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ABSTRACT Bats are reservoirs of important zoonotic viruses like Nipah and SARS
viruses. However, whether the blood-sucking arthropods on the body surface of bats
also carry these viruses and the relationship between viruses carried by the blood-
sucking arthropods and viruses carried by bats have not been reported. This study col-
lected 686 blood-sucking arthropods on the body surface of bats from Yunnan
Province, China, between 2012 and 2015, and they included wingless bat flies, bat
flies, ticks, mites, and fleas. The viruses carried by these arthropods were analyzed
using a meta-transcriptomic approach, and 144 highly diverse positive-sense single-
stranded RNA, negative-sense single-stranded RNA, and double-stranded RNA viruses
were found, of which 138 were potentially new viruses. These viruses were classified
into 14 different virus families or orders, including Bunyavirales, Mononegavirales,
Reoviridae, and Picornavirales. Further analyses found that Bunyavirales were the most
abundant virus group (84% of total virus RNA) in ticks, whereas narnaviruses were the
most abundant (52 to 92%) in the bat flies and wingless bat flies libraries, followed by
solemoviruses (1 to 29%) and reoviruses (0 to 43%). These viruses were highly struc-
tured based on the arthropod types. It is worth noting that no bat-borne zoonotic
viruses were found in the virome of bat-infesting arthropod, seemingly not supporting
that bat surface arthropods are vectors of zoonotic viruses carried by bats.

IMPORTANCE Bats are reservoirs of many important viral pathogens. To evaluate
whether bat-parasitic blood-sucking arthropods participate in the circulation of these
important viruses, it is necessary to conduct unbiased virome studies on these arthro-
pods. We evaluated five types of blood-sucking parasitic arthropods on the surface of
bats in Yunnan, China, and identified a variety of viruses, some of which had high
prevalence and abundance levels, although there is limited overlap in virome between
distant arthropods. While most of the virome discovered here is potentially arthropod-
specific viruses, we identified three possible arboviruses, including one orthobunyavi-
rus and two vesiculoviruses (family Rhabdoviridae), suggesting bat-parasitic arthropods
carry viruses with risk of spillage, which warrants further study.
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Bats are the only mammals capable of flying, and they are also a diverse group,
within which 1,116 species, 202 genera, and 18 families have been identified (1).

Geographically, they are distributed nearly worldwide, with the exception of the North
and South Poles (2). Importantly, a variety of new zoonotic infectious diseases that
occurred in recent years have been linked to bats. Epidemics of zoonotic diseases such
as Nipah viral encephalitis, a type of human viral encephalitis that was prevalent in
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Malaysia in 1998 (3), severe acute respiratory syndrome (SARS), which was epidemic in
more than 30 countries around the world in 2003 (4), and Ebola hemorrhagic fever,
caused by Ebola virus infection in West African countries (5), have all been linked to
bats. The current COVID-19 causative agent is also suspected closely related to the
viruses from bats (6, 7). In addition, viral metagenomic analyses have shown that bats
carry a variety of animal, plant, and fungal viruses and bacteriophages, among which
many were previously undescribed viruses (8–10). Therefore, bats are considered “res-
ervoirs” for a variety of emerging infectious diseases that are capable of transmitting
and spreading the disease with their large population size, their densely roosting
behavior, the ability to fly, and the seeming ability to persistently carry virus without
causing apparent disease (2).

On the other hand, bats are infested with a variety of blood-sucking arthropods.
These include obligate ectoparasites such as bat flies and wingless bat flies (11–13)
and nonobligate parasites such as ticks, mites, and fleas (14–16). These blood-sucking
arthropods can help spread pathogens among bats through feeding behavior. A study
in 2013 found that 7 of 26 Nycteribia kolenatii parasites detected on the surface of
Myotis daubentonii contained Plasmodium in oocysts, and electron microscopy con-
firmed the presence of Plasmodium sporozoite in the salivary glands of N. kolenatii, sug-
gesting that wingless bat flies can transmit Plasmodium (17). Other studies have shown
that the bat-associated epidermal parasites from the families Hippoboscidae, Streblidae,
and Nycteribiidae are all transmission vectors of Bartonella (18–21), whereas ticks are
vectors for a variety of pathogens, including Spirochetes, Rickettsia, and Ehrlichia (22).
Some viruses had been found in wingless bat flies. Specifically, rhabdoviruses were
detected in Nycteribiid collected from the surface of Spanish bats in Europe, as well as
Dipseliopoda sp. samples collected from bats in Uganda (23, 24). Novel orthoreoviruses
and orthobunyaviruses were also isolated from bat flies (Eucampsipoda africana) col-
lected from Egyptian fruit bats (Rousettus aegyptiacus) in South Africa (25, 26).

Although parasites of bats can transmit bacterial and eukaryotic pathogens, it
remains unclear whether they carry viral pathogens and, if so, whether these viruses
are related to those infecting bats and even humans. To address these questions, we
analyzed the virome from five types of blood-sucking arthropods, namely, wingless bat
flies, bat flies, ticks, mites, and fleas from the body surface of bats in the areas of
Yunnan Province in China, where there has been extensive research on bats and their
associated viromes (9, 27–31).

RESULTS
Collection and species identification of blood-sucking arthropods on the

surface of bats. From 2012 to 2015, a total of 686 blood-sucking arthropods, including
ticks, mites, fleas, wingless bat flies, and bat flies, were collected from the body surface
of bats in 10 counties located in southwestern Yunnan Province (Fig. 1; Table 1). Based
on the collected arthropod types, collection time, and location, the samples were di-
vided into nine pools/libraries (Table 1) for meta-transcriptomics sequencing, which
generated 32,556,792 to 53,462,224 reads for each library (Table 1).

To identify host species, we analyzed the reads associated with arthropods cytochrome
c oxidase I (COI) gene of these libraries. A total of 112,460 reads of the COI sequence were
obtained, of which 96.8% (108,856/112,460) belonged to five types of intended hosts,
namely, Nycteribiidae, Streblidae, Ixodidae, Ischnopsyllidae, and Spinturnicidae, although
COI genes from other species were also identified, including Sphingidae, Tephritidae,
Chiroptera, Muridae, and Apidae (Table 2). Among these, bat COI genes were identified in
six libraries, including Hipposideros armiger within library 1 and library 2 and Eonycteris spe-
laea in library 1, library 5, library 7, library 8, and library 9.

Virome of arthropods on the body surface of bats. All clean reads obtained in
this research were assembled de novo, and the obtained contigs were compared with
a viral RNA-dependent RNA polymerase (RdRp) protein database to identify virus
genomes or RdRp-related genome fragments, with potential false positives removed
by blasting against an NCBI nonredundant (nr) protein database. A total of 754 viral
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contigs (.500 bp) were identified initially, which were further clustered into 144 viral
operational taxonomic units (OTUs) based on a similarity of ,75%, a threshold set to
mark the identification of a new viral OTU. Among these, 6 were existing ones, and 138
were newly identified OTUs. Based on the RdRp homology, these viruses were classi-
fied into 14 RNA virus families or orders, namely, Bunyavirales, Mononegavirales,
Chuviridae, Orthomyxoviridae, Virgaviridae, Endornaviridae, Tymovirales, Solemoviridae,
Narnaviridae, Picornavirales, Tombusviridae, Partitiviridae, Reoviridae, and Totiviridae (32)
(Table S1 in the supplemental material). No DNA virus was found.

Among the 144 viral OTUs, 35 contained completed or nearly complete coding
regions that are expected for the corresponding viruses (Table 3), and 21 belonged to

FIG 1 Sampling locations of bats and their associated blood-sucking arthropods. (A) Geographical locations of 10
sampling sites in the southwestern part of Yunnan Province (marked by solid dots). (B) Location of Yunnan Province in
China. BS, Baoshan; ML1, Menglian; ML2, Mengla; MJ, Mojiang; MS, Mangshi; SB, Shuangbai; TC, Tengchong; XY, Xiangyun;
YD, Yongde; WD, Wanding.

TABLE 1 Specimen collection and grouping information of blood-sucking arthropods on the surface of bats

Library no. Arthropods (no. of individuals) Host(s)a Collection dates Collection location(s)b No. of reads
L1 Ticks (7) MD, Rh, RL 2012, 2013, 2015 MJ, ML2, MS, TC 43,346,666
L2 Bat flies (21c) MD, Rh, RL 2012, 2013, 2014, 2015 BS, MJ, ML2, MS, WD 49,251,370
L3 Mites (54) MD, Rh, RL 2013, 2015 MJ, ML2, SB 32,727,182
L4 Fleas (36d) MD, Rh, RL 2012, 2013, 2014 BS, MJ, WD 32,556,792
L5 Wingless bat flies (222e) MD, Rh, RL 2012 ML1, ML2, MS, TC 33,725,922
L6 Wingless bat flies (71) MD, Rh, RL 2013, 2014 MJ, ML1, WD, YD 39,718,934
L7 Wingless bat flies (86) RL 2013 ML2 34,724,096
L8 Wingless bat flies (123) MD, RL 2014 BS, XY 50,341,976
L9 Wingless bat flies (66) RL 2015 ML2 53,462,224

Total All arthropods (686) 369,855,162
aMD,Myotis daubentonii; Rh, Rhinolophus; RL, Rousettus leschenaultia.
bBS, Baoshan; ML1, Menglian; ML2, Mengla; MJ, Mojiang; MS, Mangshi; SB, Shuangbai; TC, Tengchong; XY, Xiangyun; YD, Yongde; WD, Wanding.
cThree wingless bat flies were included.
dThirteen wingless bat flies were included.
eEighty-eight mites were included.
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viruses with segmented genomes, including Bunyavirales, Orthomyxoviridae, Partitiviridae,
and Reoviridae. For viruses with segmented genomes, we revealed the corresponding non-
RdRp segments based on sequence homology and matching abundance levels (Table S2).

Abundance and composition of viruses in different libraries. The total viral abun-
dance varied greatly between different vectors. The highest abundance was observed in
bat flies (56.51% of total non-rRNA), whereas the lowest was observed in mites (3.32%)
(Fig. 2A). On the other hand, the abundance levels were quite consistent among libraries
from the same host (i.e., wingless bat flies). Within each library, 10 to 79 OTUs of viruses
were found, although most of them were low-abundance viruses (Fig. 2B). The high-abun-
dance (.0.1% of total RNA in the library) ones ranged from 3 to 13 OTUs per library.

The 144 virus OTUs discovered in this study can be further divided into 14 virus
families or orders. Among these, Bunyavirales dominated the tick library (84% of total
virus RNA), Solemoviridae and Virgaviridae were quite abundant in the fleas library
(43% and 16%, respectively), whereas Narnaviridae had the most read counts in bat
flies (69%), mites (42%), and wingless flies libraries (42% to 92%) (Fig. 2C). Furthermore,
Reoviridae (14% to 43%) and Chuviridae (5% to 17%) viruses also had a quite abundant
distribution in two or more libraries (Fig. 2C). While the compositions were quite dis-
tinct among different arthropod species, the four libraries of wingless bat flies (libraries
6 to 9) showed more consistent patterns.

Comparisons of virome among different vectors. Given the complexity of host
composition in libraries 3 to 5 based on COI analyses (Table 2), we only compared the
viromes between ticks (library 1), bat flies (library 2), and wingless bat flies (libraries 6
to 9) in which the COI genes identified from the pool were mostly associated with the
principal host (Table 2). Comparisons of viromes among different types of hosts,
namely, ticks, bat flies, and wingless flies, revealed distinctive structure of viral diversity
and abundance. Indeed, only limited virus OTUs were shared among different hosts
(Fig. 3A): there were none shared by all 3 type of hosts, 2 (i.e., Yunnan reo-like virus 2
and Yunnan narna-like virus 1) shared between ticks and wingless bat flies, and 20
shared between bat flies and wingless bat flies. For most of the shared viruses, their
abundance levels were quite consistent across libraries from different hosts (Fig. 3B),
suggesting they are unlikely to be originated from contamination.

Detailed evolutionary history of viruses associated with blood-sucking arthropods
on the surface of bats. (i) Negative-sense RNA viruses. In this study, 34 negative-
sense RNA viruses were identified in 9 libraries, which belonged to Bunyavirales (n = 8),
Rhabdoviridae (n = 12), Lishiviridae (n = 1), Chuviridae (n = 12), and Orthomyxoviridae
(n = 1) (Table S1; Fig. 4). Among them, Yunnan peribunya-like virus in the family
Orthobunyaviridae was identified from wingless bat flies, and it was most closely related

TABLE 2 Distribution of the reads from the COI gene of different arthropods in nine libraries

Arthropoda

No. (%)b of reads in:

L1 L2 L3 L4 L5 L6 L7 L8 L9
Ixodidae 6,117 (99) 0 21 (4) 381 (12) 0 50 (1) 2 (0) 0 0
Streblidae 0 42,288 (99) 0 0 0 48 (1) 0 0 0
Spinturnicidae 0 27 (0) 141 (27) 1 (0) 3,591 (11) 2 (0) 0 16 (0) 0
Ischnopsyllidae 2 (0) 1 (0) 12 (2) 570 (18) 5 (0) 5 (0) 0 2 (0) 0
Nycteribiidae 0 343 (1) 260 (49) 2,194 (70) 29,679 (89) 5,288 (98) 9,144 (100) 1,982 (98) 10,130 (100)
Sphingidae 0 2 (0) 87 (16) 0 5 (0) 0 0 15 (1) 0
Tephritidae 0 0 0 0 0 18 (0) 0 0 0
Apidae 0 0 0 0 0 0 0 15 (1) 0
Muridae 0 0 8 (2) 0 0 0 0 0 8 (0)
Chiroptera 41 (1) 2 (0) 0 0 4 (0) 0 4 (0) 1 (0) 2 (0)

Total 6,160 42,663 529 3,146 33,284 5,411 9,150 2,031 10,140
aSequences in each library that can be compared with the sequences in the arthropod COI gene library were identified by the BOLD system and named after the “family”
where the corresponding host is located.

bPercentages in parentheses indicate the proportion of the corresponding read number to the total number of reads from the arthropod host COI gene in the library. For
example, 42,288 (99%) represents the number of bat fly COI reads with the percentage relative to the total number of COI reads in the library. The number are shown using
bold characters if the percentage is above 10%.
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to the Wolkberg virus (Table S1; Fig. 4; Fig. S1), which was also identified from wingless
bat flies (25). The two nairoviruses, Yunnan nairo-like virus 1 and Yunnan nairo-like virus
2, were the most abundant viruses in the tick library and shared 54.23 to 54.29% amino
acid identity with South Bay virus sampled from Ixodes scapularis in the United States
(Table S1) (33). Similar to the South Bay virus, only sequences of the S and L segments
were identified for these two newly identified nairoviruses (Fig. 4; Fig. S1) (33). The two
phlebo-like viruses, Yunnan phlebo-like virus 1 and Yunnan phlebo-like virus 2, were
most similar to blacklegged tick phlebovirus 3 (Ixodes scapularis in the United States)
(34), with amino acid identities of 70.91 to 71.92%. Furthermore, we also found members
of Phasmaviridae identified from wingless bat flies host, among which Yunnan phasma-
like virus 2 was most similar to a group containing Wuchang cockroach virus 1, Wuhan
mosquito virus 1, and Hubei odonate virus 9 (35).

A number of viruses were found in the family Rhabdoviridae, order Mononegavirales
(Fig. 4, Fig. S1). Among these, Yunnan rhabdo-like virus 5 was more closely related to
Wuhan louse fly virus 11 (57.83%) (32), which, in turn, formed a sister clade to genus
Vesiculovirus. On the other hand, Yunnan rhabdo-like viruses 1 and 4 were related to
the genus Sigmavirus, which contained several members infecting Diptera, including
viruses identified from louse flies (32). Furthermore, Yunnan rhabdo-like virus 11 identi-
fied from wingless bat flies did not belong to any existing genus in Rhabdoviridae, and
it was distantly related to an arthropod virus, namely, Diachasmimorpha longicaudata
rhabdovirus, with 57.45% amino acid identity. In addition to Rhabdoviridae, another

TABLE 3 Thirty-five viruses with (nearly) complete genomes carried by arthropods on the body surfaces of bats

Virus no. Family or order Virus name Length (nt)
blastx hits on known viruses
(% blast amino acid identity)

GenBank
accession no.

1 Bunyavirales Yunnan nairo-like virus 1 13,611 South Bay virus (54.23) MW199199
2 Bunyavirales Yunnan nairo-like virus 2 13,533 South Bay virus (54.29) MW199201
3 Bunyavirales Yunnan peribunya-like virus 6,928 Wolkberg virus (74.60) MZ395982
4 Chuviridae Yunnan chu-like virus 4 15,188 Suffolk virus (58.53) MW199243
5 Mononegavirales Yunnan rhabdo-like virus 1 11,496 Wuhan louse fly virus 9 (70.71) MW199242
6 Mononegavirales Yunnan rhabdo-like virus 5 9,721 Wuhan louse fly virus 11 (57.83) MZ395981
7 Orthomyxoviridae Yunnan orthomyxo-like virus 2,428 Wuhan Louse Fly virus 3 (84.91) MW199253
8 Virgaviridae Yunnan negev-like virus 1 8,852 Hubei negev-like virus 2 (72.14) MW199214
9 Virgaviridae Yunnan negev-like virus 2 8,732 Hubei negev-like virus 2 (49.64) MW199212
10 Virgaviridae Yunnan negev-like virus 3 8,828 Hubei negev-like virus 2 (73.94) MW199213
11 Virgaviridae Yunnan virga-like virus 7 9,481 Hubei negev-like virus 2 (73.52) MZ396034
12 Virgaviridae Yunnan virga-like virus 8 10,715 Mill Lade virus (36.37) MW199215
13 Narnaviridae Yunnan narna-like virus 6 2,251 Hubei narna-like virus 18 (52.12) MW199251
14 Narnaviridae Yunnan narna-like virus 7 2,260 Hubei narna-like virus 18 (30.62) MW199252
15 Narnaviridae Yunnan narna-like virus 9 2,211 Hubei narna-like virus 18 (51.80) MW199249
16 Narnaviridae Yunnan narna-like virus 11 2,239 Hubei narna-like virus 18 (86.24) MW199250
17 Narnaviridae Yunnan narna-like virus 13 2,165 Hubei mosquito virus 3 (37.60) MW199247
18 Narnaviridae Yunnan narna-like virus 16 2,050 Hubei mosquito virus 3 (34.81) MW199246
19 Picornavirales Yunnan picorna-like virus 2 9,163 Ixodes scapularis iflavirus (67.04) MW199259
20 Picornavirales Yunnan picorna-like virus 7 9,932 Wuhan insect virus 13 (67.39) MW199260
21 Picornavirales Yunnan picorna-like virus 8 9,440 Fesa-like virus (46.22) MW199262
22 Partitiviridae Yunnan partiti-like virus 1 1,481 Wuhan fly virus 6 (88.94) MW199254
23 Partitiviridae Yunnan partiti-like virus 2 1,459 Beihai barnacle virus 13 (54.11) MW199255
24 Partitiviridae Yunnan partiti-like virus 3 1,498 Norway partiti-like virus 1 (72.20) MW199256
25 Partitiviridae Yunnan partiti-like virus 4 1,764 Hubei partiti-like virus 14 (64.17) MW199258
26 Partitiviridae Wuhan insect virus 25 1,490 Wuhan insect virus 25 (97.00) MZ395984
27 Partitiviridae Yunnan partiti-like virus 5 1,509 Wuhan insect virus 25 (84.37) MW199257
28 Reoviridae Yunnan reo-like virus 1 4,214 Shelly beach virus (69.84) MW199265
29 Reoviridae Yunnan reo-like virus 2 4,202 Shelly beach virus (73.11) MW199263
30 Reoviridae Yunnan reo-like virus 4 4,186 Reoviridae sp. BF02/7/10 (78.50) MW199264
31 Reoviridae Yunnan reo-like virus 5 4,200 Shelly beach virus (67.77) MZ396001
32 Reoviridae Yunnan reo-like virus 6 4,215 Shelly beach virus (69.84) MZ396000
33 Totiviridae Yunnan toti-like virus 1 7,797 Hubei toti-like virus 20 (63.82) MW199270
34 Totiviridae Yunnan toti-like virus 5 8,026 Hubei toti-like virus 20 (63.12) MW199271
35 Totiviridae Yunnan toti-like virus 8 7,739 Hubei toti-like virus 20 (59.82) MW199273
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member of the order Mononegavirales was Yunnan lishi-like virus identified from ticks.
It belonged to the newly established Lishiviridae and was closely related to Tacheng
tick virus 6 (42.98% identity) (Fig. 4).

For Chuviridae, we identified 7 new OTUs from 4 types of vectors: i.e., ticks, mites,
fleas, and wingless bat flies. The tick-associated virus was closely related to Suffolk virus
(58.53% identity) (34), whereas the flea-associated virus had no close relatives but was
clustered within the tick-associated chuvirus cluster in the phylogenetic tree (Fig. 4).
On the other hand, the chuviruses identified from wingless bat flies all formed a
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unique viral OTUs. (B) Heat map showing the virus prevalence and abundance in different libraries of ticks, bat flies, and wingless bat flies. Wingless BF,
wingless bat flies.

Xu et al. Journal of Virology

February 2022 Volume 96 Issue 4 e01464-21 jvi.asm.org 6

https://jvi.asm.org


monophyly with Wuhan louse fly viruses 6 and 7 (32), with which they shared relatively
close relationships (i.e., 68.46% to 75.69% identity) (Fig. 4). The chuvirus genome iden-
tified here shared the same structure with those of related chuviruses, which encodes
three major protein-coding genes (Fig. 4; Fig. S1). Finally, we identified a single OTU of
Orthomyxoviridae from wingless bat flies and mites, which belonged to the genus
Quaranjavirus and shared a close relationship with Wuhan louse fly virus 3 (84.91%
amino acid identity).
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(ii) Double-stranded RNA viruses. We identified 25 double-stranded RNA viruses,
which belong to the Partitiviridae (n = 6), Reoviridae (n = 6), and Totiviridae (n = 13)
families (Table S1). These 25 viruses were related to viruses identified from arthropods,
including barnacles, spiders, ticks, mosquitoes, flies, louse flies, bugs, and butterflies,
with amino acid identities that varied from 26.57 to 88.94%. Among them, 14 viruses
were most similar to viruses detected from the mixed library of louse flies and bed
bugs (identities of 59.82 to 84.37%) (Table S1) (32).

Six reoviruses were identified from ticks and wingless bat flies, and they all
belonged to an unclassified clade that shared a distant relationship with genera
Coltivirus and Mycovirus. The reference viruses that shared close relationships with
ones identified from this study were mainly associated with diptera (i.e., High Island vi-
rus, Hubei diptera virus 21, and Eccles virus) and ticks (i.e., Shelly beach virus), with
amino acid identities between 67.04 to 78.50% (Fig. 5; Table S1). For Yunnan reo-like vi-
rus 1, we were able to reveal the complete genome, which contained six segments
and was similar to its close relatives (32, 36–38) (Fig. 5; Fig. S1).

In addition to Reoviridae, diverse viruses were also found in Partitiviridae and
Totiviridae virus families (Fig. 5; Fig. S1). More than 6 OTUs of partiti-like viruses were
identified from bat flies, mites, fleas, and wingless bat flies. They belonged to three
major lineages and shared close relationships with viruses identified from arthropods
(amino acid identities, 54.11% to 94.00%). On the other hand, most of the toti-like
viruses identified are closely related to Hubei toti-like viruses 20 and 23, which were
identified from louse flies and bedbugs (Fig. 5).

(iii) Positive-sense RNA viruses. We identified 85 positive-sense RNA viruses in
nine libraries, including Virgaviridae (n = 27), Endornaviridae (n = 2), Tymovirales (n = 1),
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FIG 5 Evolutionary history and genome structure of double-stranded RNA viruses discovered in this study. Figure legend follows that of Fig. 4.
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Solemoviridae (n = 27), Narnaviridae (n = 19), Picornavirales (n = 9), and Tombusviridae
(n = 3) (Fig. 6; Fig. S1).

The 10 representative strains of Virgaviridae viruses were distributed in three lineages
(Fig. 6). The negev-like lineages contained 7 viruses; among these, 6 were identified from
mites, fleas, bat flies, and wingless bat flies and were closely related to Hubei negev-like vi-
rus 2 (identified from louse flies and bedbugs; amino acid identities, 49.64% to 89.43%)
within the negevirus cluster, and 1 (i.e., Yunnan virga-like virus 2) was relatively closely
related to Nephila clavipes virus 3 identified from American spider (39) with 32.19% iden-
tity. Three more viruses, namely, Yunnan virga-like virus 3, 4, and 8, were identified from
Virgaviridae-related lineages and were related to viruses identified from diptera host.
Another two representative viruses were related to (with 22.08% and 66.75% identity) the
plant viruses within Tymovirales and Endornaviridae, respectively (Fig. 6).

Picorna-like viruses were divided into more than three lineages. Among these,
Yunnan picorna-like virus 8 belonged to a fesa-like lineage that contained a number of
viruses identified from the faces of mammalian hosts, including bats, cats, and human
(40–42). On the other hand, Yunnan picorna-like viruses 7, 6, and 2 were all grouped
within the family Iflaviridae and were related to Wuhan insect virus 13 (67.39%), Varroa
destructor virus 2 (46.25%), and Ixodes scapularis iflavirus (67.04%), respectively.

More than 6 lineages of sobemo-like viruses were identified. Except for Yunnan
sobemo-like virus 10, which formed an orphan lineage, the rest were either related to
viruses identified from louse flies and bedbugs pools (Yunnan sobemo-like viruses 1 to
3, 5 to 7, 11 to 17, 20, 22, and 23) or those identified from mosquitoes (Yunnan
sobemo-like viruses 8, 9, 19, and 21), with 37.29% to 56.39% identities. The narna-like
viruses were mainly divided into two lineages, one related to Hubei narna-like virus 18
and Linepithema humile narna-like virus 1, with 33.00% to 86.24% amino acid identities,
and the other related to Hubei mosquito virus 3. The genome structures for former lin-
eage encoded two completely overlapping open reading frames (ORFs), whereas those
of the latter encoded only one ORF (Fig. 6; Fig. S1). For tombus-like viruses, three line-
ages were identified, among which Yunnan tombus-like virus 1 identified from bat flies
was closely related to Hypsignathus monstrosus tombus-like virus 2 (66.96%), which
was obtained from the blood sample of a hammer-headed fruit bat (43).

(iv) Potential arboviruses and bat-associated viruses. Of the 144 viruses identified
in this study, 3 are potential arboviruses, which belonged to Orthobunyaviridae (n = 1,
Yunnan peribunya-like virus) and Rhabdoviridae (n = 2, Yunnan rhabdo-like virus 5 and
Wuhan louse fly virus 11), respectively. Yunnan peribunya-like virus was discovered from
the wingless bat flies libraries (i.e., libraries 6 and 7) and shared close relationships with
Wolkberg virus, Wuhan louse fly virus 1, Kaeng Khoi virus (KKV), and Mojui dos Campos vi-
rus (MDCV) (Fig. 4), which were either discovered from wingless bats flies or directly from
bats (25, 44, 45). Their genome structures followed that of Wolkberg virus, which had three
segments, namely, L, M, and S, encoding polymerase, glycoproteins G1, G2, and NSm, and
N proteins, respectively. Similar to the Wolkberg virus, the S gene does not encode the
NSs protein (25). The two vesiculovirus-like rhabdoviruses were found in mites and wing-
less bat flies libraries (i.e., libraries 3 and 5). The RdRp sequences of Yunnan rhabdo-like vi-
rus 5 and Wuhan louse fly virus 11 formed a sister clade to vesiculovirus (Fig. 4), whereas
the M protein sequence of Yunnan rhabdo-like virus 5 is close to Chandipura virus (21.64%
amino acid identity). Furthermore, Yunnan picorna-like virus 8 from Picornavirales and
Yunnan tombus-like virus 1 from Tombusviridae were all related to viruses identified from
fecal or blood samples of bats, suggesting that these viruses were likely present in bats,
although it is unclear whether these viruses can actively replicate in the bats’ systems.

DISCUSSION

This study used a meta-transcriptomic approach to characterize the RNA viruses car-
ried by five types of blood-sucking arthropods, namely, ticks, bat flies, mites, fleas, and
wingless bat flies. These blood-sucking arthropods were found to carry several highly
diverse RNA viruses, which can be classified into 14 major virus families or orders. The
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FIG 6 Evolutionary history and genome structures of positive-sense single-stranded RNA viruses. Figure legend follows that of Fig. 4.
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majority of them either belonged to the vector-borne category (infecting both arthro-
pod and vertebrate) or arthropod-specific category (infecting arthropod only), suggest-
ing that they are somehow related to arthropod infection.

A variety of important zoonotic viruses, such as SARS-like coronavirus, MERS-related
coronavirus, and filovirus, have been identified in bat specimens collected in Yunnan
(27–29). Some serum samples from bats collected in Yunnan were positive for Nipah vi-
ral antibodies (46). In addition, numerous mammalian, plant, bacterial, insect, and fun-
gal viruses were found in bat pharyngeal and anal swabs from Yunnan Province (9, 30,
47). These results suggest that bats, especially those in Yunnan Province, carry several
viruses related to humans or animals, as well as unknown viruses. In this study,
although numerous viruses were found in the five types of blood-sucking arthropods
collected from bats in Yunnan Province, including Rousettus bats in which filoviruses
have been detected, no genetic sequences from coronavirus, filovirus, Nipah virus, or
their relatives were found, which did not support that arthropods on the body surface
of bats are vectors of many of the zoonotic viruses carried by bats.

Both the Streblidae and Nycteribiidae libraries were dominated by narnaviruses.
Among them, 69% of the Streblidae library (library 2) comprised narnaviruses, and the
percentages are 42 to 92% for four libraries (libraries 6 to 9) of wingless bat flies. Thus,
narnaviruses appear to be the most dominating virus population carried by obligate
ectoparasites of bats. Reoviruses were the second-largest virus population in
Nycteribiidae (libraries 6 to 9) after narnaviruses, while sobemo-like viruses accounted for
30% of the Streblidae virome following narnaviruses. So, although Streblidae and
Nycteribiidae are exclusive obligate ectoparasites of bats, under the premise that they
carry numerous narnaviruses, reoviruses and solemoviruses are unique populations car-
ried by wingless bat flies and bat flies, respectively.

Although the viromes were highly structured by arthropod types, a few virus OTUs
were shared among different hosts, and such sharing occurred more often between bat
flies and wingless bat flies. Most of these shared virus OTUs belonged to arthropods-spe-
cific viruses families, such as Virgaviridae, Solemoviridae, Narnaviridae, Reoviridae, and
Totiviridae, and none belonged to vertebrate-associated viruses, suggesting that these
were unlikely to be derived from viremia in bats. Despite that, it is possible that these
viruses are transmitted through cofeeding on the same host.

This study has several limitations. First, some of the specimens collected in this
study contained genetic information from other types of arthropods, which compli-
cates the interpretation of relationships between the viruses and hosts. Except for
wingless bat flies, the number of other arthropods samples was limited. Second, we
also consider the possibility that the eukaryotic viruses found in this study are ones car-
ried by the arthropods themselves or associated with food, symbiont microbes, or
other eukaryotic pathogens. While we could not provide definite evidence of host
association with the principal host, most of the viruses discovered here are related to
those identified from similar hosts, suggesting that they are unlikely from other sour-
ces. Lastly, the possibility of short fragments being endogenous virus elements (EVEs)
instead of genomes from exogenous viruses was evaluated in this study based on
sequencing analyses alone, for which we used two approaches, including (i) mapping
contigs against related host genome sequencing results, and (ii) excluding sequences
with disrupted ORFs. Further experiments based on DNA sequencing or full genome
amplification are required to confirm that these viruses are not EVEs.

MATERIALS ANDMETHODS
Ethics statement. This study, including the procedures and protocols of specimen collection and

processing, was reviewed and approved by the Medical Ethics Committee of the Yunnan Institute of
Endemic Diseases Control and Prevention.

Sample collection. Samples were collected from 10 counties and towns of seven prefectures (cities)
in southwest Yunnan Province (Fig. 1), including Xiangyun County of Dali Bai Autonomous Prefecture,
Shuangbai County of Chuxiong Yi Autonomous Prefecture, Baoshan City and Tengchong City, Mangshi
and Wanding of Dehong Jingpo and Dai Autonomous Prefecture, Yongde County of Lincang City,
Menglian Dai, Lahu and Wa Autonomous County and Mojiang County of Pu'er City, and Mengla County
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of Xishuangbanna Dai Autonomous Prefecture. Sticky nets were arranged around orchards or caves to
collect bats. According to the morphological character, the collected bats included Rousettus leschenaul-
tia, Rhinolophus spp., and Myotis daubentonii. The captured bats were carefully removed from the nets.
Arthropods moving in the hair of bats were captured using insect tweezers. After classification by mor-
phology, arthropods were placed in cryopreservation tubes. Depending on the total number, 1 to 30
arthropods were collected per tube. The samples were transported to the laboratory in liquid nitrogen
and stored at280°C until further analysis. Bats were released following arthropod collection.

Sample mixing, nucleic acid extraction, and sequencing. The samples were poured into a pre-
cooled sterile grinding mortar and washed with 2 ml minimal essential medium (MEM). Then, the ho-
mogenates were mixed with 1 ml grinding solution (90% MEM and 10% penicillin-streptomycin solu-
tion) and centrifuged at 18,000 rpm for 20 min, and the supernatant was collected (48). Subsequently,
the supernatants from different samples were pooled based on collection time and location, and the
samples were combined into nine groups, each containing 7 to 222 arthropods (Table 1). Total RNA was
extracted using the QIAamp viral RNA minikit (Qiagen). After quantifying the RNA using the Agilent
2100 bioanalyzer system (Agilent Technologies), rRNA was removed using the Ribo-Zero Gold (human-
mouse-rat) kit (Illumina). The library was constructed using TruSeq total RNA library approach (Illumina).
The library was not poly(A) selected and not strand specific. After library quality control and purification,
paired-end sequencing was performed on the HiSeq 4000 platform (Illumina). All library preparation and
sequencing procedures were performed at BGI (Beijing Genome Institute, Shenzhen, China).

Discovery of RNA viruses. The sequencing reads were filtered to remove low-quality sequences
using Trimmomatic, with the default parameters (49), and Trinity was used for de novo assembly (50).
The assembled contigs were compared with a collection of viral RdRp sequences representative of the
RNA virus diversity, and the potential viral contigs were further confirmed by blastx analyses against
NCBI nonredundant (nr) protein database. The collection of viral RdRp sequences was composed of (i) a
backbone that contained RdRp sequences published in the 2016 nature paper (32), and (ii) additional
references sequences that shared the highest similarity to sequences generated in this study (i.e., top
blast hits). Viral contigs with overlapping regions were further merged with SeqMan (DNAStar, USA). The
resulting virus contigs were further grouped into different OTUs based on a nucleotide identity thresh-
old of 75%. The abundance level for each virus OTU was estimated by mapping reads to the virus
genomes and evaluated by reads per million (RPM). To eliminate the false positives due to index hop-
ping, positive hits were removed from library if the read account was below 0.1% of the maximum abun-
dance of the specific viruses in these samples.

Host identification. The contigs assembled de novo were compared against representative arthro-
pods COI proteins, and the resulting COI-related contigs were further subject to read mapping to con-
firm the sequences. Species identification was carried out using the BOLD system (http://V3.boldsystems
.org/index.PHP/IDS_openIDengine?quota=1), and the abundance of each host type was estimated by
reads mapped to each host.

Phylogenetic analysis of viral sequences. The viral RdRp sequences were aligned with RdRp
sequences from related viruses using MAFFT (version 7.450) software (51), and ambiguous aligned
regions were removed using trimAl software (52). Phylogenetic trees (53) were reconstructed in PhyML
(3.1) using the maximum-likelihood method, LG amino acid substitution model, and SPR structure opti-
mization algorithm.

Data availability. The raw sequence reads generated in this study are available at the NCBI
Sequence Read Archive (SRA) database under BioProject accession number PRJNA674504. All virus ge-
nome sequences generated in this study have been deposited in GenBank under accession numbers
MW199199 to MW199273, MZ395979 to MZ396051, and MZ600153 to MZ600208.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 3, PDF file, 0.4 MB.
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