infected individuals and aid in the
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early detection of pandemics. The use of AI for the early
detection of diseases, be it infectious or otherwise, is essential
for preemptive treatment and consequently saving lives [8].
Towards this end, we have rendered two datasets, one for face
detection in the LongWave Infrared Domain (LWIR) domain
using a low-cost thermal camera and the other for the real-
time detection of coughs. Most sensors for patient motoring
require direct contact with the subject [9], however due to
the high transmissibility of COVID-19, contactless detection
would be desirable. The concept of contactless monitoring
is rapidly gaining interest. Yang et al. recently proposed a
nonintrusive S-band and C-band breathing monitoring system
to detect Hypopnea syndrome [10] and diabetic ketoacido-
sis [11] respectively. Contactless monitoring shows promise
towards opening up new clinical opportunities and to help
mitigate COVID-19. Research in using machine vision in the
field of thermography-based monitoring is still at an early
stage [9].

Recent work by Quer et al. indicated that out
of 54 COVID-19 positive subjects, ≈ 42% reported having
a fever and ≈ 64% reporting having a cough [12], which
means that temperature readings alone are not sufficient for
the detection of influenza-like illnesses and that coughing
has the highest likelihood of being a symptom. Monto et al.
findings revealed that the best multivariable predictors for
influenza infections were fever and cough with a predictive
value of 79% [13]. Therefore, a two-pronged approach was
considered to detect influenza-like symptoms, the first being
elevated temperature and the second being coughs. Prior
work using machine learning and artificial intelligence for
the COVID-19 pandemic has focused on predicting the death
rate and other abnormalities, rather than identifying high risk
individuals [14].

In this work, the biosignals directly related to the physical
symptoms of influenza-like diseases are detected using our
proof-of-concept device “FluNet”. This system may be useful
for future contactless vital sign measurements. The device
consists of two sensing modules: (i) a thermal camera for
automated temperature checks and (ii) a microphone array for
cough detection and direction of arrival estimation. Bespoke
software was developed using artificial intelligence and deep
learning for data fusion, classification, and interpretation,
including predictive algorithms that use COVID-19 indicators
(elevated temperature and coughing) for potential symptomatic
COVID-19 cases. We use the term artificial intelligence to
refer to the automation of detecting influenza-like symptoms.
We use the term deep learning to refer to our deep convolu-
tional neural network used for detecting cough patterns.

The main contributions of this paper are threefold; (1) a
novel proof-of-concept system for the detection of influenza-
like symptoms. (2) the presentation of two datasets, one for
face detection in the thermal domain and another for real-
time cough detection, to aid in developing various clinical
applications that enable more reliable and precise predictions
and (3) a new lightweight architecture for the classification of
cough spectrograms.

II. RELATED WORKS

Individuals that suffer from viral infections, such as the
novel coronavirus (COVID-19), swine flu (H1N1), and bird
flu (H5N1), often exhibit a fever. These pandemics have led to
the need of temperature monitoring in areas with high people
throughput, such as, airports, train stations and universities.
Infrared imaging has been shown to be an effective tool to
detect elevated temperatures in symptomatic individuals [9],
[15], [16]. Infrared imaging has been applied in a variety
of different medical settings, including breast tumor detec-
tion [17], assessment of allergic/inflammatory conditions [18],
and diagnosing headaches [19]. With regards to COVID-19,
the literature has focused its efforts towards the detection and
monitoring in a medical setting (i.e., using deep convolutional
neural networks for the classification of X-ray [20] or CT
[21] images). Shamsi et al. proposed a deep uncertainty-
aware transfer learning framework for COVID-19 detection
in medical images [22]. Their results reveal that multilayer
perceptron’s and linear support vector machines outperform
other algorithms in diagnostic accuracy for both X-ray and
CT images. Al Hossain et al. created a surveillance system
for influenza-like illnesses for hospital waiting areas using
edge-computing and artificial intelligence. This system can
reliably measure crowd density and continuously measure
speech and cough sounds in hospital waiting areas for future
pandemic predictions [23]. Allam et al. reviewed the role
AI can have in the early detection of a pandemic. They
conclude that using AI for this task requires an increased
amount of data sharing to render a sufficiently large dataset for
precise predictions [6]. Maghdid et al. presented a framework
for the detection of COVID-19 using smartphone embedded
sensors. They proposed using the phone’s camera to take
photos of CT images which is then passed to an artificial neural
network, the microphone to measure coughs, the accelerometer
to measure fatigue, and the use of the fingerprint reader to
measure temperature [24]. Lyra et al. used infrared thermog-
raphy to measure respiratory-related chest movements and skin
temperature trend measurements [9]. The developed algorithm
could extract the respiratory rate with a mean absolute error
of 2.69 beats per minute and estimate the temperature trend
with a mean squared error of 1.34 K. See [7], [25], [26]
for reviews on using artificial intelligence for COVID-19
detection.

Recent studies regarding cough modeling have explored
audio-based cough recognition algorithms. Most recently stud-
ies have started exploring the use of different convolu-
tional neural network (CNN) architectures [23], [27]. Cough
recognition models have been developed using Spectrogram
based features [23], [27], [28], all of which show promising
results in terms of accuracy, low false positives, privacy, and
mobility. Hidden Markov Models coupled with Mel-frequency
cepstral coefficient [29], [30] are commonly used to train
cough recognition models. Additionally, models have been
created using various acoustic features, such as linear pre-
dictive coding with filter banks [31] and gammatone cepstral
coefficients [32].
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Fig. 1. (A) Photo of the FluNet System. (B-E) Conceptualisation of the software components. (B) Automated temperature checks pipeline.
(C) Visible image acquisition. (D) Cough detection pipeline and (E) decision function pipeline triggered if the is a cough and/or elevated temperature
is detected.

III. METHODS

A. Experimental Design
This study aims to provide proof-of-concept for an

influenza-like warning system to help reduce the spread
of influenza-like diseases (COVID-19), increase the amount
of data available for clinical applications, and improve the
reliability and precision of AI in this context. The FluNet
framework consists of a low-cost thermal imaging cam-
era, a high-quality camera, a microphone array, and an
Intel® Neural Compute Stick 2, all situated in a custom
3D printed case. Fig. 1 shows a photo of the FluNet sys-
tem and the conceptualization of the software components.
Figure S1 shows the schematic setup of the hardware com-
ponents. The Raspberry Pi and the thermal imaging pipeline
are programmed using C++. The image processing was done
using the OpenCV [33] library for C++. The ReSpeaker was
controlled using a custom Python 3.7 script. The following list
details the hardware used in the FluNet system.

• Seek Thermal Compact Pro [34]: A thermal camera with
a 320 × 240 resolution, a 32◦ field of view, 1,800 ft
detection distance and has a focusable lens.

• ReSpeaker Microphone Array v2.0 [35]: A high-
performance chipset with an array of 4 microphones.

• Raspberry Pi High-Quality Camera [36]:
A 12.3-megapixel camera with an adjustable
back focus and support for C- and CS-mount
lenses.

• Raspberry Pi High Quality Camera Lens [37]: A 6mm,
3 megapixel wide-angle camera lens with a 63◦ field of
view.

• Intel® Neural Compute Stick 2 [38]: A compact deep
learning processing module for inference on the edge.

• Raspberry Pi 4 [39]: A control unit with a small form
factor to synchronize the above devices and sensors.

B. Temperature & Audio Processing
A Seek Thermal Compact Pro [34] was used to collect infor-

mation from the LWIR domain. This information is passed
to the Raspberry Pi for real-time processing consisting of
face detection and temperature checks. To ensure the thermal
camera was reporting as close to the correct temperature as
possible, dead pixel correction, flat field calibration, additional
flat field calibration, a 5 × 5 median filter, and a linear
equation were conducted to translate the values produced by
the thermal camera into temperature values. The flat field
calibration consists of a thirty-second calibration period when
the software is launched. The thermal camera’s shutter was
manually closed during this process and consisted of taking an
averaged frame used as an offset when processing the thermal
images. This was done to compensate for the temperature
variation on the lens of the thermal camera. The additional flat
field calibration consists of taking a frame when the shutter of
the thermal camera is closed to compensate for temperature
changes over time during operation. To reduce the influence of
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thermal drift, the room temperature was estimated by taking
the median value from a 5 × 5 region of interest (ROI) in the
bottom right corner. The background temperature was used to
perform the emissivity correction and was only applied after
calibration but before any temperature values were reported.
A ReSpeaker Microphone Array v2.0 [35] was used to collect
audio data. The recordings are one second in length and
are converted to spectrograms before being transmitted sent
to the Neural Compute Stick for classification. Additionally,
the spectrograms were supplied to the deep convolutional
neural network for training, testing and classification. The
convolutional neural network was designed, trained and tested
in MATLAB R2018b and ported over to OpenVINO for
inference on the Neural Compute Stick.

C. Influenza-Like Detection
To determine if subjects showed symptoms of influenza, a

two-pronged approach was employed. In parallel, the system
automatically checks the temperature of people passing by and
checks if anyone in audible proximity of the microphone array
is coughing. The temperature checks are done by conducting
face detection in the thermal domain; from this ROI, a thermal
facial profile was constructed where any pixel values within
range of 304.15 K and 315.15 K were kept. Fifteen of these
images were stored in a buffer and used for the temperature
trend calculation. To reduce the influence of thermal drift,
a 5 × 5 ROI from the bottom right-hand corner was used
to estimate background temperature. To ensure more reliable
temperature readings, temperature trend estimation was con-
sidered; this consisted of taking the mean of the maximum
temperatures over 1-second intervals. The cough checks were
done by using a deep convolutional neural network running on
the Intel® Neural Compute Stick 2. Successive one-second
sound chunks were recorded. The sound chunks were then
converted into spectrograms and passed to the Intel® Neural
Compute Stick 2 for classification. If an elevated temperature
or coughing were detected, then in that case, an alarm is
sounded, and optionally, a photo of the person’s face with the
elevated temperature is shown, and/or a 15◦ slice taken from
the visible light image, centered at the direction of arrival of
the detected cough.

D. Multi-Camera Calibration
An interactive graphical user interface was created using

C++ and OpenCV to align the infrared camera with the
visible light camera. This interface allowed for the real-time
visualization of the aligned visible light image with the thermal
image superimposed onto it, allowing us to visually determine
the transformation that best aligned the two images. To create
the homography matrix, two photos were taken simultaneously
using the thermal and visible light cameras; these photos were
of a metal box containing a complex pattern. As the two
cameras have different fields of view, the visible light image
was cropped to remove the features of the image that was
not in the thermal image, and the final image was resized
to be 320 × 240 (the same size as the thermal image).
Next, both photos were converted to greyscale, and their

Oriented FAST and rotated BRIEF (ORB) features [40] were
calculated. ORB was chosen as it was fast, efficient, resistant
to image noise, rotation invariant and multi-scale. The number
and quality of features were interactable via the interface.
These parameters were adjusted to determine the homography
matrix that aligned these two images the best; this matrix was
then saved and used as input into an affine transformation
warping the visible light image to align with the thermal image
by translation, rotation and scaling. This was pre-computed
opposed to real-time to maximize efficiency, consistency, and
accuracy.

E. Direction of Arrival Camera Calibration
To align the direction of arrival obtained from the micro-

phone array with the video feed from the visible light camera,
we first converted a musical excerpt into stereo format. This
was done to make the sound coming from the speakers from
the mobile phone identical and thereby, reducing the influence
of different sound and/or volume coming from either speaker
of the mobile phone. This excerpt was then played from the
mobile phone mounted on a tripod and was visually centered
to the video feed from the visible light camera. We played
this musical excerpt five times and recorded the direction of
arrival. We manually adjusted the rotation of the microphone
array until the direction of arrival averaged to be 90◦(directly
in front of the system).

IV. RESULTS & DISCUSSION

A. Thermal Processing
To determine how well FluNet could measure temperature,

≈ 500 ml of water was boiled, placed in a bowl 1m vertically
below the thermal camera; we took 28 photos of the water
as it cooled down and took the absolute temperature of the
water using a Salter instant-read digital thermometer with a
precision of ± 0.1 K. A linear equation was then applied to the
temperature of the water in Kelvin and the corresponding value
received from the thermal camera, as shown in, Fig. 2, this
resulted in an R2 = 0.99. Emissivity correction was applied
before any temperature values were used to correct for radia-
tion and produce more reliable temperature values. Subtracting
the absolute temperature from the reported temperature values
revealed a thermal accuracy of ± 1.5 K.

These findings show that the system can measure the
temperature of objects with an emissivity close to that of
human skin, however, with a margin of error of ± 1.5 K.

B. Temperature Trend Estimation
In order to decrease the error of the temperature measure-

ments, a time series analysis was considered. The recordings
were conducted in the same manner as reported in the section
above; fifteen frames were logged (≈ one second of frames)
for eleven different recordings resulting in one hundred and
ten frames of data used for this analysis. First the maximum
temperature values from a ROI were taken, along with the
median value from a 5 × 5 ROI in the bottom right-hand
corner for background temperature estimation. The resulting
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Fig. 2. Linear equation fitted to the temperature in Kelvin and values
produced by the thermal camera after prepossessing.

vectors were then smoothed using a three-point moving aver-
age filter. Using the mean value from both of these arrays
coupled with the linear equation uncovered in the Thermal
Processing section, these values were converted to temperature
values. Emissivity correction using the estimated background
temperature was then applied to the resulting temperature
value. Subtracting the absolute temperature from the reported
temperature values revealed that the time series temperature
estimation provided a better result increasing the thermal
accuracy from ± 1.5 K to ± 1 K and therefore demon-
strating the stability of the temperature readings, as shown
in Fig. 3.

C. Face Detection
1) Data Sources: The face detection is conducted in the

LWIR (Longwave Infrared) domain. A dataset was constructed
consisting of two parts (positive instances and negative
instances). The positive instances comprised of 250 images
of 20 participants at five different approximate facial rotations
(−90◦, −45◦, 0◦, 45◦, 90◦), with varying face coverings (face
masks, glasses, no coverings) and looking downwards (see
Fig. 4). We opted to take these photos to allow the face
detection algorithm to detect people who are wearing face
masks. Additionally, we merged the data we had collected
with 976 images from TUFTS thermal face dataset [41].

2) Data Argumentation: Data argumentation was then con-
ducted to ensure the algorithm could still detect faces when
there are hot objects (i.e., hot coffee) being detected by the
thermal camera. This consisted of relative temperature changes
to the thermal images (0.25, 0.5, .75, and 1); this made a
dataset consisting of 4154 images for the positive instances.
All positive instances consist of a manually drawn ROI around
the face of the subject to indicate the part of the image to use
in training. The negative instances comprised of 1,156 new
photos taken with the thermal camera, none of which included
a face. Additionally, we took a maximum of 10 random
patches from each positive instance image using a minimum
of 50 × 50 pixels and only from outside of the ROI as
not to include any faces in the negative instances, creat-
ing 31,070 images; the final negative instances set contains
32,226 images.

Fig. 3. Temperature trend estimation showing the estimated temperature
(black and green markers) and their absolute temperature values (red
and blue markers) for both background temperature and a specified ROI
temperature.

3) Modeling: The algorithm chosen for face detection
is Viola and Jones [42] using local binary patterns [43].
This particular method was selected as it has been shown
to work well in the thermal domain [44] for computational
efficiency and accuracy, allowing for accurate and real-time
face detection on the edge. However, YOLOv4-Tiny algorithm
also performs well in the thermal domain [9] but we opted
for Viola-Jones over this as the YOLO algorithm would need
to be delegated to the Neural Compute Stick and we wanted
the inference for the cough detection to be done as soon as
possible after the recording.

4) Testing: To test the accuracy of the face detection
algorithm, we took 204 new images; 97 of these images
included faces with face coverings and different facial rotations
using people unseen during the training stage, we also took
107 background images. We then supplied these images to
the classifier with manually labelled regions of interest for
where the faces are located within the photos. If the detected
face was not outside the ROI, the face inference was labelled
as being correct. Whereas, if any faces were present in the
background images, it was labelled as being incorrect. The
resulting confusion matrix is shown in Fig. 5. The classifier
archived a 95.59% accuracy rating, a precision of 0.9798, a
recall of 0.9065 and an F-score of 0.9565.

Next, to determine how well the face detection was detecting
the faces the mean intersection over union (bounding box
overlap ratio of the area of intersection) of all “Face” test
instances was calculated. All the faces in the “Face” set had
a manually defined ROI this was then compared to the ROI
determined by the face detection algorithm this revealed a
mean intersection over union of 0.7386.

D. Cough Detection
1) Data Sources: A series of clips from YouTube™ con-

taining people coughing was downloaded (see supplementary
material). The video element of these clips was removed to
only contain audio. Any clips that had a sample rate that
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Fig. 4. Sample photos collected to train the face detector consistent of 5 facial rotations and looking downwards to a phone.

Fig. 5. Confusion matrix showing the percentages of class wise correct
vs. incorrect prediction for the face detector.

was not 44100 Hz was then discarded. Each clip was linearly
split into N one-second clips; a dataset was then constructed
consisting of the clips that contained coughs, manually labelled
by a human. Clips that did not include a cough were dis-
carded. This resulted in a dataset consisting of 1,557 cough
samples. We also collected a “not cough” dataset consisting of
background noise, office, music, airport, coffee shop, harbor,
nightclub, and simulated turbulence sounds. Again, these were
trimmed to be 1 second in length and at a sample rate
of 44100 Hz. A total of 23,890 background noise samples
were collected.

2) Data Argumentation: Volume, background noise, turbu-
lence and time argumentation were performed. Data argumen-
tation was conducted to ensure that the model would recognize
coughs in different environments and at different distances.
Manually recorded noises from a highly windy environment
were performed to simulate the turbulence, with no wind but
rapid movements of the microphone array and both highly
windy and rapid movements. These were then added to the
background noise samples. To simulate different distances
away from the microphone array and varying background
noises, we merged a random background noise into the cough
samples at a random ratio (0.25, 0.5, 0.75, 1, 2 and 4) where,
0.25 simulates a quiet cough with loud background noise.

To simulate different coughs at different times, the training
images were also flipped the audio clips on the x-axis. After
data argumentation, the final dataset consisted of 40,482 cough
samples at a random volume with random background noise
and 23,890 “Not Cough” samples.

3) Modeling: A custom two-layer convolutional neural net-
work was developed to classify cough sounds; the architecture
is shown in Fig. 6. We originally started with the convolutional
neural network architecture for a sparse resource environ-
ment [45]. We then modified this neural network to optimize
for classification of our spectrograms. The dataset was then
converted into spectrograms with a window shift and window
size of 10ms and 30ms, respectively, and contained frequencies
ranging from 0 to 4000 Hz resulting in an image size of
121 × 275 × 1. These particular parameters were chosen
as they provided the best classification accuracy for coughs
in [23]. The spectrograms are consequently fed into the
convolutional neural network for classification. Additionally,
we only kept the first 50 rows of each spectrogram because,
based on visual inspection, they didn’t contain any information
relating to the cough sounds resulting in a final image size
of 50 × 275 × 1. Details to replicate the artificial neural
network can be found in Table S1. The training progress of
the artificial neural network is shown in Fig. S2.

4) Testing: To test our convolutional neural network, we col-
lected an additional 374, 1-second cough samples with random
volume and background noise augmentation (train station
ambience or people talking). These new samples were entirely
unseen in the training stage neural network. We also collected
600, 1-second background noise samples consisting of music,
train station ambience and simulated turbulence. For a total
of 974 samples for testing, we classified the testing data using
the trained neural network after converting the recordings
to spectrograms. The resulting confusion matrix is shown in
Fig. 7A and has an accuracy rating of 92.42%, a precision
of 0.9519, a recall of 0.9233, an F-score of 0.9374 and an
AUC of 0.9806 (Fig. 7B). The audio recordings used to test
the classifier were not included in the training set.

5) Direction of Arrival: We used the direction of arrival
provided by the ReSpeaker Microphone Array v2.0 as it is
capable of producing accurate and real-time direction of arrival
estimates [23] and offloaded some of the required computa-
tions off the Raspberry Pi. To test accuracy of the direction
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Fig. 6. Graphical illustration of the neural network created and used for cough detection.

Fig. 7. (A) Confusion matrix showing the percentages of class wise
correct vs. incorrect prediction for the cough detector. (B) ROC curve
for the cough classifier the black circular marker denotes the operating
point.

of arrival algorithm a musical excerpt was converted to be
mono instead of stereo. This was done so the same sound was
coming from both of the speakers on the mobile phone. Two
VIVE trackers [46] were used to track the actual angle between
the microphone array and the mobile phone; one was placed
directly over the microphone array, the other was attached to a
mobile phone. The sound clip was played from a mobile phone
whist being moved around the environment. The direction of
arrival from the microphone array was recorded along with

Fig. 8. Red lines indicate error from expected angle. Centre black line
is the perfect angle (no error). Left and right black lines mark −10◦ and
10◦ from the microphone array (no error).

the angle between the two VIVE trackers. As the direction of
arrival is provided continuously, only estimates that were not
the same as the last estimate was logged. Next, we compared
the set of angles (direction of arrival vs computed angle). This
revealed an error of ± 4.78 from 80 different angles ranging
from ≈ 90◦ to −90◦ from the front center of the microphone
array (see Fig. 8). The direction of arrival was used to extract
a 15◦ slice from the Raspberry Pi High-Quality Camera video
feed from ± 7.5◦ from where the cough was detected, as the
potential error was only ± 4.78◦ we added an additional 2.72◦
either side to make sure the full face could be captured while
compensating for the maximum potential error at a distance
of 1 meter. To determine the location of the two VIVE trackers,
Unity 2018.03 was used to trace and log the angle between
the two trackers along with the DOA estimation from the
microphone array.

V. CONCLUSION & FUTURE WORK

A novel, proof-of-concept influenza-like warning system has
been developed, consisting of automated temperature checks
and cough detection. The device triggers an audio alarm under
three conditions. (1) a ROI deemed to be the face is between
a certain temperature threshold. (2) subsequent coughing is
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detected, and (3) both (1) and (2) have been detected. Each
one of the three conditions produces a unique audible alarm
and optionally an extracted ROI from the visible light camera
dependent on if an elevated temperature or cough is detected.
The novelty of this work is threefold, first and foremost two
datasets have been created one for face detection in the LWIR
domain and one for the real-time detection of coughs. The
LWIR dataset consists of 250 images from 20 participants
at a variety of different angles (−90◦, −45◦, 0◦, 45◦, 90◦)
and facial coverings, including face masks. The cough dataset
consists of a sizable 1,557 cough samples and 23,890 back-
ground noise samples; each sample is 1 second in duration.
These datasets can help in the development for a variety
of clinical applications. Secondly, a new deep convolutional
neural network architecture has been developed for the real-
time classification of cough patterns using edge computing.
Thirdly, we exemplify the quality and potential of our datasets
by creating FluNet. The developed face detection classifier
has a precision and recall of 0.9798 and 0.9065 respec-
tively and a mean intersection over union of 0.7386. The
cough detector uses the frequency of audio signals in the
form of a spectrogram as input and has a precision, recall
and AUC of 0.97, 0.92, and 0.98 respectively. Our findings
offer the potential to enhance face detection in the thermal
domain and real-time cough detection through an increased
amount of data and will prove useful for future low-cost
edge computing applications for influenza-like monitoring.
Real-time monitoring is a passive form of surveillance that
does not require direct human contact, which shows potential
for continuously monitoring possible symptomatic individuals.
It is worth mentioning that not all infected individuals will
exhibit symptoms, be it temperature, coughing, or otherwise.

Other physiological factors, such as respiratory rate [10],
[11], [47], [48], could be taken into consideration. More-
over, the device could be converted into a wearable sensory
argumentation system, allowing for the detection of influenza-
like symptoms on the go. Although we have shown that the
system’s individual components perform well, user trials will
need to be conducted to determine how well the system works
together. These tests will need to be conducted on individuals
with and without a form of influenza.

DATASETS

The datasets collected for this work have been made freely
available at [49].
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