
IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 23, DECEMBER 1, 2021 16723

The Impact of Covid-19 on Smartphone Usage
Tong Li , Graduate Student Member, IEEE, Mingyang Zhang , Yong Li , Senior Member, IEEE,

Eemil Lagerspetz , Sasu Tarkoma , Senior Member, IEEE, and Pan Hui , Fellow, IEEE

Abstract—The outbreak of Covid-19 changed the world as
well as human behavior. In this article, we study the impact of
Covid-19 on smartphone usage. We gather smartphone usage
records from a global data collection platform called Carat,
including the usage of mobile users in North America from
November 2019 to April 2020. We then conduct the first study
on the differences in smartphone usage across the outbreak
of Covid-19. We discover that Covid-19 leads to a decrease
in users’ smartphone engagement and network switches, but
an increase in WiFi usage. Also, its outbreak causes new typ-
ical diurnal patterns of both memory usage and WiFi usage.
Additionally, we investigate the correlations between smartphone
usage and daily confirmed cases of Covid-19. The results reveal
that memory usage, WiFi usage, and network switches of smart-
phones have significant correlations, whose absolute values of
Pearson coefficients are greater than 0.8. Moreover, smartphone
usage behavior has the strongest correlation with the Covid-19
cases occurring after it, which exhibits the potential of inferring
outbreak status. By conducting extensive experiments, we demon-
strate that for the inference of outbreak stages, both Macro-F1
and Micro-F1 can achieve over 0.8. Our findings explore the
values of smartphone usage data for fighting against the epidemic.

Index Terms—Correlations, Covid-19, outbreak stage infer-
ence, smartphone usage.
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I. INTRODUCTION

AT the beginning of 2020, Covid-19 was identified and
has spread globally [1]. The outbreak of Covid-19 has

changed people’s lives significantly. Countless efforts have
been made to study the world after Covid-19 from different
perspectives, ranging from world economy [2], personal men-
tal health [3], to human mobility [4]. Meanwhile, since the
first iPhone was released in 2007, smartphones have become
a necessity in daily lives [5]. The number of smartphone users
worldwide today has surpassed three billion [6]. However,
up to now, the understanding of the impact of Covid-19 on
smartphone usage is still inadequate. Specifically, studying
how Covid-19 affects users’ smartphone usage behavior can
bring twofold benefits. First, understanding smartphone usage
differences across the Covid-19 outbreak is critical for the
industry, e.g., smartphone manufacturers and network service
providers, to dynamically adjust market strategies and enhance
user experience. Second, smartphones are embedded with a set
of sensors recording user activities in both cyber and physi-
cal spaces [7]. By exploring the impact, we can use such rich
behavioral data to infer different Covid-19 outbreak stages and
further contribute to the fight against Covid-19.

Meanwhile, some previous studies have introduced mobile
sensing data to the public health field. For example,
Yarkoni [8] proposed the concept of psychoinformatics,
using tools and techniques from information sciences to
improve psychological research. Insel [9] and Baumeister and
Montag [10] introduced digital phenotyping that leverages dig-
ital behavior data logged on smartphone sensors to detect
psychological states. Further, Markowetz et al. [11] proposed
to explore big data technologies and conduct digital phenotyp-
ing on a large scale. The above studies showed the correlation
between smartphone usage and the psychological states of
users. The Covid-19 pandemic represents a global health cri-
sis, which will severely change the psychological burdens and
physical activities of individuals [12]. Such changes may be
conveyed to and reflected in smartphone usage [13]. In this
way, we are motivated to investigate how the outbreak of
Covid-19 affects smartphone usage behavior.

In this work, we make an effort toward understanding the
impact of Covid-19 on smartphone usage and explore the
potential of smartphone usage data to fight against Covid-19.
More specifically, we study the following research problems.

1) Does the outbreak of Covid-19 affect users’ smartphone
usage, and how?

2) Can we use smartphone usage data, e.g., CPU usage,
memory usage, and network connections, to infer the
outbreak stages of Covid-19?
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TABLE I
SAMPLES OF THE COLLECTED SMARTPHONE USAGE DATA, WHERE LTE AND UTMS ARE SPECIFIC

MODES OF CELLULAR NETWORK. USER IDS HAVE BEEN ANONYMIZED

To answer the above two questions, we reveal the correla-
tions between smartphone usage and the outbreak of Covid-19
from both statistical and dynamic patterns. We first collect a
large-scale smartphone usage dataset by leveraging a global
crowdsourcing platform called Carat. The dataset covers users
in North America and their smartphone usage records for
six months from November 2019 to April 2020 (Section II).
Next, we use the dataset to make a statistical analysis. The
results demonstrate that the outbreak of Covid-19 has indeed
impacted significantly on users’ smartphone usage behavior in
terms of CPU usage, memory usage, WiFi usage, and network
switches. In our case, CPU and memory usage describe how
much of the processor’s and memory’s capacity is in use,
respectively. WiFi usage indicates the percentage of records
under WiFi connection. Network switch refers to the change
of network connection from WiFi to cellular network and
vice versa. Specifically, the CPU usage and memory usage
reflect the intensity of smartphone engagement of users. The
WiFi usage and network switches reveal users’ mobility inten-
sity. Further, we extend our analysis to dynamic patterns, i.e.,
diurnal patterns of smartphone usage. The results unveil how
the outbreak of Covid-19 affects usage behavior during the
time of one day. We also examine the correlations between
smartphone usage and daily confirmed cases (Section III).
Moreover, we investigate smartphone usage data’s inference
ability for Covid-19 outbreak stages using both statistical and
deep learning methods. By comparing the performance and
conducting importance analysis, we select the most potent
smartphone usage features for the outbreak stage inference
(Section IV).

Among the many insightful results and observations, the
following are the most prominent.

1) The outbreak of Covid-19 causes a decrease in users’
smartphone engagement in terms of both CPU usage
and memory usage. However, it has different impacts
on CPU and memory usage according to their diurnal
patterns. Specifically, it leads to a new typical diur-
nal pattern of memory usage while it only changes the
proportion of existing patterns of CPU usage.

2) The outbreak of Covid-19 makes an increase in WiFi
usage and a decrease in network switches, implying that
users reduce their mobility intensity. Also, similar to
memory usage, a new typical diurnal pattern of WiFi
usage has emerged after the outbreak.

3) Memory usage, WiFi usage, and network switches have
significant correlations with the number of daily con-
firmed cases of Covid-19. Also, the correlation between
smartphone usage behavior and Covid-19 daily cases has

a time delay. Smartphone usage changes earlier than the
number of cases. That is because the smartphone data
can reflect the outbreak status in real time. However,
such reflection cannot be immediately expressed in daily
cases due to the diagnosis delay.

4) By using smartphone usage data to infer Covid-19 out-
break stages, we can achieve over 0.8 for both Macro-F1
and Micro-F1, which presents a promising application of
smartphone usage data on fighting against Covid-19.

II. DATASET OVERVIEW

A. Data Collection

We leverage a crowdsourcing platform called Carat to col-
lect smartphone usage data. Carat is a cross operating system
mobile app, including both iOS1 and Android,2 which can
record users’ smartphone usage traces automatically. Carat
can monitor and record the working status of smartphones in
detail. In practice, Carat informs of all data collection items
in the end-user license agreement (EULA) when users install
Carat to alleviate user privacy concerns. Also, Carat users
are anonymized, and the app does not collect any personal
information. It is worth noting that Carat is live. Up to now,
Carat has been downloaded over 100 thousand times. The
number of downloads and installations is increasing every day.

Specifically, Carat applies an event-triggered collection
scheme, gathering a data sample every time the battery level
changes by 1%. Each data sample contains a list of smart-
phone hardware status, including CPU, memory, battery, and
network. Each sample also has several other features, includ-
ing a user-specific identifier, timestamp, timezone, and mobile
country code (MCC). The MCC is obtained from the cellular
network and automatically converted to a two-character coun-
try code. Table I presents samples of collected smartphone
usage data to show the data format.

B. Basic Analysis

Since we focus on studying the impact of Covid-19,
we select the records from November 2019 to April 2020.
Also, we principally consider samples collected from North
America. In total, we have 452 users with over 7 517 494
records. Since users involved may uninstall and reinstall Carat
during the data collection period, the number of active users
changes over time, i.e., November 2019 (293 users), December
2019 (295 users), January 2020 (251 users), February 2020

1https://apps.apple.com/us/app/carat/id504771500
2https://play.google.com/store/search?q=carat
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TABLE II
SUMMARY OF THE COLLECTED DATASET FROM NORTH AMERICA

Fig. 1. (a) CDF of the number of records per month for each unique user.
(b) Daily average number of collected records of users.

(224 users), March 2020 (198 users), and April 2020 (158
users). In our case, we use both timezones and MCC to deter-
mine the users’ country, which increases the reliability of
detection. Table II summarizes the dataset.

Next, we depict basic statistics to illustrate the quality and
representativeness of the collected smartphone usage dataset.
Fig. 1(a) presents the cumulative distribution function (CDF)
of the number of records per month for each unique user.
We observe that the involved users kept a high activeness
level during the data collection period. For each month, more
than 20% of users have over 1800 records. Moreover, we
plot how the average number of users’ records changes every
day in Fig. 1(b). We can witness that there are around 220
records every day per user on average. Although there are
some fluctuations, the curve is relatively stable. Such a high
number of records per user demonstrates our dataset’s effec-
tiveness in capturing the smartphone usage behavior of users
involved covering the entire six months, i.e., from November
2019 to April 2020. Also, the continuity of the data collection
guarantees the representativeness of our study.

C. Ethical Considerations

We are very aware of the privacy issues when using the
collected data for research. We have taken adequate actions
to safeguard the privacy of the involved mobile users. First,
we do not collect any personal information from users. A
user-specific identifier is randomly generated when the user
first installs Carat. We only have users’ country information
rather than sensitive location information, like GPS data. Also,
the data-gathering part of Carat is open source.3 Users can
examine it easily. The users involved are informed of the data
collection and management procedures in the EULA and grant
their consent from their devices. In the EULA, we also point
out that the data we collect may be used to improve products
or for research purposes. Second, the dataset is stored in a
secure local server protected by strict authentication mecha-
nisms and firewalls. All researchers are regulated by a strict

3The code is available at https://github.com/carat-project/carat/.

Fig. 2. Cumulative number of confirmed cases changes over time. The federal
government issued an emergency declaration on March 13, 2020. Most states
issued school closure rules and restaurant restrictions by April 7, 2020.

nondisclosure agreement to access the data. Finally, this work
has received approval from all the authors’ local institutions.

III. DIFFERENCES IN SMARTPHONE USAGE

In this section, we aim to solve the first research problem,
i.e., whether and how the outbreak of Covid-19 affects
users’ smartphone usage behavior. Specifically, we explore the
impact on CPU usage, memory usage, and network status from
statistical and dynamic pattern analysis. The data processing
and analysis was conducted in Helsinki.

A. Differences in Number and Distributions

To determine whether the outbreak of Covid-19 changes
users’ mobile engagement, first, we need to determine the
outbreak date in North America. Fig. 2 shows the cumulative
number of confirmed cases in North America from February
2020 to April 2020 and the governmental policies on the same
timescale. The dashed curve is in the linear scale, while the
solid curve depicts the cumulative number in the logarithmic
scale. Notably, the propagation of Covid-19 is in exponential
growth. Therefore, using the logarithmic scale curve makes it
more accessible to detect the phase change of increase trend
and determine the outbreak date accordingly [14]. In terms of
Fig. 2, we can observe an apparent step-up around March 1,
2020, as denoted by the red point. Hence, we regard March 1,
2020, as the outbreak date of Covid-19 in North America.

We then begin the analysis by comparing the distributions
of smartphone usage variables before and after the outbreak
of Covid-19. In Fig. 3, we use box plots to depict the dis-
tributions of the percentages of CPU usage, memory usage,
WiFi usage, and network switches, respectively. Specifically,
the “Before” set contains the samples from November 1, 2019,
to February 29, 2020, while the “After” set contains the sam-
ples from March 1, 2020, to April 30, 2020. The box plots
describe data distribution through quartiles. The candlesticks
represent the minimum and the maximum values, while the
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Fig. 3. Differences in smartphone usage before and after the outbreak of
Covid-19. (a) Distributions of the percentage of CPU usage, p = 5.239 ·
10−5. (b) Distributions of the percentage of memory usage, p = 7.383 ·
10−18. (c) Distributions of the percentage of WiFi usage, p = 2.585 · 10−19.
(d) Distributions of the percentage of network switches, p = 1.526 · 10−23.

TABLE III
CORRELATIONS BETWEEN MEMORY USAGE AND WIFI USAGE ACROSS

DIFFERENT TIME PERIODS

boxed area contains the values between 25% and 75% quar-
tiles. The horizontal line denotes the median, while the green
upper triangle indicates the mean.

There is an apparent difference in smartphone usage across
the outbreak in terms of all hardware variables. The mean val-
ues of CPU and memory usage drop from 7.36% and 3.93%
to 6.87% and 3.47%, respectively. Their differences across the
outbreak are significant under a two-sided t-test [15] with p
values of 5.239·10−5 � 0.001 and 7.383·10−18 � 0.001. The
decreases imply that users’ smartphone engagement becomes
less active after the outbreak, i.e., March 1, 2020. Meanwhile,
the WiFi usage percentage grows dramatically, where the mean
value rises from 56.95% to 64.06%. The distribution differ-
ence is also significant under a two-sided t-test with a p value
of 2.585 · 10−19 � 0.001. Since WiFi access points are usu-
ally deployed indoors, we can conclude that people have more
time to stay indoors instead of going outside after the outbreak
of Covid-19. Moreover, we also notice that the percentage of
network switches drops remarkably. The mean value declines
from 3.98% to 2.85%, and the distribution difference is sig-
nificant, with p value 1.526 · 10−23 � 0.001. Similar to WiFi
usage, network switches also reflect the movement of mobile
users. Since the WiFi network is commonly deployed indoors
and limited by its coverage, network switches usually occur
when mobile users go from indoors to outside and from outside
to indoors. Consequently, the percentage of network switches
can reveal the mobility intensity of smartphone users. In this
way, the decreasing trend of network switches suggests users
have less mobility after the outbreak.

As a result, based on the differences in number and dis-
tributions, we can conclude that the outbreak of Covid-19
causes a decrease in smartphone engagement in terms of both
CPU and memory usage. Meanwhile, the outbreak causes an
increase in users’ intensity staying indoors in terms of WiFi
usage. Further, we depict the correlation between WiFi usage
and memory usage to investigate smartphone usage intensity
when people stay indoors. Table III shows the correlations
across different time periods, i.e., over the complete time win-
dows, before the outbreak, and after the outbreak. As depicted
in Table III, WiFi usage and memory usage have a weak
positive correlation before the outbreak, which follows the
commonly held intuition. However, after the outbreak, the cor-
relation becomes weak negative. We infer that the longer time
to stay at home after the outbreak may cause such differences.
When people have more time at home, they will prefer to
use their computers and laptops for entertainment instead of
smartphones.

B. Differences in Diurnal Patterns

In terms of the above statistical analysis, we can conclude
that the outbreak of Covid-19 has affected users’ smartphone
usage behavior. Next, we delve into the dynamic analysis, i.e.,
revealing the differences in diurnal patterns. The diurnal pat-
tern depicts how users’ smartphone usage behavior unfolds
over the time of the day, which is an essential temporal pattern
studied by many previous studies [16], [17].

We define each day’s diurnal pattern by averaging the usage
data over the day’s active users. In our case, we evenly divide
one day into 48 time slots, where each time slot represents half
an hour. Therefore, each diurnal sequence is of 48 dimensions.
Next, we compute smartphone usage data for each time slot.
In practice, as for CPU usage and memory usage behavior, we
take the averages in that time slot. For WiFi usage, we cal-
culate the proportion of WiFi connection records in that time
slot. Besides, for network switches, we calculate the propor-
tion of network type changes in the time slot. By doing so,
given one day, each type of smartphone usage behavior will
have a diurnal sequence with 48 dimensions. In total, we have
728 diurnal sequences, i.e., 182 (# of days) × 4 (# of usage
types).

After obtaining the diurnal sequences, we use the t-SNE
transformation [18] to visualize them, as shown in Fig. 4.
t-SNE is a commonly used data transformation method that
projects high-dimensional data to a low-dimensional space
while keeping the similarity across objects. In Fig. 4, blue
points represent the dates before the outbreak, while orange
points represent the dates after the outbreak. We can observe
that excluding CPU usage, the other types of smartphone
usage behavior appear to be nicely separated by the outbreak.
This shows the existence of differences in diurnal patterns of
smartphone usage before and after the outbreak of Covid-19.

Based on the t-SNE visualization results, we propose a
hypothesis that the outbreak of Covid-19 will lead to a new
diurnal pattern for smartphone usage. In our case, the new
pattern means that it does not or rarely appears before the out-
break but is popular on the dates after the outbreak. To test the
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Fig. 4. t-SNE representation of diurnal sequences of smartphone usage, projecting high-dimensional data to a 2-D space while keeping the similarity across
objects. t-SNE representation of (a) CPU usage patterns, (b) memory usage patterns, (c) WiFi usage patterns, and (d) network switch patterns.

Fig. 5. Cluster results of CPU usage diurnal patterns. (a) Centroids of clusters.
(b) Proportion of cluster labels.

hypothesis, we apply K-means to cluster diurnal sequences of
the entire 182 days for each type of smartphone usage behavior
and examine whether the cluster results can be distinguished
by the outbreak date of Covid-19. Since there are only two
situations for any date, i.e., before or after the outbreak, we
set the number of clusters to two. The clustering results are
presented in Figs. 5–8, where clusters A and B refer to the
two-cluster output of K-means. Also, we regard the centroid
as the typical diurnal pattern of the cluster.

Diurnal Patterns of CPU Usage: As shown in Fig. 5(a), the
obtained two typical diurnal patterns of CPU usage have the
same trend but different values. Both of them decrease dur-
ing the night and increase during the day, while cluster B’s
centroid is of lower numerical values. Fig. 5(b) shows that,
compared to cluster A, cluster B accounts for a higher pro-
portion of the dates after the outbreak, consistent with the
dropping trend observed in Fig. 3(a). We also observe that
Covid-19 only affects the proportion of two cluster labels, and
both typical patterns frequently appear on the dates before the
outbreak. In other words, the outbreak did not create a new
typical diurnal pattern of CPU usage. The t-SNE visualization
in Fig. 4(a) also verifies this.

Diurnal Patterns of Memory Usage: As depicted in
Fig. 6(a), similar to CPU usage, two typical diurnal patterns
obtained are also with the same trend but different numer-
ical values. In terms of Fig. 6(b), over 80% of the dates
before the outbreak belong to cluster A. Meanwhile, more
than 65% of the dates after the outbreak belong to cluster B.
Therefore, we can conclude that the cluster results can be dis-
tinguished by the outbreak date. Also, cluster B’s centroid can
be regarded as a new typical diurnal pattern because it rarely
appears before the outbreak and becomes common after the
outbreak. In summary, Covid-19 leads to the appearance of a

Fig. 6. Cluster results of memory usage diurnal patterns. (a) Centroids of
clusters. (b) Proportion of cluster labels.

Fig. 7. Cluster results of WiFi usage diurnal patterns. (a) Centroids of
clusters. (b) Proportion of cluster labels.

new typical diurnal pattern of memory usage, corresponding
to the t-SNE visualization in Fig. 4(b).

Diurnal Patterns of WiFi Usage: Fig. 7 displays the clus-
ter results of WiFi usage. Unlike CPU and memory usage,
apart from numerical differences, the centroids of WiFi usage
clusters also have different changing trends. As depicted in
Fig. 7(a), the centroid of cluster B has a higher percent-
age of WiFi usage throughout the day. Instead of a cliff-like
drop shown in cluster A, cluster B has a slow down after 6
A.M. This indicates that users need less mobile network sup-
port on the dates in cluster B. Moreover, similar to memory
usage, the dates after the outbreak have a dominating cluster,
i.e., cluster B. Therefore, Covid-19 also brings a new diur-
nal pattern of WiFi usage, leading users to use more WiFi
connections.

Diurnal Patterns of Network Switches: We exhibit the clus-
tering results of network switch patterns in Fig. 8. As discussed
in Section III-A, network switches can reflect the mobility
intensity of smartphone users. In Fig. 8(a), the centroid of
cluster A presents two peaks in the morning and evening rush
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TABLE IV
PEARSON CORRELATIONS BETWEEN SMARTPHONE USAGE AND COVID-19 CASES

Fig. 8. Cluster results of network switch diurnal patterns. (a) Centroids of
clusters. (b) Proportion of cluster labels.

hours, which verifies the above discussion. We notice that less
than 18% of the dates after the outbreak belong to cluster A,
indicating that users’ mobility intensity drops significantly.
Alternatively, cluster B has fewer network switches through-
out the day and without bimodal patterns, indicating that users
have less mobility on the dates in that cluster. Although clus-
ter B dominates the dates after the outbreak, it also frequently
appears before the outbreak. As a result, similar to CPU usage,
Covid-19 only changes the proportion of different network
switch patterns but does not trigger the appearance of new
patterns.

Consequently, the outbreak of Covid-19 also profoundly
affects diurnal patterns of smartphone usage behavior, imply-
ing that the diurnal sequences of smartphone usage can be
used to reflect the outbreak status.

C. Correlations Between Smartphone Usage and Covid-19
Daily Cases

We then analyze the correlations between smartphone usage
and Covid-19 daily cases. Specifically, we take the average
over the active users of each day and plot both the daily
sequences of smartphone usage and the number of daily con-
firmed cases of Covid-19 in Fig. 9, from February 1, 2020 to
April 30, 2020. For the figures of CPU usage, memory usage,
and network switches, we inverse the y-axis for better visual-
ization. From the results, we can observe that memory usage,
WiFi usage, and network switches have strong correlations
with both cumulative and new confirmed daily cases. That
is because smartphone usage behavior reflects users’ phys-
ical activities, e.g., staying at home and mobility intensity.
Meanwhile, users’ physical activities will influence and be
affected by Covid-19. Therefore, smartphone usage behavior
can indirectly reveal Covid-19 trends. Moreover, in Fig. 9(f)

and (h), we discover a delay in the changing trends between
smartphone usage behavior and new confirmed cases. In other
words, smartphone usage changes earlier than the number of
cases.

Further, to better explore the delay phenomenon, we put
a set of delays on the daily sequences of smartphone usage
behavior from 0 to 3 days. Then, we compute the Pearson
correlation between shifted smartphone usage and Covid-19
sequences. The results are illustrated in Table IV. From the
results, we discover that different smartphone usage fea-
tures have various correlations with daily confirmed cases.
Generally, memory usage, WiFi usage, and network switches
have significant linear correlations with Covid-19 daily con-
firmed cases. The absolute values of their Pearson coefficients
are greater than 0.8. However, CPU usage has a weak Pearson
correlation, only around −0.26, with new confirmed cases of
Covid-19. These observations are consistent with the findings
in Section III-B. Moreover, when we delay usage behavior,
it will have a higher correlation with Covid-19 cases, which
corresponds to the observation that smartphone usage changes
earlier than Covid-19 cases. Also, different smartphone usage
variables show different typical time delays. In summary, the
correlations between smartphone usage behavior and daily
confirmed cases present a high potential of using smartphone
usage for daily outbreak stage inference of Covid-19.

IV. INFERENCE OF OUTBREAK STAGES

In this section, we study the second research problem, i.e.,
whether we can use smartphone usage data, e.g., CPU usage,
memory usage, and network connections, to infer the outbreak
stages of Covid-19. The outbreak stages reflect different sever-
ities of the pandemic. Specifically, we try to determine two
points, i.e., the typical time delay of stage inference using
smartphone usage data and the performance of different smart-
phone usage features in Covid-19 stage inference. Also, to
further improve inference performance, we propose an embed-
ding mechanism to fuse different smartphone usage behavior
features.

A. Inference Settings

Recalling Fig. 2, we can witness that the outbreak of
Covid-19 has shown three stages from March 1, 2020 to April
30, 2020. First, the dates from February 1, 2020 to March 1,
2020, are the early stage of Covid-19, with only a few cases
appearing. Second, during the dates from March 1, 2020 to
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Fig. 9. Daily patterns of smartphone usage and the number of daily confirmed cases of Covid-19. (a) CPU usage and cumulative confirmed cases. (b) CPU
usage and new confirmed daily cases. (c) Memory usage and cumulative confirmed cases. (d) Memory usage and new confirmed daily cases. (e) WiFi usage
and cumulative confirmed cases. (f) WiFi usage and new confirmed daily cases. (g) Network switches and cumulative confirmed cases. (h) Network switches
and new confirmed daily cases.

(a) (b) (c)

Fig. 10. Covid-19 outbreak stage inferences with different time delays. Performance with (a) LR classifier, (b) SVM classifier, and (c) Xgboost classifier.

April 1, 2020, the daily confirmed cases increased dramati-
cally. Third, on the dates after April 1, 2020, the increasing
trend of Covid-19 cases is stable. Therefore, we label Covid-19
outbreak stages with three classes, i.e., early, dramatic, and
stable. By doing so, the inference problem is converted into a
3-class classification problem. Specifically, we infer the out-
break stages of one day by using its diurnal sequences of
different smartphone usage behavior, including CPU usage,
memory usage, WiFi usage, and network switches. Also, to
evaluate the performance, we use Macro-F1 and Micro-F1 as
metrics. Macro-F1 treats all classes equally, computing the
F1-score independently for each class and then taking the aver-
age. Alternatively, Micro-F1 aggregates the contributions of all
classes to compute the average F1-score. The higher the value
of Macro-F1 and Micro-F1, the better the performance. For
all experiments, we obtain the results by employing a fivefold
cross-validation policy on our dataset.

B. Delay Analysis of Stage Inference

As we have discussed in Section III, users’ smartphone
usage behavior can reflect their physical activities and the out-
break stages of Covid-19. However, the reflection may not be
immediately expressed by the daily cases of Covid-19 due to
the incubation period and diagnosis delay. Hence, we explore
the typical time delay of stage inference. Specifically, we infer
the outbreak stage of one day by utilizing the smartphone

usage features of the days before it. We use inference
performance to evaluate the correlations between smartphone
usage and Covid-19 trends. In other words, better performance
indicates a higher correlation. Notably, different from the
Pearson correlation, the task of inference can also reveal non-
linear correlations. In practice, we conduct the inference with
the three most commonly used classification algorithms, logis-
tic regression (LR) [19], support vector machine (SVM) [20],
and Xgboost [21]. We infer the outbreak stages of one day by
concatenating all behavior types’ diurnal sequences, includ-
ing CPU usage, memory usage, WiFi usage, and network
switches.

We show the results in Fig. 10. The LR classifier has poor
performance, and F1 scores fluctuate on different delays. That
is because the LR classifier only uses a logistic function
to model the correlation, which is more susceptible to out-
liers tampering with the performance. Therefore, it is hard to
capture the relations between smartphone usage features and
Covid-19 outbreak stages with the LR classifier using the real-
word dataset that might have noisy data points. Alternatively,
as shown in Fig. 10(b) and (c), SVM and Xgboost classi-
fiers have better performance. Also, we can observe that F1
scores achieve the highest value under a delay of 2 or 3 days.
This observation confirms that the reflection of users’ smart-
phone usage behavior will emerge in Covid-19 trends with a
time delay of a few days, further validating our analysis in
Section III-C.
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TABLE V
INFERENCE PERFORMANCE WITH DIFFERENT FEATURES

Fig. 11. Seq2Seq model for smartphone usage embedding.

C. Performance of Different Usage Features

Next, we evaluate the performance of different smartphone
usage features and their combinations for the Covid-19 out-
break stage inference. Specifically, we explore four types of
smartphone usage features, i.e., CPU usage (CPU), memory
usage (Mem), WiFi usage (WiFi), and network switches (Net).
We combine a set of features by concatenating them together.
We perform the inference with the Xgboost classifier. The
performance of different combinations of features is shown
in Table V.

For the inference with a single feature, the performance
of using network switches is the best, indicating that users’
mobility intensity is most relevant to the Covid-19 status.
Meanwhile, WiFi and memory usage achieve relatively good
performance, implying that WiFi and memory usage also
reflect crucial human behavior related to Covid-19. In con-
trast, the CPU usage feature is less related and with the lowest
inference performance. These inference results are consistent
with our findings in Section III. As for the inference with
multiple features, the performance is not simply a superpo-
sition of single features’ performance. In terms of Table V,
the best performance is achieved by using CPU, memory,
and WiFi usage. However, it only achieves the F1 score of
around 0.76, slightly higher than when merely using network
switches. Also, most cases of using multiple features have
lower performance than simply using network switches. These

Fig. 12. Outbreak stage inferences with embeddings.

results reveal that simple concatenation is insufficient to fuse
different behavior data, motivating us to develop a better fusion
mechanism to explore different features effectively.

D. Smartphone Usage Behavior Embedding

In this section, we propose an embedding model to fuse
different smartphone usage behavior effectively. Given a day,
we first construct a diurnal smartphone usage feature sequence
{ui}48

i=1, where ui is a vector containing all four usage features
in the ith time slot of the day. We then utilize a Seq2Seq [22]
model to learn an embedding from the diurnal sequence. As
shown in Fig. 11, the model consists of an encoder and a
decoder, which are implemented with a GRU network [22].
The sequence {ui}48

i=1 is fed into the encoder to obtain an
encoding vector of z. Then, z and a shifted usage sequence
{ui}47

i=0 are fed into the decoder to reconstruct the original
sequence, where u0 is a vector that contains all 1. Moreover,
to encode comprehensive information in vector z, we engage
z in the reconstruction. Formally, the ith unit of the decoder
takes ui−1 as input and outputs hidden state ĥi , we infer ûi as

ûi = σ
(

W
[
ĥi, z

]
+ b

)
(1)

where [,] is the concatenating operation, σ is the sigmoid acti-
vating function, and W and b are trainable parameters. Finally,
we train the model by minimizing the reconstruction loss

L =
48∑

i=1

∣∣ûi − ui
∣∣2

. (2)

In our experiment, we train the model with the Adam opti-
mizer with a learning rate of 0.0001. The batch size is set
as the number of sequences, and we train the model for 200
epochs. By doing so, we obtain a usage embedding vector for
each day. To evaluate whether the embedding fuses different
usage features better, we conduct the inference on the original
features (Raw) and the original features concatenated with the
learned embeddings (Raw + Embedding). We again use the
Xgboost classifier as the inference model.

We compare the performance with embeddings, as shown
in Fig. 12. We can observe that, by combining with embed-
dings, we improve the entire performance under different
delay settings. Especially, when the delay is set as two
days, the performance of raw features combined with embed-
dings reaches around 0.87 for both Macro-F1 and Micro-F1,
which has an over 20% improvement compared with the best
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Fig. 13. Potential causality diagram of smartphone usage and Covid-19 cases.

performance of only using raw features. These results demon-
strate that the learned embeddings fuse multiple features more
effectively indeed.

V. DISCUSSION AND LIMITATION

In this article, we have investigated the impact of Covid-19
on smartphone usage based on a real-world dataset. However,
the number of users involved in our dataset is not very large,
i.e., covering 425 users, which is a limitation of our work. The
limited number of users involved may threaten the represen-
tativeness of our conclusion. To alleviate the influence caused
by a limited number of users, we have taken several adequate
measures in our work. For example, we compared the distri-
bution of variables instead of the average and median. We also
used the p-value to verify statistical significance.

Although we have examined the correlation between smart-
phone usage behavior and Covid-19 cases, their causality
relationship still needs further exploration. In Fig. 13, we
depict a potential causality diagram of smartphone usage and
Covid-19 cases. People mobility and psychological state serve
as a confounder and mediator connecting smartphone usage
and Covid-19 cases, respectively. Smartphone usage is directly
affected by mobility and can act as a mobility indicator.
Also, smartphone usage is still affected by the psychologi-
cal states of users [13]. Meanwhile, the causation between
people mobility and Covid-19 cases is bidirectional. On the
one hand, frequent people mobility will trigger new Covid-19
cases. On the other hand, Covid-19 will affect people’s mobil-
ity through governmental policies and their psychological
states. Therefore, the causation between smartphone usage
and Covid-19 cases might be complex. As for checking the
potential causality diagram we proposed, we leave it to future
work.

VI. RELATED WORK

Many previous studies have focused on characterizing
smartphone usage behavior. Shafiq et al. [23] presented
the diurnal pattern of smartphone network usage from var-
ious granularities, i.e., bytes, packets, flows, and users.
Peltonen et al. [24] collected a one-year smartphone usage
dataset from 25 323 users distributed in 44 countries. They
then studied how cultural features affect users’ smartphone
usage behavior. Srinivasan et al. [25] indicated that smart-
phone usage behavior profoundly depends on contextual
information. For example, users use more WiFi connections
at home. Moreover, Van Canneyt et al. [26] exhibited that

the occurrence of special events, e.g., New year’s day, UEFA
European Championship, will disrupt users’ normal smart-
phone usage patterns. These existing studies demonstrate that
users’ smartphone usage behavior will be sensitively impacted
by diverse contextual factors, including time, locations, and big
events, which inspired us to investigate how the outbreak of
Covid-19 affects the smartphone usage behavior.

Also, some studies pointed out the strong link between
smartphone usage behavior and users’ physical attributes and
activities. Zhao et al. [27] analyzed one month of smartphone
usage data collected from 106 762 users. They then discov-
ered 382 distinct types of users based on their usage behavior.
Also, they gave each cluster a meaningful label, such as night
communicators, evening learners, and financial users. Do and
Gatica-Perez [28] represented users’ smartphone usage traces
in one day as a bag of words, where one word refers to a smart-
phone usage record with time features. They then applied an
author-topic model to infer the underlying structure of users’
physical activities. Similarly, Li et al. [29] leveraged smart-
phone app usage data to identify users’ daily activities. These
studies demonstrated that users’ physical activities profoundly
shape smartphone usage behavior, which shed light on using
smartphone usage data to reflect human activities and further
infer Covid-19 outbreak stages.

Smartphone usage behavior is still affected by users’ psy-
chological states. For example, Saeb et al. [30] explored
smartphone sensors’ data, like accelerometer, screen, GPS,
and WiFi, which help estimate the depression and anxiety
of users. Their methods can also be applied to our dataset,
allowing us to detect the depression of users. During the
Covid-19 crisis, we need to pay more attention to mental
health in the population. Covid-19 may trigger psychiatric
disorders of people [31]. Elhai et al. analyzed gaming disor-
der severity [32] and anxiety symptoms [33] during Covid-19.
Moreover, Montag et al. [13] pointed out that we can leverage
smartphone data to detect population mental states in real time
to help fight the Covid-19 pandemic. They also developed an
app [34] for social scientists, which tracks smartphone usage
data by combining self-report data with objectively recorded
data. In practice, conducting population-scale digital pheno-
typing might be challenging due to the lack of sufficient
labeled data. In that case, label-less learning should be a help-
ful technology. For example, Chen and Hao [35] proposed a
label-less learning for emotion cognition on a large scale.

Some studies also analyzed physical activities during
Covid-19 by using smartphone app usage and sensory data.
Norbury et al. [36] discovered a positive relation between
social app usage and total footsteps (obtained from sensory
data) during the lockdown due to Covid-19. Couture et al. [37]
investigated county-to-county movements based on the GPS
data collected from smartphones. Unlike the above studies,
our work directly investigates the relation between smartphone
usage and the Covid-19 outbreak.

VII. CONCLUSION

We conduct the first comprehensive study of the impact
of Covid-19 on smartphone usage. Specifically, our analysis
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covers the mobile users in North America with six-month
smartphone usage records from November 2019 to April 2020.
Overall, our findings indicate that users’ smartphone usage
indeed changes across the outbreak of Covid-19. However,
the outbreak has different effects on different usage behavior
in terms of changing trends, diurnal patterns, and correlations.
Also, we demonstrate the potential of using smartphone usage
data to infer the outbreak stages, achieving over 0.8 for both
Macro-F1 and Micro-F1. Our findings provide a novel appli-
cation of smartphone usage data and explore their values for
fighting against the epidemic.
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