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abstract

PURPOSE Comprehensive genomic profiling has defined key oncogenic drivers and distinct molecular subtypes
in esophagogastric cancer; however, the number of clinically actionable alterations remains limited. To establish
preclinical models for testing genomically driven therapeutic strategies, we generated and characterized a large
collection of esophagogastric cancer patient–derived xenografts (PDXs).

MATERIALS AND METHODS We established a biobank of 98 esophagogastric cancer PDX models derived from
primary tumors and metastases. Clinicopathologic features of each PDX and the corresponding patient sample
were annotated, including stage at diagnosis, treatment history, histology, and biomarker profile. To identify
oncogenic DNA alterations, we analyzed and compared targeted sequencing performed on PDX and parent
tumor pairs. We conducted xenotrials in genomically defined models with oncogenic drivers.

RESULTS From April 2010 to June 2019, we implanted 276 patient tumors, of which 98 successfully engrafted
(35.5%). This collection is enriched for PDXs derived from patients with human epidermal growth factor receptor
2–positive esophagogastric adenocarcinoma (62 models, 63%), the majority of which were refractory to
standard therapies including trastuzumab. Factors positively correlating with engraftment included advanced
stage, metastatic origin, intestinal-type histology, and human epidermal growth factor receptor 2–positivity.
Mutations in TP53 and alterations in receptor tyrosine kinases (ERBB2 and EGFR), RAS/PI3K pathway genes,
cell-cycle mediators (CDKN2A and CCNE1), and CDH1 were the predominant oncogenic drivers, recapitulating
clinical tumor sequencing. We observed antitumor activity with rational combination strategies in models
established from treatment-refractory disease.

CONCLUSION The Memorial Sloan Kettering Cancer Center PDX collection recapitulates the heterogeneity of
esophagogastric cancer and is a powerful resource to investigate mechanisms driving tumor progression,
identify predictive biomarkers, and develop therapeutic strategies for molecularly defined subsets of esoph-
agogastric cancer.

JCO Precis Oncol 6:e2100242. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Comprehensive genomic analysis has yielded impor-
tant insights into the molecular complexity of esoph-
agogastric (EG) cancer.1-5 The Cancer Genome Atlas
identified four gastric cancer subtypes: Epstein-Barr
virus (EBV)-positive, microsatellite-instable (MSI),
genomically stable (GS), and chromosomal-instable
(CIN).2 Despite this greater understanding of EG
cancer biology, genomically targeted therapeutics
benefit a limited fraction of patients.4 For patients
with human epidermal growth factor receptor 2
(HER2/ERBB2)-positive tumors (approximately 25%),
the anti-HER2 antibody trastuzumab and the antibody-
drug conjugate trastuzumab-deruxtecan are approved.6,7

Recent data demonstrate synergy between trastuzumab

and immunotherapy such as pembrolizumab.8,9 Al-
though studies have suggested potential roles for tar-
geting alterations in other receptor tyrosine kinases
(RTKs) such as EGFR and MET, responses tend to be
short-lived, and trials in large populations have failed to
show a benefit.10-13 One of the main challenges is
tumoral heterogeneity (both spatial and temporal),
leading to therapeutic resistance such as through
loss of the targeted biomarker or co-occurring
alterations.14-16 Recent studies highlight that clini-
cal benefit can be attained with individually optimizing
chemotherapy, biomarker profiling, and matching of
targeting therapies at baseline and over time for EG
cancer.17,18 Moreover, correlative analysis suggests that
dual targeted inhibition may be advantageous, war-
ranting preclinical studies to optimize these combina-
torial strategies.
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One preclinical model that has gained traction is patient-
derived xenografts (PDXs), in which patient tumor frag-
ments are directly transplanted into immunodeficient mice
for propagation.19 Compared to traditional cell lines, PDXs
retain the architecture and heterogeneity of patient tumors
and can therefore more accurately model human cancer
biology.20,21 Importantly, preclinical xenotrials validate that
PDXs recapitulate the sensitivities to chemotherapy or
targeted therapies of the corresponding patient tumor.22-24

Here, we present a comprehensive collection of EG cancer
PDXs that spans histologic and genomic subtypes and
uniquely includes many PDXs from patients with treatment-
refractory HER2-positive tumors. We clinically annotated
and genomically characterized the models using next-
generation sequencing (NGS), with the goal of develop-
ing this collection as a resource for identifying new drug
targets and understanding critical disease mechanisms.

MATERIALS AND METHODS

Generation and Maintenance of PDXs

Patients with esophageal, gastroesophageal junction, and
gastric cancer undergoing surgery or biopsy at The Me-
morial Sloan Kettering Cancer Center (MSK) were con-
sented to an institutional review board–approved protocol
for prospective tumor engraftment and genomic profiling.
Patients treated on clinical trials and patients with specific
genomic alterations such as MSI-H, CDH1, or HER2-
positive tumors were enriched in this cohort. The studies
were conducted in accordance with the Declaration of
Helsinki.

All tumors were prospectively reviewed to confirm histology,
Lauren classification, and tumor purity. Samples were cut
into small pieces and implanted into 6-week-old NOD SCID
gamma mice either subcutaneously or orthotopically into
the gastric wall. Tumors reaching a volume of 500-
1,000 mm3 (or with evident signs of disease for orthotopic

models) were expanded into additional mice by serial
transplantation. Harvested tumors were stored in liquid
nitrogen for future reimplantation and flash-frozen and
formalin-fixed for downstream analysis. Representative
hematoxylin and eosin and HER2 immunohistochemistry
slides were reviewed by a board-certified pathologist to
assess tumor content, histology, differentiation, absence of
lymphoma, and HER2 expression.

Genomic Analysis

Targeted sequencing was performed on DNA extracted
from PDX tissue using MSK-IMPACT, a cancer-associated
gene-bait capture, NGS assay.25 Additional samples from
formalin-fixed paraffin-embedded patient tumors and
matched normal blood were sequenced. For PDX and
patient sequences run on the same MSK-IMPACT pipeline,
the corresponding matched normal was used for mutation
calling; otherwise, a pooled normal was used. Genomic
alterations were filtered for oncogenic variants using
OncoKB,26 and molecular subtypes (MSI-H, GS, and CIN)
were assigned as described previously.4 EBV testing was
not performed.

In Vivo Animal Experiments

Animal work was approved by the MSK Institutional Animal
Care and Use Committee. For drug efficacy experiments,
tumors were implanted subcutaneously into mice and
treatment was initiated when the tumor volumes reached
100 mm3. Xenografts were randomly assigned and mice
were dosed with vehicle, afatinib 25 mg/kg PO once daily,
rapamycin 20 mg/kg IP three times weekly, AZD8055 75
mg/kg PO three times weekly, or duligotuzumab 10 mg/kg
IP twice weekly. Tumor volume was measured twice weekly
using the formula (π/6) × length × width.2

Statistical Analysis

Statistical analysis was performed using GraphPad Prism
Version 9.0.2 or R version 4.0.0. Two-sided Student’s
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t-tests were used to evaluate significant differences in tumor
volumes. Associations between successful PDX engraft-
ment and clinical features were analyzed using a two-sided
Fisher’s exact test or chi square test. The Kaplan-Meier
methodology and log-rank test were used to compare
survival outcomes in patients with successful or failed PDX
generation. Recurrence-free survival (RFS) was defined as
the time from surgery to date of recurrence or death. Overall
survival was defined as the time from date of diagnosis of
metastatic disease to time of death. Patients without a
known event were censored at the date of last follow-up.
Baseline patient characteristics were summarized using
descriptive statistics.

RESULTS

Patient Characteristics

Between April 2010 and June 2019, we collected tumor
samples from 225 patients with EG cancer for PDX gen-
eration. Baseline patient characteristics are summarized in
the Data Supplement. The median age at initial collection
was 63 years (range, 23-92 years), and 94 patients (41%)
had metastatic disease. Most patients had tumors of ad-
enocarcinoma histology (95%), including five patients (2%)
with MSI-H tumors. Notably, 88 patients (39%) had HER2-
positive tumors, as many PDXs were generated from pa-
tients on clinical studies testing HER2-directed therapies.

Generation of a Comprehensive Collection of

Esophagogastric Cancer PDXs

In total, 276 tumor samples were implanted either sub-
cutaneously or orthotopically into the gastric wall of mice
(Fig 1A). Of the 117 xenografts that engrafted, we excluded
19 models because of histology consistent with possible
lymphoproliferative disease, which is known to develop in
xenografts implanted into immunodeficient mice and is
typically driven by EBV-transformed lymphocytes.27 Con-
sequently, we established 98 EG PDXs, correlating with a
success rate of 35.5%. The median time to first passage of
successfully generated PDXs was 16.1 weeks (range, 4.6-
67.6 weeks).

Features of the EG PDX collection are detailed in Figure 1.
Of the 98 PDXs, there are 46 gastric adenocarcinomas
(47%), 25 gastroesophageal junction adenocarcinomas
(26%), 21 esophageal adenocarcinomas (32%), three
squamous cell carcinomas (3%), and three neuroendo-
crine tumors (3%; Fig 1B). Forty-nine PDXs were generated
from surgical resections, predominantly from primary tu-
mors but also a few from metastasectomies (ie, ovary and
lung), and 46 PDXs were from biopsies (Fig 1C). In ad-
dition, three PDXs were generated from participants in a
rapid autopsy program. The 46 PDXs generated from
metastases were collected from a range of sites, most
commonly liver (Figs 1D and 1E).

Treatment history of the parental patient tumors is critical
for understanding selective pressures, whichmay affect the

biology of each model, as well for correlating PDX and
patient treatment response. Of the 37 PDXs generated from
localized EG cancer, 29 tumors had been treated with
preoperative chemotherapy or chemoradiation (Fig 1F).
PDXs from patients with metastatic disease were pri-
marily generated from patients who had progressed
following treatment with one or more lines of systemic
therapy (Fig 1G).

Factors Associated with Successful PDX Establishment

To define factors affecting PDX generation, we compared
clinicopathologic features of tumors that failed to versus
successfully engrafted (Table 1). Interestingly, EG PDXs
were significantly more likely to be established from me-
tastases than primary tumors (Fig 2A), with 52% of met-
astatic tumors resulting in established PDXs versus 28% of
primary tumors. Consistent with metastatic tumors having
enhanced growth capacity, PDXs were more likely to en-
graft from tumor samples harvested from patients with
stage IV disease (Fig 2B). Histology also affected PDX
establishment, as gastric tumors of intestinal-type histology
were more likely to form PDXs compared with diffuse or
mixed-type tumors (Fig 2C). In addition, HER2 expression
positively correlated with successful engraftment (Fig 2D).

In other tumor types such as pancreatic cancer28 and
colorectal cancer,29 studies have found that patients with
successful PDX engraftment have worse survival outcomes,
suggesting that PDX engraftment can be prognostic. We
assessed RFS of patients who underwent primary tumor
resection for localized disease and found no difference in
RFS between patients with failed and successful PDX
generation (Fig 2E). Similarly, there was no difference in
overall survival in patients with stage IV disease on the basis
of PDX engraftment (Fig 2F). Thus, in this cohort, suc-
cessful PDX establishment was not prognostic of patient
outcome.

EG PDXs Retain Genomic Features of Patient Tumors

To determine whether key genomic alterations were
retained in PDXs, we performed NGS using MSK-IMPACT25

and compared PDX sequencing to clinical sequencing from
the corresponding patient (Fig 3A, Data Supplement).
Mutations in TP53 were the most commonly identified
alterations in PDXs (80%), similar to prior clinical se-
quencing cohorts of EG cancer.1,2,4 On the basis of the high
representation of HER2-positive tumors and increased
likelihood of PDX generation, a large percentage of se-
quenced PDXs showed alterations in ERBB2, primarily
copy-number amplifications (57%). We also observed
frequent alterations in KRAS; RTKs such as EGFR, MET,
and FGFR2; PI3K pathway genes such as PIK3CA and
PTEN; cell-cycle regulators including CDKN2A and
CCNE1; and CDH1, which is commonly altered in diffuse-
type and GS tumors. Importantly, genomic alterations
found in patient tumor sequencing by clinical MSK-
IMPACT were highly concordant with those identified by
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PDX sequencing: 234 mutation events observed in the
clinical samples were also identified in the PDXs (58%),
with 76 driver mutations in the clinical samples also being
identified in the PDXs (60%). Among the microsatellite-
stable samples, 202 mutation events observed in the
clinical samples were also identified in the PDXs (83%),
with 66 driver mutations in the clinical samples also being
identified in the PDXs (85%). The concordance rate of
ERBB2 amplification was 89% between PDX and clinical
samples. We also sequenced 34 additional PDXs lacking
corresponding patient sequencing (Data Supplement).

For a few patients, we generated PDXs from multiple
tumor sites at the same time point (synchronous) or at
different time points (ie, preprogression and post-
progression; Fig 3B). In some cases, we observed the
same genomic alterations across sites. For example, two
PDXs generated from pleural fluid and ascites both
harbored a TP53 mutation and amplifications in CCNE1,
ERBB2, and KRAS, consistent with these being early
oncogenic driver alterations. By contrast, we observed
intralesional and temporal heterogeneity in other cases,
such as a PDX from an ovarian metastasis carrying an

0

20

40

60

80

Co
un

t

Treatment-naive

Treatment-refractory

Treatment-responsive

Metastatic PDX
Treatment Status

GF

Nonmetastatic PDX
Treatment Status

0

10

20

30

40

50

60

Co
un

t

Chemoradiation

Chemotherapy

Treatment-naive

C

Surgery

Biopsy

Autopsy

(n = 46) (n = 49)

(n = 3)

D

Metastasis

Primary

(n = 52) (n = 46)

E

Liv
er

Bra
in

Lu
ng

Skin

Ova
ry

/Fa
llo

pian
 T

ube

Per
ito

neu
m

Oth
er

0

5

10

15

20

Co
un

t

Gas
tri

c
GEJ

Eso
phag

ea
l

Squam
ous

Neu
ro

en
docr

in
e

0

10

20

30

40

50

60

Co
un

t

B

A

Histology
biomarker testing

MSK-IMPACT NGS

O.T. or S.C.
implantation PDX

Histology
MSK-IMPACT NGS

Biopsy or
resection

FIG 1. Generation of a comprehensive collection of esophagogastric cancer PDXs. (A) Schematic overview of esophagogastric cancer PDX
pipeline. (B) Numbers of successfully established PDX by disease subtype. (C) Distribution of procedures fromwhich PDXs were generated.
(D) Distribution of PDXs generated from primary tumors versus metastatic sites. (E) Numbers of PDXs generated by metastatic site of origin.
(F) Treatment status of PDXs from patients treated for early-stage (I-III) disease. (G) Treatment status of PDXs from patients treated for
metastatic disease. PDX, patient-derived xenograft.

Moy et al

4 © 2022 by American Society of Clinical Oncology



acquired MET amplification compared with a PDX from
the primary tumor.

Several studies have identified mechanisms of intrinsic and
acquired resistance to HER2-targeted therapy.4 Therefore,
we evaluated the presence of known resistance mecha-
nisms in HER2-positive PDXs. One mechanism of resis-
tance is coalteration of RTK, RAS, or PI3K pathway genes.
Among the 24 ERBB2-amplified PDXs, three had ampli-
fications in KRAS, three had amplifications in RTK genes
(ie, EGFR, FGFR2, or MET), and five had oncogenic driver
alterations in PIK3CA or PTEN. Similar rates of coalterations
were found in PDXs from metastases (41%) and primary
tumors (43%). In addition to several trastuzumab-refractory
PDX and clinical samples with no ERBB2 amplification
identified, we also observed three PDXs with discordance in
ERBB2 amplification between PDX and clinical sequenc-
ing, consistent with either heterogeneity in HER2 expres-
sion or loss of HER2 expression following trastuzumab.4

Taken together, this genomic analysis demonstrates that
EG PDXs retain key molecular features relevant to human
tumor biology.

Utilization of EG PDXs for Investigation of Genomically

Driven Therapeutic Strategies

PDXs have been used to characterize resistance mecha-
nisms to targeted therapies, such as mutations affecting
drug binding or activation of bypass pathways. For ex-
ample, we previously reported a phase II study of afatinib,
an irreversible pan-HER kinase inhibitor, in patients with
HER2-positive EG cancer refractory to trastuzumab.30 In-
vestigation of a PDX from a patient with an acquired MET
amplification after progression on afatinib demonstrated
that the PDX was sensitive to the combination of afatinib
and an MET inhibitor, implicating MET amplification as the
biologic basis for afatinib resistance. Less is known about
the role of PDXs in understanding variants of unknown
significance (VUS) detected in clinical sequencing. To that
end, we examined additional PDXs from patients with
progression on afatinib to evaluate whether shared alter-
ations between PDXs and resistant patient tumors could be
successfully targeted.

One PDX was established from an umbilical nodule from a
patient with metastatic HER2-positive gastric adenocarci-
noma following progression on second-line afatinib. From
clinical sequencing, we observed a TP53 mutation and
ERBB2 amplification that was found in a pretreatment liver
biopsy as well as the before and after afatinib biopsies.
Interestingly, however, we identified a VUS in MTOR
(D1105N) detected only in samples collected after pro-
gression on first-line therapy and retained in the PDX
(Fig 4A). We treated mice bearing this PDX with afatinib,
the mTORC1 inhibitor rapamycin, the selective mTORC1/2
inhibitor AZD8055, and the combination of afatinib/
rapamycin. Both rapamycin and AZD8055 slowed tumor
growth, and notably, the combination of rapamycin and
afatinib most potently induced tumor regression (Fig 4B).
These results provide further justification for additional
biologic studies to assess the oncogenicity of the D1105N
MTOR VUS.

In another PDX model, we evaluated the potential role of
targeting an ERBB3 coalteration (Fig 4C). The corre-
sponding patient with trastuzumab-refractory HER2-
positive gastric adenocarcinoma received afatinib for
10 months before developing a lung metastasis, which was
resected and used for PDX generation. Intriguingly, both
the PDX and corresponding tumor harbored a VUS in
ERBB3 (S1215R), as well as amplifications in ERBB2 and
EGFR. Although afatinib is a pan-HER kinase inhibitor, it
has strongest activity against HER2, EGFR, and HER4, with
only indirect activity on HER3/ERBB3.31 We treated mice
bearing this PDX with afatinib, a dual EGFR/HER3 antibody
duligotuzumab,32 combined afatinib/duligotuzumab, or ve-
hicle. Consistent with the clinical history, thePDXwas resistant
to afatinib monotherapy, as well as duligotuzumab; however,
we observed a modest decrease in tumor growth rate with
the combination (Fig 4D), suggesting that HER3 may par-
tially mediate resistance, although other mechanisms likely

TABLE 1. Factors Associated With Successful Patient-Derived Xenograft
Generation
Characteristic Success (n = 98) Fail (n = 178) P

Median age, years (IQR) 63 (55-70) 62 (55-70) .8

Sex, No. (%) .78

Women 28 (29) 54 (30)

Men 71 (71) 124 (70)

Primary site, No. (%) .34

Stomach 46 (47) 99 (56)

GEJ 26 (27) 36 (20)

Esophagus 26 (27) 43 (24)

Tumor type, No. (%) .0002

Primary 52 (53) 135 (76)

Metastasis 46 (47) 43 (24)

Stage, No. (%) .008

I–III 37 (38) 98 (55)

IV 61 (62) 80 (45)

Differentiation, No. (%) .9

Well/moderate 41 (42) 72 (40)

Poor/undifferentiated 57 (58) 106 (60)

Lauren, No. (%) .041

Intestinal 34 (74) 52 (52)

Diffuse 9 (20) 33 (33)

Mixed 3 (6.5) 15 (15)

HER2-positive, No. (%) 62 (63) 75 (46) .001

MSI-H, No. (%) 3 (3) 2 (2) .35

Preoperative chemotherapy, No. (%) 29 (78) 61 (62) 1

Abbreviations: GEJ, gastroesophageal junction; HER2, human epidermal growth
factor receptor 2; MSI, microsatellite-instable.
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contribute. Collectively, these studies highlight the potential
utility of EGPDXs in evaluating therapeutic targets on the basis
of genomic data.

DISCUSSION

PDXs have emerged as powerful preclinical models for in-
terrogating clinically relevant disease biology as they retain the
three-dimensional architecture, molecular complexity, and
heterogeneity of human cancers. Here, we have established a
large collection of clinically and genomically annotated EG
PDXs, including many PDXs from metastatic tumors that are
refractory to standard therapies.

A few collections of gastric cancer PDXs have been reported.
For example, in one collection from Yonsei University, 15
PDXs were established from 62 gastric cancers (24.2%
success rate).33 This study found that diffuse-type tumors

and low tumor cell percentages were associated with poor
engraftment. Another study attempted to generate PDXs
from 100 gastric tumors, successfully generating 27 PDXs,
which were more likely intestinal histology, CIN subtype, and
MSI-H.34 Finally, a collection of 100 gastric cancer PDXs
generated from 349 tumors was recently reported (28.7%
success rate).35 Again, histologic type andMSI-H status were
associated with engraftment, as well as advanced stage and
high RTK/RAS copy-number variation. In our study, we
generated 98 PDXs from 276 tumors (35.5% success rate).
This rate is slightly higher than previous studies, although it
may reflect the clinicopathologic features of tumors rather
than procedural differences, as our population had a higher
proportion of patients with metastatic disease and HER2-
positive tumors, which we found as being positively corre-
lated with PDX success. Of note, PDX engraftment is highly
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variable by tumor type, with some cancers such as colorectal
cancer showing engraftment rates of over 89%,36 whereas
breast cancer PDXs have a lower take rate of 10%-25%.37

The lower engraftment rate for EG PDXs is likely related to
tumor-intrinsic factors. For example, diffuse-type gastric
tumors are characterized by single tumor cells or small
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FIG 4. Utilization of esophagogastric PDXs for investigation of genomically driven therapeutic strategies. (A) A PDX was generated from a patient with HER2-positive
gastric cancer after progression on first-line trastuzumab and second-line afatinib. Next-generation sequencing revealed a mutation in MTOR (VUS) in clinical
sequencing that was retained in the PDX. (B) Efficacy of afatinib and MTOR inhibitors in an ERBB2-amplified/MTOR-altered PDX. (C) A PDX was generated from a
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clusters embedded within dense fibrous stroma. Moreover,
the PDX versus patient tumor microenvironment may affect
engraftment as well as treatment response because of dif-
ferences in tissue stroma (including immune cells), local
cytokines, and growth factor milieu.

Importantly, NGS revealed that EG PDXs maintained key
genomic alterations found in the corresponding patients,
suggesting that they may be suitable models to investigate
potentially targetable alterations. Indeed, we and others have
shown that EGPDXs canmimic responses to standard therapy
and investigational agents, and that PDXs with coalterations in
HER2 and RTK pathways can be used to validate putative
resistance mechanisms.20,30 In this study, we found that VUS
identified in PDXs can be evaluated to prioritize genomic al-
terations such as those in MTOR and ERBB3 of unknown
biologic and clinical significance for further studies. These
studies are hypothesis-generating, and further mechanistic
studies would be needed to define the oncogenicity of these
VUS. Of note, we validated that these alterations were also
found in clinical sequencing; in the absence of matched
clinical sequencing or normal tissue, it is difficult to ascertain
whether variants outside of known driver mutations represent
true somatic tumor alterations or polymorphisms.

Interestingly, several academic and industry pipelines are
interrogating PDXs as avatar models in coclinical trials to

guide clinical decision making.20 In our study, the median
time to first passage was 16 weeks, and therefore, it takes
several months before a PDX model is ready for efficacy
studies. Given that the median survival of patients with
metastatic EG cancer is approximately a year, it is unlikely
that these studies can be reliably performed on a timeframe
that is relevant to most patient donors. Thus, other models
such as patient-derived organoids may be more relevant for
predicting drug response and guiding treatment as avatars
for individual patients.38 Nevertheless, we believe that PDXs
still serve an important role as a clinically relevant model for
testing genomically driven concepts that can affect drug
development and clinical trial design.

In summary, we have generated a comprehensive clinically
and molecularly annotated collection of EG PDXs that will
provide an invaluable resource for interrogating EG cancer
biology and genomic targets to drive discoveries that can
be translated to the clinic. Future efforts should focus on
using PDXs to dissect drug resistance mechanisms
through pharmacologic and genetic studies, as well as
optimizing methods to generate these models more ef-
ficiently by integrating transcriptional, proteomic, and
other molecular studies to identify additional factors that
regulate engraftment.
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