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HLA-E and HLA-F Are Overexpressed in Glioblastoma and
HLA-E Increased After Exposure to Ionizing Radiation
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Abstract. Background/Aim: Glioblastoma (GBM) is one of
the deadliest human cancers responding very poorly to
therapy. Although the central nervous system has been
traditionally considered an immunologically privileged site
with an enhanced immune response, GBM appears to benefit
from this immunosuppressive milieu. Immunomodulatory
molecules play an important role in immune tumor-host
interactions. Non-classical human leukocyte antigens (HLA)
class Ib molecules HLA-E, HLA-F, and HLA-G have been
previously described to be involved in protecting semi-
allogeneic fetal allografts from the maternal immune
response and in transplant tolerance as well as tumoral
immune escape. Unfortunately, their role in GBM remains
poorly understood. Our study, therefore, aimed to
characterize the relationship between the expression of these
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molecules in GBM on the transcriptional level and clinico-
pathological and molecular features of GBM as well as the
effect of ionizing radiation. Materials and Methods: We
performed the analysis of HLA-E, HLA-F, and HLA-G mRNA
expression in 69 GBM tissue samples and 21 non-tumor brain
tissue samples (controls) by reverse transcription polymerase
chain reaction. Furthermore, two primary GBM cell cultures
had been irradiated to identify the effect of ionizing radiation
on the expression of non-classical HLA molecules. Results:
Analyses revealed that both HLA-E and HLA-F are
significantly up-regulated in GBM samples. Subsequent
survival analysis showed a significant association between
low expression of HLA-E and shorter survival of GBM
patients. The dysregulated expression of both molecules was
also observed between patients with methylated and
unmethylated O-6-methylguanine-DNA methyltransferase
(MGMT) promoter. Finally, we showed that ionizing radiation
increased HLA-E expression level in GBM cells in vitro.
Conclusion: HLA-E and HLA-F play an important role in
GBM biology and could be used as diagnostic biomarkers,
and in the case of HLA-E also as a prognostic biomarker.

Glioblastoma (GBM) is one of the most aggressive primary
brain tumors with a very poor prognosis. The current treatment
approach involves surgery, if possible, followed by
radiotherapy with a total dose of 60 Gy and concomitant
chemotherapy with the alkylating agent temozolomide (TMZ).
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Sometimes, adjuvant chemotherapy with TMZ is given as
monotherapy, ~ which  together =~ with  concomitant
chemoradiotherapy significantly increase median overall
survival (OS) of patients to 12-15 months (1-4). Nevertheless,
GBM progression and recurrence eventually manifest due to
several factors. One possible explanation is related to the
immunologically privileged status of the brain, made possible
by the existence of the blood-brain barrier, which may be
breached in pathological conditions leading to recruitment of
leukocytes (5). Alterations of immunomodulatory molecules,
such as human leukocyte antigens (HLA), may then lead to
changes in immune interactions between the tumor and host
organism contributing to the immune escape of tumors (6).

HLA molecules are coded by closely linked polymorphic
genes and comprise the so-called major histocompatibility
complex (MHC), which has a large impact on cell
recognition and immunological defense (7). MHC is further
divided into 3 classes (I-III). Class I consists of classical and
non-classical HLA molecules, which differ in the rate of
polymorphism and tissue distribution. While classical HLA
class Ia molecules are comprised of HLA-A, HLA-B, and
HLA-C, which are highly polymorphic and widely expressed
in most tissues, non-classical HLA class Ib molecules are
represented by HLA-E, HLA-F, and HLA-G. These
relatively conserved molecules are generally characterized
by a more restricted tissue distribution. Their expression was
originally observed in placental trophoblasts and fetal tissue
under physiological conditions, where they have a
fundamental role in maternal immune response/tolerance
during pregnancy (8-10).

The mechanism by which HLA-E exerts its function directly
involves receptors cluster of differentiation 94/natural killer
group 2 (CD94/NKG?2) expressed on the surface of natural
killer (NK) cells and a subset of cluster of differentiation 8-
positive (CD8+) T lymphocytes (11-13). HLA-E binds a subset
of peptides, derived either from the leader sequences of other
MHC class I molecules, namely HLA-A, HLA-B, HLA-C, and
HLA-G, or exogenous viral proteins (14, 15). Like the
processing of HLA class Ia molecules, the binding is facilitated
by the peptide loading complex, which includes transmembrane
glycoprotein tapasin and a transporter associated with antigen
processing 1 or 2 (TAP1/TAP2). HLA-E is then transported
partially in a B-Cell receptor-associated protein 31 (Bap31)-
dependent manner from the endoplasmic reticulum lumen to the
cell surface where it presents bound signal peptides to NK cells
by interacting with NKG2 receptors A-E (16, 17). All NKG2
receptors dimerize with CD94 except for NKG2D, which
associates with DNA polymerase III subunit tau (DNAX)-
activating protein of 10KDa (DAP10) or DNAX-activating
protein of 12KDa (DAP12) (18). While the interaction of HLA-
E and CD94/NKG2C or CD94/NKG2E results in an activating
effect on NK-mediated cell lysis, leading to the destruction of
the HLA-E expressing cell, the interaction with CD94/NKG2A
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or CD94/NKG2B receptor has an inhibitory effect on NK cells.
Moreover, the affinity of HLA-E for CD94/NKG2A has been
reported to be 6- to 8-times higher than the affinity for
CD94/NKG2C. Therefore, these interactions allow for the
dynamic control of cytotoxicity (13, 19-21).

The role of HLA-F is still not well understood. It is the
smallest of the HLA class I molecules and a predominantly
empty and intracellular protein acting as a ligand for TAP
(22) and specialized receptors expressed by immune cells,
such as immunoglobulin(Ig)-like transcript 2 (ILT2), ILT4
(23), killer cell Ig Like receptor, three Ig domains and long
cytoplasmic tail 2 (KIR3DL2), killer cell Ig like receptor,
two Ig domains and short cytoplasmic tail 4 (KIR2DS4), and
killer cell Ig like receptor, three Ig domains and short
cytoplasmic tail 1 (KIR3DS1) (24-26). HLA-F was also
reported to act as a chaperone in activated lymphocytes in
the absence of signal peptides, stabilizing the heavy chain of
other HLA class I molecules in the form of open conformers
and escorting them to the cell surface, where they participate
in cross-presentation of exogenous antigens (27, 28).

HLA-G has been first observed on the surface of
extravillous cytotrophoblast cells in the placenta, hinting at
its role in maternal immune response/tolerance. Compared to
other HLA class Ib molecules, HLA-G is highly polymorphic,
with several of the alleles connected to recurrent pregnancy
loss and pre-eclampsia (29-31). Its function might extend
beyond the mediation of maternal immune tolerance,
considering the fact it was also found in other types of cells
and tissues, such as T cells derived from the thymus (32),
mesenchymal stem cells (33), and cornea (34).

The aberrant expression of HLA class Ib molecules was
observed in various tumors, including GBM, with most
studies reporting overexpression of their mRNA and protein
molecules in tumors compared to non-tumor tissues (35-40).
Moreover, there is evidence of an association between the
expression of HLA-E, HLA-F, and HLA-G and the OS
length of patients with GBM (35, 36, 41-43), as well as the
impact of irradiation on these molecules in several
malignancies (6, 36). However, the expression of HLA class
Ib molecules in GBM is still not well-characterized.
Therefore, the aim of this study was to analyze the
expression of HLA-E, HLA-F, and HLA-G in GBM and
non-tumor brain tissue samples, characterize the prognostic
potential of these molecules, and study the effect of ionizing
radiation on the expression of the above molecules in
primary GBM cell cultures.

Materials and Methods

Patient sample cohort. The retrospective multi-institutional
(University Hospital Brno, University Hospital Ostrava, St. Anne’s
University Hospital Brno) cohort study included 69 patients with
histopathologically confirmed primary GBM and 21 non-tumor
tissues, with the latter serving as controls. The study was approved
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Table 1. Clinico-pathological and molecular characteristics of the GBM patient cohort.

Median Range (min — max)
Age (years) 64 30-80
Karnofsky performance score 80 60-100
WHO performance 1 0-3
Overall survival (months) 12.2 0.6-41.3
Progression-free survival (months) 54 1.1-31.1

Category (percentage)

Category (percentage)

Gender
MGMT promoter methylation status
IDHR132 mutation status

Men (56.5%)
Methylated (33.3%)
Mutated (7.2%)

Women (43.5%)
Unmethylated (66.7%)
Wild-type (92.8%)

WHO: World Health Organization; MGMT: O-6-methylguanine-DNA methyltransferase; IDHIR132: the residue R132 of the isocitrate

dehydrogenase 1 gene.

by the local Ethics Committee and all enrolled patients signed the
informed consent form. The clinico-pathological and molecular
characteristics of GBM patients are summarized in Table 1. Non-
tumor brain tissues were obtained via therapeutic resections in
patients with pharmacoresistant, intractable epilepsy and only brain
tissue lacking evidence of dysplastic changes from the non-
dominant temporal lobe was used. Forty-one GBM patients
underwent adjuvant concomitant chemoradiotherapy according to
the Stupp protocol. In summary, 60 Gy of fractionated radiotherapy
were administered at the primary site of the tumor, followed by 42
cycles of TMZ chemotherapy. A subset of patients was further
indicated to adjuvant TMZ monotherapy.

Primary cell cultures. Two primary GBM cell cultures were derived
from fresh tumor tissue samples obtained from GBM patients who
underwent surgical resection at the Department of Neurosurgery of
the University Hospital Brno. The fresh tissue sample was
enzymatically dissociated with the Papain Dissociation System
(Worthington Biochemical Corporation, Lakewood, NJ, USA) for
20 min at 37°C and then processed to a single cell suspension
according to the manufacturer’s instructions. Single cell suspension
was seeded into a 25 cm? tissue culture flask (TPP Techno Plastic
Products AG, Trasadingen, Switzerland) and cultured in Dulbecco’s
Modified Eagle Medium supplemented with 10% fetal bovine
serum, 2 mM GlutaMAX, 100 U/ml penicillin, 100 pg/ml
streptomycin, I mM sodium pyruvate, and 1% non-essential amino
acids (all Thermo Fisher Scientific, Waltham, MA, USA). After 1-
3 weeks, adherent cells, which covered more than 2/3 of the culture
flask, were passaged using Trypsin-ethylenediaminetetraacetic acid
(Trypsin-EDTA) solution (Sigma-Aldrich, St. Louis, MO, USA).

Tissue sample preparation and nucleic acid extraction. All tissue
samples were frozen and stored at —80°C in RNA stabilization
solution RNAlater (Thermo Fisher Scientific). Samples were later
homogenized with 1.4 mm ceramic beads and total RNA enriched
for small RNAs was isolated using mirVana miRNA Isolation Kit
(Thermo Fisher Scientific) according to the manufacturer’s
instructions. The concentration of extracted RNA was measured
using ultraviolet-visible spectrophotometry in NanoDrop 2000
Spectrophotometer (Thermo Fisher Scientific). RNA integrity was
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assessed with both electrophoresis in 1% agarose gel and capillary
electrophoresis in 2200 TapeStation using the RNA ScreenTape
System (Agilent Technologies, Santa Clara, CA, USA).

Irradiation of primary cell cultures. Based on similar methodology
used in our previous study (44), two primary GBM cell cultures
(GBM1 and GBM2) were grown to approximately 60% confluence,
irradiated with 2 Gy (Cs-137 vy-radiation, 2 Gy/min), and upon
reaching 90% confluence, subcultured into new culture flasks. This
procedure was repeated at regular intervals up to 32 Gy, when the
dose was raised to 4 Gy and administered up to a total dose of 40
Gy, rendering the cell lines radioresistant in the process (GBMI1-R,
GBM2-R). Parental cells were cultured in the same conditions
without irradiation treatment and used as controls (GBMI-C,
GBM2-C). Both pairs of primary cell lines then received a radiation
dose of 0, 5 or 10 Gy and were cultured and lysed after 24 h and
72 h. The whole experiment was performed in biological triplicate
with each also performed in technical triplicate. RNA from both
radioresistant and control cell cultures was isolated from cell lysates
using mirVana miRNA Isolation Kit according to the manufacturer's
instructions and the concentration was measured using the
NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific).

Quantification of HLA mRNA expression levels by reverse
transcription polymerase chain reaction (RT-gPCR). High-Capacity
cDNA Reverse Transcription Kit was used for cDNA synthesis
according to the manufacturer’s instructions (Thermo Fisher
Scientific). Real-time PCR was performed using LightCycler 480
Instrument II (Roche, Basel, Switzerland) and TagMan Gene
Expression Master Mix together with specific gene expression assays
for HLA-E (Hs03045171_m1), HLA-F (Hs04185703_gH), HLA-G
(Hs00365950_g1, Hs03045108_ml), glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) (Hs02786624_gl1), and peptidylprolyl
isomerase A (PPIA) (Hs99999904_m1) (Thermo Fisher Scientific),
with the latter two serving as normalizers, which were chosen based
on the past experience and current literature. All PCR reactions were
performed in technical duplicates or monoplicates when measuring
expression in fresh tissue samples and lysates from primary line cell
irradiation experiment, respectively. The crossing point cycle (Cp) data
were determined using the Second Derivative Maximum Method.
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Figure 1. Results from the Mann-Whitney U-test and correlation analyses
comparing mRNA levels of (A) HLA-E in glioblastoma (GBM) and non-
tumor tissues (p=0.0001); (B) HLA-F in GBM and non-tumor tissues
(p=0.0014); (C) HLA-E and HLA-F in all tissue samples (Spearman
r=0.6988; p<0.0001); (D) HLA-E in GBM samples with methylated and
unmethylated O-6-methylguanine-DNA methyltransferase (MGMT)
promoter (MGMT+ and MGMT-, respectively;, p=0.0477); (E) HLA-F in
MGMT+ and MGMT- GBM samples (p=0.0172).
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Figure 2. Kaplan-Meier survival analysis of (A) HLA-E and (B) HLA-F
using the Gehan-Breslow-Wilcoxon test.

When measuring expression levels in fresh frozen tissue samples, prior
to normalization, Cp values were first corrected using an interplate
control to minimize interplate variability. To compare the expression
of HLA-E and HLA-F mRNAs, the expression levels were normalized
using the 2-ACP method. ACP values were calculated according to the
following formula: ACp=AvgCp(HLA)-AvgCp(normalizer), where
AvgCp(HLA) and AvgCp(normalizer) are average values calculated
from Cp values obtained from technical replicates, with the former
corresponding to HLA-E or HLA-F gene expression and the latter to
the normalizer gene expression. PPIA or the combination of PPIA and
GAPDH (an average Cp value) was used as a normalizer for relative
quantification of HLA expression in fresh tissue samples and primary
cell lines, respectively. In the case of the irradiation experiment, the
average normalized expression value was then calculated from 3
biological replicate values which were, in turn, calculated from the
technical replicate values of normalized HLA expression. Finally, the
values on the y-axes in corresponding graphs were calculated as the
ratios of normalized expression values at 72 h to 24 h after exposure
to irradiation to a particular dose. Prism 8 software (GraphPad
Software, San Diego, CA, USA) was used for the following statistical
evaluation, including non-parametric Mann-Whitney U-test, Spearman
correlation, receiver operating characteristic (ROC) analysis, Kaplan-
Meier survival analysis, and linear regression line fitting. A p-value of
0.05 was selected as a threshold of significance. In the case of ROC
and survival analysis, OS was defined as the time elapsed from the
beginning of the treatment, i.e., surgical resection, until the patient’s
death or the censoring date. Progression-free survival (PFS) was
similarly defined as the time elapsed from the beginning of the
treatment until the date of GBM progression. Patients were divided
into the short-survival and long-survival groups based on the 12-month
OS and 6-month PFS cut-offs.

Results

HLA-E and HLA-F are overexpressed in glioblastoma patient
tissue samples compared to non-tumor tissue samples.
Expression levels of HLA class Ib molecules were analyzed
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expression in GBM patients. Comparison of survival curves was performed
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in an independent cohort of 69 primary GBM tissue samples
and 21 non-tumor tissue samples serving as controls. The RT-
qPCR analysis using TagMan Gene Expression assays
followed by Mann-Whitney analysis confirmed that both
HLA-E and HLA-F are up-regulated in GBM samples
(FC=2.05, p=0.0001, and FC=2.02, p=0.0014, respectively;
Mann-Whitney analysis; Figure 1A and B), while the
expression of HLA-G mRNA was not detected. A significant
correlation between the expression levels of HLA-E and HLA-
F in all samples (Spearman r=0.6988; p<0.0001; Figure 1C)
and the dysregulated expression of HLA-E and HLA-F among
patients with methylated and unmethylated MGMT promoters
(p=0.0477 and p=0.0172, respectively; Figure 1D and E) were
also observed. No significant dysregulation of HLA-E and
HLA-F was observed among patients with the wild-type and
mutated isocitrate dehydrogenase 1 (IDH1) gene (p=0.8555
and p=0.7640, respectively).

The expression of HLA-E is associated with overall survival
of glioblastoma patients. ROC analysis of HLA-E and HLA-
F expression in the cohort of GBM patients who underwent
complete therapy according to the Stupp protocol
(radiotherapy 60 Gy, 42 cycles of TMZ, and if possible,
adjuvant therapy with TMZ) revealed that HLA-E was able
to distinguish patient survival over 12 months with 65.71%
sensitivity and 61.76% specificity. Significant association of
HLA-E expression and OS has been subsequently confirmed
by Kaplan-Meier analysis (p=0.0106; Gehan-Breslow-
Wilcoxon test). Specifically, lower expression of HLA-E has
been significantly associated with a poorer survival (Figure
2A). On the other hand, HLA-F tissue expression levels
showed a similar trend but not a significant association with
OS in GBM patients (p=0.1051; Gehan-Breslow-Wilcoxon
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Figure 3. Results from reverse transcription polymerase chain reaction (RT-gPCR) comparing the changes in mRNA levels of (A) HLA-E and (B)
HLA-F in 2 radioresistant (GBM1-R, GBM2-R) and 2 radiosensitive parental (GBM1-C, GBM2-C; control) primary GBM cell cultures from 24 h
to 72 h after receiving a dose of 0, 5 or 10 Gy. Average values (ratios of normalized expression values at 72 h to values at 24 h) are denoted by
points connected with a dashed line. Linear regression (trend) lines are shown to demonstrate the trend of dose-dependent changes in HLA-E and

HLA-F expression.

test; Figure 2B). Finally, no significant association of HLA-
E and HLA-F expression was observed in connection to PFS.

lonizing radiation elevates expression levels of HLA-E in
glioblastoma cells in vitro. We also performed in vitro analysis
of the effect of ionizing radiation on the expression of HLA-
E and HLA-F in two tissue-derived primary GBM cell
cultures. Each culture was divided into two pairs, with one
being regularly irradiated to a total dose of 40 Gy, eventually
becoming radioresistant, and the other used as an untreated,
radiosensitive control. The radioresistant and control cell lines
then received a dose of 0, 5 or 10 Gy and the HLA-E and
HLA-F expression was measured at 24 h and 72 h after
exposure to radiation. The results demonstrated that compared
to controls, both radioresistant cell lines were characterized by
a visibly greater radiation dose-dependent change in HLA-E
expression between 24 h and 72 h after exposure to radiation
(Figure 3A). No significant dose-dependent change in HLA-
F expression was observed between 24 h and 72 h in any of
the paired primary cell lines (Figure 3B).
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Discussion

The function of non-classical HLA Ib molecules HLA-E,
HLA-G, and lately HLA-F has been extensively studied, both
in physiological and pathological conditions. Since they are
well-known to be expressed on the surface of placental
extravillous trophoblasts, these immunomodulating molecules
were originally considered to only have a limited role in
providing maternal immune tolerance to a semi-allogeneic
fetus (8-10, 45). Their expression was also eventually
observed in normal non-fetal tissues. For example, HLA-E
expression was detected in B and T lymphocytes, natural killer
cells (NK), macrophages, and endothelial cells (46), while
HLA-G proteins were observed in thymic epithelial cells and
cells of erythropoietic lineage from bone marrow or the
endothelium (47). HLA-F has been detected in a number of
diverse tissues and cell lines, including liver, skin, and bladder
cells and the surface of the monocyte cell line (48, 49).
However, for several decades, minimal attention has been
given to further exploration of their role and relevance. Under
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pathological conditions, expression of both HLA-E and HLA-
F was detected in various malignancies in tumor cells in vivo
(50-52) and cell lines in vitro (22, 50, 53). Unfortunately, the
relationship between these immunomodulating molecules and
their function in GBM remains poorly understood.

Similarly to our previously reported findings (36), our current
study was performed on a larger independent patient sample
cohort showing increased expression of HLA-E in GBM
samples compared to non-tumor tissue samples. This agreed
with various studies that detected the overexpression of this
molecule in both solid and hematopoietic malignancies (11, 38-
41, 43, 54-60). HLA-E is known to have the ability to bind to
receptors CD94/NKG2A or CD94/NKG2B (inhibitory effect)
and CD94/NKG2C or CD94/NKG2E (activating effect),
expressed on the surface of NK cells and cytotoxic lymphocytes
with 6- to 8-times higher affinity for the CD94/NKG2A
inhibitory receptor compared to that for CD94/NKG2C
activating receptor (20, 21), but roughly the same as that for the
CD94/NKG2E activating receptor (20). Deactivation of NK
cells or cytotoxic lymphocytes through checkpoint inhibitor
CD94/NKG2A appears to be one of many tumor mechanisms
used for deceiving the immune system’s surveillance (61),
which could explain why many published studies link high
expression of HLA-E in tumor cells with poor prognosis of
patients (40, 56, 62, 63). It also needs to be noted that several
other studies did not find any association between OS and the
expression of HLA-E in renal cancer (38), rectal cancer (57),
and GBM (39, 58).

Nevertheless, Benevolo et al. associated high expression of
HLA-E in colorectal carcinoma with favorable prognosis. In
their study, high expression of HLA-E correlated significantly
with high expression of its preferential ligand donor HLA-A
with the presence of lymphoid cell infiltrates. These results
hint at HLA-E favoring activating immune responses to
colorectal carcinoma. Authors also suggested that tumor cells
entertain extensive negotiation with the immune system until
a compromise between recognition and escape is reached (64).
Spaans et al. came to a similar conclusion in their study of the
HLA-E expression in three most common histopathological
types of cervical carcinoma where they observed a positive
correlation of HLA-E expression with OS (59). Finally, John
et al. identified HLA-E as one of the 14 genes with prognostic
potential, whose higher expression in stage III melanomas is
associated with a better outcome (65). Albeit seemingly
counterintuitive to previously mentioned studies associating
higher HLA-E expression with worse prognosis, these studies
support our own results from the previous (36) and the current
studies, showing a positive correlation between HLA-E
expression and length of survival.

There is also evidence for the binding of specific
molecules blocking the NKG2A inhibitory receptor and the
existence of cells lacking this receptor, which may cause
higher cytotoxicity against HLA-E expressing tumor cells
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through NKG2C, NKG2D, or NKG2E activating receptors
(11, 66, 67). Since the central nervous system has been
traditionally considered an immunologically privileged site
(5) and roles of HLA class Ib molecules in relationship with
GBM pathophysiology and antitumor response still remain
unclear, there is a possibility that the distinct tumor
microenvironment and the presence of specific molecules
therein could also play role in involvement of activating
receptors, and thus, in the better prognosis of patients with
higher expression of HLA-E. For example, Michaélsson et
al. identified chaperonin heat shock protein 60 (hsp60) as a
ligand donor for HLA-E during conditions of cellular stress,
giving rise to a complex which cannot be efficiently
recognized by CD94/NKG2A inhibitory receptors (68).

In our study, we also observed significantly higher
expression of HLA-F in GBM tissue samples compared to
non-tumor tissue samples. These findings correspond to the
results of several similar already published studies (35, 37,
41). As for the relationship between the expression of HLA-
F by malignant cells and its prognostic significance, our
results did not show any significant association with OS
despite having a trend similar to that of HLA-E expression.
This contrasts with several recent studies focused on HLA-
F expression in various cancers, including gastric cancer,
stage Il breast cancer, and gliomas, which reported a
negative correlation of HLA-F expression with patient
survival (35, 51, 56). However, the study by Chen et al. was
specifically focused on low-grade gliomas (35), which have
a different molecular background compared to most GBMs.
With respect to the number of enrolled patients, there is a
large difference between this study and ours, so it is possible
that the analysis of a higher number of patient samples
would reveal a significant, albeit possibly positive
correlation of HLA-F expression with OS. On the other
hand, in contrast to other HLA class Ib molecules, HLA-F
(previously known as HLA-5.4) contains only 5 of the 10
highly conserved amino acids needed for antigen recognition
(69). Also of note is the fact that ER export of HLA-F is
dependent on the structure of its cytoplasmic tail (70), which
is significantly shorter in one of its alternatively spliced
isoforms due to exon 7 exclusion during transcription (69).
It has been, thus, suggested that due to the differences in its
structure, HLA-F may exert a different biological function
from that of other HLA class I molecules (22). This
alternative role might perhaps not be associated with overall
prognosis. However, such a claim would require further
investigation in the future studies.

Radiotherapy is an integral part of comprehensive care for
cancer patients, including GBM patients. To identify the
effect of ionizing radiation on the expression of studied HLA
molecules, we hereby provide results for 2 paired primary
cell cultures of GBM, each pair consisting of 1 radioresistant
and 1 radio-sensitive control cell line. Compared to controls,
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we observed a visibly greater radiation dose-dependent
change in HLA-E expression in radioresistant GBM cells
between 24 h and 72 h after the exposure to radiation. No
visible dose-dependent change in HLA-F expression was
observed in the case of both paired primary cell lines. So far,
to our knowledge, no data have been reported on the
potential association of HLA-F expression and radiation, and
thus, our study provides the first insight into this topic.

To this day, there are only a handful of studies reporting on
the effect of ionizing radiation on HLA-E expression. Riederer
et al. observed up-regulated levels of HLA-E in macrovascular
endothelial cells (ECs) after the exposure of cells to a
sublethal gamma radiation dose of 4 Gy (71). A study by
Pereira et al. focused on inducing senescence in primary
human fibroblasts by exposing the cells to a total dose of 10
Gy at a rate of 5 Gy/min, which had a significant impact on
HLA-E up-regulation, but not HLA-G and MHC class Ia
molecules (72). Finally, Michelin et al. reported HLA-E up-
regulation in melanoma cells after a single dose of 10-20 Gy
of gamma-radiation (73). Our results showed up-regulation of
HLA-E expression induced by a dose of 5 or 10 Gy. We,
therefore, conclude that moderately small doses of ionizing
radiation may lead to up-regulation of HLA-E expression both
in physiological and pathological conditions.

Up-regulated HLA-E expression could be related to the
radiation-induced expression of interferon gamma (IFN-y),
a cytokine and the only member of a type II class of
interferons. It has the ability to up-regulate the expression of
HLA class I molecules (43, 74, 75), including HLA-E (76-
79), on the surface of various normal and malignant cell
types and was also reported to rapidly induce expression of
TAP1 in HeLa cells via activation of signal transducer and
activator of transcription 1o (Statla) homodimers, known as
v-activated factor (GAF), which bind to the gamma
activating sequence (GAS) element in the TAP1 promoter
(80). IFN-v is physiologically secreted by infiltrating
immune cells, including natural killer cells and CD8+ T
lymphocytes (81-83), further promoting their proliferation
(84, 85). Moreover, the presence of the CD8+ T cell infiltrate
in GBM has been associated with longer survival (86) and
the decrease of IFN-y was, in turn, reported to confer
increased resistance of GBM cells to cytotoxicity (87). One
explanation for the positive correlation of HLA-E expression
with OS reported in our current study could be that the
further up-regulation of initially higher basal HLA-E levels
via IFN-v or other radiation-induced factors may lead to an
eventual oversaturation of NKG2A inhibitory receptors in
vivo, shifting the balance towards immune activating signals.

To our knowledge, there is no study describing the
relationship between HLA-E or HLA-F expression and
chemotherapy. However, a study by Davidson et al. evaluated
the expression of HLA-G in malignant effusions in ovarian
carcinoma prior to and after chemotherapy. In light of their
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results, authors speculate that reduced expression of HLA-G in
effusions obtained during or following chemotherapy and its
correlation with improved survival could be related to
preferential susceptibility of HLA-G expressing cells to the
administered therapy (88). In our current study, we report
significant dysregulation of both HLA-E and HLA-F between
patients with a different status of MGMT promoter methylation,
which is a predictive biomarker of GBM associated with TMZ.
In terms of TMZ as the main chemotherapy agent for GBM, we
cannot rule out its possible influence either. Therefore, animal
models of GBM would be useful for a future study of the
possible effect of concomitant therapy.

One limitation of our current study is the limited number
of fresh-frozen tissue samples compared to some of the
referenced studies with larger sample cohorts, which could
have an impact on the results. However, similarly to our
previous study (36), we demonstrated a positive correlation
between HLA-E expression and OS of patients with GBM,
this time in an independent larger sample cohort.

To conclude, we speculate that the expression of HLA-E
by neoplastic cells may represent a coincidental selective
pro-host advantage related to a better response to subsequent
therapeutic = modalities. = However, the role of
immunomodulatory non-classical HLA-E and HLA-F
molecules in the antitumor response and development of
GBM is still unknown. Whether the unexpected positive
correlation of HLA-E expression with survival is related to
the shift in balance between the activating and inhibitory
signals to NK cells caused by the administered therapeutic
modalities, leading to a favored occupancy of the activating
receptors by this molecule is unclear, and this question
remains a subject for further studies.
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