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Abstract

Significance: Reactive sulfur and nitrogen species such as hydrogen sulfide (H2S) and nitric oxide (NO�) are
ubiquitous cellular signaling molecules that play central roles in physiology and pathophysiology. A deeper
understanding of these signaling pathways will offer new opportunities for therapeutic treatments and disease
management.
Recent Advances: Chemiluminescence methods have been fundamental in detecting and measuring biological
reactive sulfur and nitrogen species, and new approaches are emerging for imaging these analytes in living
intact specimens. Ozone-based and luminol-based chemiluminescence methods have been optimized for
quantitative analysis of hydrogen sulfide and nitric oxide in biological samples and tissue homogenates, and
caged luciferin and 1,2-dioxetanes are emerging as a versatile approach for monitoring and imaging reactive
sulfur and nitrogen species in living cells and animal models.
Critical Issues: This review article will cover the major chemiluminescence approaches for detecting, mea-
suring, and imaging reactive sulfur and nitrogen species in biological systems, including a brief history of the
development of the most established approaches and highlights of the opportunities provided by emerging
approaches.
Future Directions: Emerging chemiluminescence approaches offer new opportunities for monitoring and
imaging reactive sulfur and nitrogen species in living cells, animals, and human clinical samples. Widespread
adoption and translation of these approaches, however, requires an emphasis on rigorous quantitative methods,
reproducibility, and effective technology transfer. Antioxid. Redox Signal. 36, 337–353.
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Introduction

Reactive sulfur and nitrogen species are small cellu-
larly produced molecules that mediate signaling in

healthy physiology (2, 39, 56). However, they can contribute
to pathophysiological conditions when levels are too low or
too high and thus precise measurement of these species is
required to attain a complete understanding of their biologi-
cal roles. Nitric oxide (NO�) was thrust into prominence in
the 1980s when it was discovered that it could activate gua-
nylyl cyclase and serve as an endothelium-derived relaxation
factor to relax smooth muscle cells—discoveries that would
eventually be rewarded with a Nobel prize in 1998 (63).

Nitric oxide is enzymatically produced by three isoforms
of the nitric oxide synthase (NOS) enzyme—neuronal NOS
(nNOS, NOS-1), inducible NOS (iNOS, NOS-2), and endo-
thelial NOS (eNOS, NOS-3), each of which uses l-arginine
as a precursor and requires heme, tetrahydrobiopterin (BH4),
flavin adenine dinucleotide (FAD), and flavin mononucleo-
tide (FMN) cofactors (120). Nitric oxide can also be pro-
duced by bacterial nitrate reduction in the microbiome
followed by nitrite reduction (19). This small, diffusible, and
reactive molecule plays important and central physiological
and pathophysiological roles in the cardiovascular system
(37), brain (46), cancer (12), gastrointestinal tract (133),
lungs (7), and even in psychological stress (105).
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Canonical nitric oxide signaling begins with nitric oxide
binding to guanylyl cyclase, increasing the rate of conversion
of guanosine triphosphate (GTP) into cyclic guanosine
monophosphate (cGMP), which, in turn, can modulate sig-
naling via cGMP-dependent protein kinases (PKGs), cGMP-
gated cation channels, phosphodiesterases (PDEs), and other
targets (40). In addition, nitric oxide is a reactive molecule
that gives rise to a host of reactive nitrogen species (56) that
can also participate in cellular signaling (2), including (but
not limited to) S-nitroso proteins and small molecules (34),
peroxynitrite (ONOO-) and decomposition products (38),
nitroxyl (HNO) (41, 64), and nitrite/nitrate (31). Taken to-
gether, these progenies of nitric oxide are collectively re-
ferred to as reactive nitrogen species.

Hydrogen sulfide (H2S) is another small, reactive, and
diffusible molecule that is enzymatically produced in mam-
malian systems by cystathionine c-lyase (CSE), cystathionine
b-synthase (CBS), and 3-mercaptopyruvate sulfur transferase
(3-MST) (65). Endogenous levels of hydrogen sulfide are
controlled, in part, by catabolic enzymes sulfide:quinone
reductase (SQR) and persulfide dioxygenase, ETHE1. Hy-
drogen sulfide can also be produced by the microbiome via
reduction of dietary sulfates to play important roles in
mammalian biology (19). Hydrogen sulfide can mediate
cellular signaling in a number of physiological scenarios by
means of persulfide and polysulfide (H2Sn) formation, bind-
ing to metal centers, and interaction with other reactive sul-
fur, oxygen (O2), and nitrogen species (39).

Similar to nitric oxide, hydrogen sulfide has emerged as a
ubiquitous mediator of physiology in a number of tissues and
organs (39). Hydrogen sulfide is present in aortic tissue at
levels that are 20 - 100 times higher than other tissues (77),
and the actions of hydrogen sulfide have been well studied in
the cardiovascular system (19, 101, 142). It has also been
studied in the brain and gut, where some of the first evidence
for hydrogen sulfide’s signaling roles was observed (1, 71).

A related class of reactive sulfur species central to hy-
drogen sulfide signaling comprises polysulfide/sulfane
sulfurs that contain sulfur in the S0 oxidation state with a
sulfur–sulfur bond (86). Polysulfides can be formed by oxi-
dation of hydrogen sulfide (24), but enzymatic synthesis by
the same enzymes that form hydrogen sulfide, CBS, CSE
(62), and 3-MST (97) are more likely to be physiologically
relevant avenues of polysulfide formation via generation of
cysteine persulfide (Cys-SSH).

Quite interestingly, cysteinyl-tRNA synthetases (CARSs)
were found to be able to mediate persulfidation to form Cys-
SSH, in addition to incorporating Cys-SSH into proteins,
accounting for a large percentage of protein persulfidation
(3). Other potential avenues for persulfide generation include
heme proteins such as superoxide dismutase (SOD) (99) and
myeloperoxidase (MPO) (44). The catabolism of poly-
sulfides is less understood, but it has been shown that thior-
edoxin and glutathione systems can mediate this conversion
(33). A number of proteins have been shown to be targets of
persulfidation, including NF-E2 p45-related factor (Nrf2),
Kelch-like ECH-associated protein (Keap1), heme oxygenase-
1 (HO-1), phosphatase and tensin homolog (PTEN), and pro-
tein kinase G-1a (PKG1a) (86).

Indeed, there is an emerging realization that polysulfide
signaling is a central component of reactive sulfur signaling
in cardiovascular disease and other biological systems (73).

It should be emphasized that polysulfide chemistry is quite
complex (75), and that reactive sulfur and nitrogen species
interact both chemically (39) and biologically (19). When
combined with reactive oxygen and carbon species, they
form a complex web of interacting species that has been
referred to as the reactive species interactome (28).

Given the importance of reactive sulfur and nitrogen spe-
cies in physiology and pathophysiology, their measurement
and detection in biological systems is of the utmost impor-
tance to increase fundamental understanding and develop
therapeutic approaches. Due to their reactive nature, one
class of methods that is particularly well suited for measuring
reactive sulfur and nitrogen species is chemiluminescence.

Chemiluminescence is the light generated from a thermal
reaction that leads to the production of a molecule in an
emissive excited state (128). Most (although not all) chemi-
luminescent reactions involve the cleavage of a weak oxygen–
oxygen bond in a structure with a large ring strain, leading to
a highly exothermic reaction. The key advantage of che-
miluminescence is that the background signal is quite low
due to the elimination of an external light source; this ulti-
mately leads to a large increase in sensitivity and offers
opportunities for deep tissue imaging (109).

This review article will focus on chemiluminescence meth-
ods for the detection of reactive sulfur and nitrogen species,
which have been a critical tool in developing an under-
standing of hydrogen sulfide and nitric oxide in biological
systems. We note that chemiluminescence methods for
measuring reactive oxygen species have been recently re-
viewed (122). The structure of this review will be roughly
chronological, starting with well-established and commer-
cialized ozone (O3)-based and luminol chemiluminescence
techniques and ending with emerging luciferin/luciferase,
1,2-dioxetane, and nanotechnology strategies.

Ozone-Based Chemiluminescence

Ozone-based chemiluminescence detection
of hydrogen sulfide

Gas chromatography with ozone-induced sulfur chemilu-
minescence has become a powerful method of choice for
measuring biological hydrogen sulfide (131) and is the result
of extensive fundamental and applied research (139–141).
The spectrum of the sulfur ‘‘afterglow’’ of sulfur dioxide
(SO2) was first reported in 1934 (47), and the chemilumi-
nescent reaction of sulfur monoxide (SO) with ozone to
produce SO2 in the excited state was reported in 1966
(Fig. 1A, Equations 1 and 2) (54).

It was later shown that a range of sulfur-containing mol-
ecules, including SO, hydrogen sulfide, and other sulfur
species, can undergo combustion and be reacted with ozone
to form a species with a spectrum that is identical to that of
SO2 (4, 74). This chemiluminescence emission spectrum has
a maximum at *350 nm and extends from 280 to 450 nm (4,
54, 74, 131). These identical spectra lead to the conclusion
that the reaction of ozone with sulfur species ultimately
produces the same emitting species, excited state SO2. SO
has been proposed as a common intermediate, and studies
on the reaction of methyl mercaptan with hydrogen sulfide
further support a mechanism with hydrosulfinyl radical
(HSO�) and SO as important intermediates (Fig. 1A, Equa-
tions 3-5) (50).
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Interestingly, experiments done at a low pressure to ensure
single collisions showed that H2S can react directly with
ozone to produce chemiluminescence (Fig. 1A, Equation 6)
with the proposed mechanism as shown in Figure 1B pro-
ceeding through a strained 4-membered ring intermediate
with two oxygen–oxygen bonds (49). Further, red-shifted
chemiluminescence emission that extends to the near-
infrared (NIR) spectrum has been observed for the reaction of
hydrogen sulfide and ozone and attributed to emission from
the excited radical species HSO� (115).

It was not long after these chemiluminescent reactions
were understood that efforts turned toward harnessing them
as an analytical technique for measuring sulfur compounds. It
was first shown that a chemiluminescent aerosol spray con-
sisting of O3/O2 mixtures could be used in conjunction with
liquid chromatography for the detection of sulfur compounds
(15). Later, researchers developed a Universal Sulfur De-
tection strategy by exposing sulfur-containing compounds,
including hydrogen sulfide, to a hydrogen flame followed by
a reaction with ozone to produce chemiluminescence via an
SO intermediate (13). This detector was combined with gas
chromatography separation and improved to form the basis of
commercial gas chromatography/sulfur chemiluminescence
systems (116, 117).

We also note that sulfur compounds can be reacted with
fluorine gas to generate chemiluminescence and chromato-

graphic systems with fluorine-based chemiluminescence
detection have been developed (94). Safety issues with
working with toxic fluorine gas, however, have likely made
commercialization of these systems less viable.

On the development and commercialization of gas chro-
matography with sulfur chemiluminescence detection, meth-
ods and techniques were optimized for studying biological
hydrogen sulfide. Early adoption of this technology for bio-
logical systems used it to study hydrogen sulfide production
and metabolism in the digestive system (43, 78, 123).

This chemiluminescent technique was then used to revise
reported estimates of micromolar tissue levels of free hy-
drogen sulfide to the now more widely accepted nanomolar
levels (42). This study measured hydrogen sulfide in the
headspace of tissue homogenates and in exhaled breath and
was validated by recovery of 2.7 lM sulfide added to a buffer.
In a convincing demonstration, an injection of 50 lM sulfide
into brain homogenates (the putative estimate of biological
sulfide levels at the time) completely swamped any signal
from endogenous sulfide. The same group followed up on this
discrepancy by showing that ‘‘acid-labile’’ sulfur pools were
released at micromolar levels and explained the differing
values that were measured (77). Interestingly, high levels of
free hydrogen sulfide (*1 lM) were observed in aortic tis-
sues, suggesting important roles for hydrogen sulfide in
cardiovascular function.

FIG. 1. Reactions involved in ozone-based chemiluminescence. (A) Reactions for ozone-based chemiluminescence
detection of sulfur species. (B) Mechanism for the reaction of hydrogen sulfide and ozone. (C) Reactions for ozone-based
chemiluminescence detection of nitrogen species.
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Gas chromatography with sulfur chemiluminescence was
also used to identify contributions from CBS and CSE en-
zymes that were responsible for hydrogen sulfide produc-
tion (66). This study examined mouse tissues, including liver,
kidney, and brain, and showed both enhancement using
S-adenosylmethionine, an allosteric regulator of CBS, and
attenuation using propargyl glycine, an irreversible inhibitor of
CSE. Further, this chemiluminescence method was used to
provide quantitative measures of the kinetics of hydrogen
sulfide production and metabolism in liver, brain, and kidney
homogenates and provided steady-state estimates of tissue
hydrogen sulfide in the nanomolar range (132). Polysulfides/
sulfane sulfur can also be measured with this technique by first
releasing hydrogen sulfide from sulfane sulfur by treatment
with dithiothreitol (DTT) (72).

Ozone-based chemiluminescence is now a standard tech-
nique formeasuring hydrogen sulfide in tissuehomogenatesand
has become a method of choice in recent studies from several
research groups (137, 138). We direct the reader to the work by
Vitvitsky and Banerjee for procedures on using ozone chemi-
luminescence to measure biological hydrogen sulfide (131).

Ozone-based chemiluminescence detection
of nitric oxide

Red to NIR chemiluminescence emission from the reac-
tion of nitric oxide and ozone was first studied in 1959
(Fig. 1C, Equations 7 and 8), where an observed emission that
spanned a wavelength range from 590 to 1085 nm was at-
tributed to the excited state of nitrogen dioxide radical
(NO2

�) based on spectral and thermodynamic analyses (52).
Detailed kinetic (27) and mechanistic (26) studies confirmed
a bimolecular reaction and second-order rate equation be-
tween nitric oxide and ozone to produce the emissive nitro-
gen dioxide species, with the overall emission intensity being
proportional to the concentration of nitric oxide. In addition,
a corrected spectrum with measurements up to 3200 nm
showed that the peak emission was centered at 1200 nm and
extended from 590 nm up to 2400 nm (26).

It is important to note that the wide spectral separation be-
tween the emission of SO2 and NO2

� enables selectivity be-
tween sulfur and nitrogen detection by using ozone-based
chemiluminescence (139). An understanding of this chemilu-
minescence reaction led to its application as an analytical
technique (8), initially for studying atmospheric, dissolved, and
photolytically released nitric oxide in sea water (143). Soon
after, its use for detecting biological nitric oxide proved to be
transformative and was one of the methods used to confirm
nitric oxide as the endothelium-derived relaxation factor (100).

This method was further optimized for direct detection of
nitric oxide in biological and clinically relevant scenarios,
including nitric oxide release from nitrovasodilator drugs
(17, 93). Although ozone-based chemiluminescence is used
for the direct detection of nitric oxide, the short lifetime of
nitric oxide in the presence of oxygen, metals, and other
biomolecules is an obstacle because sampling or homoge-
nizing tissues often takes longer than the lifetime of nitric
oxide under these conditions. For this reason, emphasis has
been placed on tracking more stable end products of nitric
oxide such as nitrite, S-nitroso compounds, and N-nitroso
compounds that can be re-converted to nitric oxide by using
reductive (11, 58, 88) and photolytic methods (92, 119).

Early methods for environmental nitrite analysis used va-
nadium(III) (16) (Fig. 1C, Equations 9 - 11) or iodide (29, 45)
(Fig. 1C, Equations 13 - 17) to reduce nitrite and nitrate to
nitric oxide before detection with ozone-based chemilumi-
nescence. Vanadium chloride can be used to reduce both
nitrate (Fig. 1C, Equations 9 and 10) and nitrite (Fig. 1C,
Equation 11) (16, 20, 29). It soon became appreciated that
vanadium (36) and iodide (110) could also release nitric
oxide from S-nitroso groups (Fig. 1C, Equations 12 and 16).

Photolytic methods were developed to homolytically
cleave the S - N bond of S-nitroso thiols (Fig. 1C, Equation
22 and 23) (119). These methods were used to show that
vanadium reactions could misidentify S-nitroso compounds
as nitrate, and a copper-based assay for S-nitroso compounds
was developed to solve this problem (Fig. 1C, Equations 18
and 19) (36). Although some vanadium-mediated release of
nitric oxide from S-nitroso compounds is, indeed, observed, a
more complete measurement of S-nitroso compounds was
accomplished by first releasing nitrite from the S - N bond
using mercury (35), via the Saville reaction (111), followed
by ozone-based chemiluminescence detection.

For accurate S-nitroso compound measurements, interfer-
ences from nitrite can be mitigated by first reacting nitrites in
the sample with sulfanilimide in a diazotization reaction, and
interferences from nitrosation of free thiols can be mitigated
by pretreatment with N-ethylmaleimide to cap any free thiols
and prevent reactions that recapture released nitric oxide (88,
91). Carbon monoxide can be added to prevent recapture of
nitric oxide by iron–heme complexes (11, 32). Iodide and
hydroxyquinone were also shown to generate nitric oxide for
ozone-based chemiluminescence, with hydroxyquinone be-
ing more selective for S-nitroso compounds (110).

Similar ozone-based chemiluminescence methods have
been developed to measure nitrosylhemoglobin [Hb(II)NO]
(96) and dintrosyl iron complexes (95). Photolytic methods to
cleave the S - N bond are complicated by known photo-
chemistry of nitrite (Fig. 1C, Equations 20 and 21) (89),
whereas reductive methods are complicated by nitric oxide
release from diverse nitrogen-containing species, including
nitrate, nitrite, S-nitroso compounds, and N-nitroso compounds.

Although the precise interpretations and methods for
quantifying nitric oxide, nitrite, and S-nitroso compounds
has been the subject of healthy debate, direct comparisons
of different methods suggest that all can provide useful
information when interpreted correctly and the use of more
than one method improves confidence in results (11). The
interested reader is directed to the work of Basu et al. for
procedures (11).

Luminol and L-012 Chemiluminescence Detection
of Reactive Sulfur and Nitrogen Species

Luminol and derivatives such as 8-amino-5-chloro-2,3-
dihydro-7-phenyl-pyrido[3,4-d]pyridazine-1,4-dione (L-012)
(98) have been used for the sensitive detection of peroxynitrite
(102), nitrogen dioxide (90), nitric oxide (70), and other oxi-
dative species. Luminol can directly react with NO2

� without
the need for a catalyst, and this reaction was used to develop an
instrument to measure NO2

� and peroxy radicals in the atmo-
sphere (Fig. 2A) (21, 24, 68, 90, 135). Luminol can also be used
for peroxynitrite detection in a process that is enhanced by the
addition of carbonate and inhibited by SOD (Fig. 2B) (103).
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The originally proposed mechanism involves the adduct of
peroxynitrite and carbon dioxide mediating a one-electron
oxidation of luminol, with the formation of superoxide that
reacts with the luminol radical to yield the light-emitting
endoperoxide. Studies of the luminol derivative L-012 re-
vealed that it likely reacts with radical species derived from
peroxynitrite such as carbonate radical or nitrogen dioxide
radical, as evidenced by an increase in signal with the addi-
tion of carbonate (30). Further, it was shown that superoxide
can actually be formed in the course of the peroxynitrite
oxidation of L-012, making it possible to form the endoper-
oxide in the absence of any additional superoxide (149). The
complexity of these reactions demands careful evaluation of
mechanistic considerations when using luminol and deriva-
tives for analytical assays.

Luminol has been used to detect nitric oxide in a luminol-
H2O2 (hydrogen peroxide) system, through the reaction of
NO� and H2O2 to form peroxynitrite (Fig. 2C) (70). The
authors provided ultraviolet/visible evidence of peroxynitrite
production, showed that the assay is independent of super-
oxide inhibition by SOD, and neither NO2

� nor hydroxyl
radical (HO�) was detected. The assay was used in a flow
organ perfusion system to measure NO� in the kidneys. A
later study was unable to detect NO� by using the same
luminol-H2O2 system but it did observe that the oxidation of
NO� to NO2

�with chromium trioxide (CrO3) before exposure
to luminol-H2O2 greatly enhanced the signal. This chemistry
was used to develop an instrument for measuring NO� in the
exhaled breath (Fig. 2C) (106).

The luminol derivative L-012 was shown to be capable of
detecting peroxynitrite and gave a signal *100-fold higher
than that of luminol (Fig. 3A) (30). The system showed a
response from synthetic ONOO-, the peroxynitrite donor
3-morpholinosydnonimine (SIN-1), and a continuous enzy-
matic superoxide production system [hypoxanthine/xanthine
oxidase and diethylammonium (Z)-1-(N,N-diethylamino)
diazen-1-ium-1,2-diolate (DEA NONOate)]. The response
was validated and compared with other chemiluminescence
assays and high-performance liquid chromatography (HPLC)
analysis of dihydroethidium. Controls using the NO� scav-
enger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxy 3-oxide

(PTIO), the superoxide scavenger SOD, and an iNOS inhibitor
provided a selective assay and it was demonstrated that L-012
could detect peroxynitrite formed from superoxide generated
in isolated mitochondria.

Interestingly, L-012 has also been used for in vivo imag-
ing of inflammation (69), where it showed significant in-
creases in luminescent signal versus controls in mice injected
with L-012 and various inflammatory stimulators including
lipopolysaccharide (LPS), phorbol 12-myristate 13-acetate
(PMA), and in an arthritis inflammation model. A strong
signal was observed in the intestine, even under baseline
conditions, and a weaker signal was seen in the lungs and
spleen. Strong inhibition by the nitric oxide inhibitor N (x)-
nitro-l-arginine methyl ester (L-NAME) suggests that per-
oxynitrite is responsible for the observed signal.

A luminol-based system has been used for the detection of
hydrogen sulfide by masking the aniline nitrogen of luminol
with an azide group that can be reduced by H2S (Fig. 3B, C)
(9, 10). The masked luminol derivative is first incubated with
a sample containing hydrogen sulfide, which reduces the
azide to an amine to form the free luminol derivative. The
sample is then mixed with horseradish peroxidase, H2O2, and
para-iodophenol to oxidize the luminol derivative and gen-
erate chemiluminescence. The para-iodophenol is a chemi-
luminescence enhancer that increases the rate of formation of
luminol radicals. It was observed that the isoluminol deriv-
ative with the azide at the meta position, named CLSS-2,
displayed better selectivity for H2S over other thiol species
and was used to measure enzymatically generated H2S.

Luminol systems offer high sensitivity for reactive species
and can provide useful information when combined with the
appropriate controls. This caged luminol strategy is an in-
novative approach that provides ample opportunity for fur-
ther exploration.

Bioluminescent Caged Luciferin Probes for Reactive
Sulfur and Nitrogen Species

A ‘‘caged’’ luciferin is a luciferin derivative that is not a
luminescent substrate for a bioluminescent enzyme but, after
reaction with a targeted analyte or set of conditions, is

FIG. 2. Reactions for the chemilumi-
nescence detection of reactive nitrogen
species with luminol.
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‘‘uncaged’’ and converted into a substrate that can generate
bioluminescence. Luciferase catalyzes the chemiluminescent
reaction of luciferin by using adenosine triphosphate, mag-
nesium, and oxygen via an intermediate dioxetanone struc-
ture (Fig. 4). Caged luciferins offer a chemiluminescent
signal that can be combined with genetically modified
models for cellular studies and in vivo imaging (121). Given
the versatility of this method, many examples of using caged
and modified luciferins for reactive sulfur, oxygen, and ni-
trogen species have been reported (Figs. 5–7) (144).

Originally demonstrated to be a bioluminescence probe for
H2O2 (129, 130), the boronate-based probe PCL-1 also reacts
with ONOO- and hypochlorite (HOCl) to convert the bor-
onate to a phenol, followed by a spontaneous self-immolative
cleavage to release luciferin (Fig. 5) (118). It was observed

that catalase inhibited PCL-1 signal from LPS-treated mac-
rophages, whereas the iNOS inhibitor L-NAME alone did
not, suggesting that at least some of the observed signal is
from H2O2. The strongest inhibition was seen from a com-
bination of catalase and L-NAME, suggesting that both
peroxynitrite and H2O2 generated signals in this system.

Detailed studies of the reaction products with H2O2, HOCl,
and ONOO- show clean conversion to luciferin with H2O2,
formation of luciferin and a chlorinated product with HOCl,
and formation of luciferin and a nitrated product with
ONOO- (150). This study further shows that combining
bioluminescence imaging with HPLC analysis of product
distributions coupled with proper controls can be used for
more rigorous identification of which species are generated
during an experiment.

FIG. 3. Reactions of luminol derivatives for the detection of reactive nitrogen and sulfur species.

FIG. 4. General mechanism for
luciferin bioluminescence.
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The bioluminscent probe BP-PN is a caged luciferin with
an a-ketoamide group that reacts with peroxynitrite to re-
lease an aminoluciferin (Fig. 5) (79). This probe was suc-
cessfully used to demonstrate imaging of peroxynitrite
release from SIN-1 in mouse models. For HNO, a triar-

ylphosphine trigger that is released on a reaction with HNO
via a phosaza ylide intermediate (104) was used to mask
D-luciferin to yield the probe BP-HNO and enable in vivo
bioluminescence imaging of HNO released from Angeli’s
salt (Fig. 5) (80).

FIG. 5. Bioluminescence probes for peroxynitrite, nitroxyl, and nitric oxide.

FIG. 6. Bioluminescence probes for hydrogen sulfide and polysulfide species.
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DAL is a bioluminescence probe for NO� imaging (Fig. 5)
(125). This probe was designed by using an interesting and
innovative application of photoinduced electron transfer
(PeT) quenching. Although PeT is widely used in fluores-
cence probes, this study applied it to use in a luciferin mol-
ecule appended with a nitric oxide reactive diamino phenyl
group.

Before reacting with nitric oxide, the diamino phenyl
group quenches the chemiluminescence from the enzymati-
cally produced excited state of the luciferin derivative. After
reacting with nitric oxide to form a triazole, PeT quenching is
reduced and an increase in luminescence emission can be
observed. This mechanism was referred to as Bioluminescent
Enzyme-Induced Electron Transfer (BioLeT), and is essen-
tially identical to PeT, accept that the transition state is ac-
cessed through a bioluminescent enzymatic reaction. This
bioluminescent nitric oxide probe DAL was successful in
imaging NO� release from a donor molecule in vivo.

Bioluminescent probes for H2S have been developed by
using an azide trigger to directly release aminoluciferin,
named Azidoluciferin (Fig. 6) (67, 126), as well as self-
immolative linkers (51) to release luciferin after spontaneous
elimination of the self-immolative group (Fig. 6, Compounds
2, 3) (67). These probes were used to image H2S added in the
form of NaSH in the whole mouse (67) and in a tumor xe-
nograft model (126). Another strategy was implemented for
the probe DNPT-HS, which used a dinitrothiophenol cage
that released 2-hydroxyethyl luciferin (HE-AL) on reaction
with hydrogen sulfide (82). This probe showed a decreased

signal in mice treated with the broad-spectrum CBS inhibitor
aminooxyacetic acid (AOAA), consistent with the observa-
tion of signals from baseline levels of hydrogen sulfide.

A bioluminescent probe for H2Sn, BP-PS, was developed
(81) by caging luciferin with a 2-thioester benzoate group that
reacts with polysulfide species via a thioester cleavage reaction,
followed by sulfur atom exchange (Fig. 6) (25). This study ob-
served increases in polysulfides in in vivo models of inflamma-
tion, including an injection with LPS and bacterial infection.

Bioluminescent probes for cysteine have been developed
by caging luciferin with an acrylate (Compound 7, Fig. 7)
(145) or methyl acrylate (CBP, Fig. 7) (59) group that can
react with cysteine via conjugate addition and formation of a
7-membered caprolactam ring to release the bioluminescent
substrate. These probes were shown to have an increased
signal with an injection of cysteine in vivo. A pair of general
probes for thiols was developed by incorporating a sulfinate
cage on to a luciferin molecule, either directly or through a
self-immolative linker (SEluc-2 and SEluc-1, Fig. 7) (57).
The self-immolative sulfinate SEluc-2 had a lower back-
ground and was used to study the time-course of thiol de-
pletion on exposing cells to oxidative stress, followed by the
recovery of signals with exogenous addition of cysteine.

Chemiluminescent 1,2-Dioxetane Probes
for Reactive Sulfur and Nitrogen Species

Triggered chemiluminescence from sterically hindered
1,2-dioxetanes was first accomplished by Schaap et al. and

FIG. 7. Bioluminescence probes for thiols.
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these structures were soon after commercialized for in vitro
assays (112–114). These molecules undergo a triggered
chemiluminescence reaction that is believed to proceed
through a chemically initiated electron exchange lumines-
cence (CIEEL) mechanism (128), with a solvent cage me-
diated back electron transfer as the central excitation step
(Fig. 8). Although some experimental evidence supports this
mechanism, other mechanisms have been proposed and there
is still debate (128).

It was only decades later when it was realized that these
could actually be used for live cell experiments and in vivo
imaging (23, 87). Soon after, key modifications of the mo-
lecular structure were developed to red-shift the emission and
increase the chemiluminescence quantum yield in aqueous
systems, leading to a surge of interest in these structures (53,
84). Many new biological imaging probes have now been
developed (55), including chemiluminescent 1,2-dioxetane
probes for reactive sulfur and nitrogen species (Figs. 9–11).

The peroxynitrite-mediated oxidative decarbonylation of an
isatin (18) was used to develop an acrylonitrile 1,2-dioxetane
chemiluminescence probe for peroxynitrite, called PNCL
(Fig. 9) (22). The probe was validated by using the perox-
ynitrite donor compound SIN-1 in A549 epithelial lung cancer
cells and RAW 264.7 macrophages and was shown to be able
to detect peroxynitrite formation observed on LPS stimulation,
using direct scavenging of peroxynitrite and iNOS inhibition
as negative controls. This probe was further used in a study on
radiation-induced erectile dysfunction (136).

PNCL was used to show that peroxynitrite was generated
on exposing endothelial cells with a therapeutic dose of
radiation. Further, treatment with sildenafil attenuated per-
oxynitrite production, suggesting that the inhibition of per-
oxynitrite production plays a role in how sildenafil prevents
erectile dysfunction after radiation therapy.

A series of probes based on the oxidative decarbonylation
of a formyl ester trigger and various 1,2-dioxetane scaffolds
for the detection of peoxynitrite have been developed
(60, 61). An NIR dicyanometh-ylene-4H-benzopyran 1,2-
dioxetane scaffold was equipped with the formyl ester trigger
and appended with a (2-hydroxypropyl)-b-cyclodextrin to
make the renal clearable probe NCR2 (Fig. 9). The probe was
well validated and shown to have better tissue penetration
than a comparable green-emitting probe. It was further used
to study peroxynitrite production in a cisplatin-induced acute
kidney injury model as well as providing a pharmacokinetic
analysis of dioxetanes of this type.

Recently, this concept was expanded to develop a series
of even more red-shifted NIR probes, NCPS and NCPSe,
for peroxynitrite detection using the formyl ester trigger
(Fig. 9) (61). These probes have remarkably long wavelength
emissions above 750 nm by virtue of sulfur and selenium
substitution of dicyanometh-ylene-4H-benzopyran to form a
dicyanometh-ylene-4H-benzothiopyran and a dicyanometh-
ylene-4H-benzoselenopyran, respectively. It was demon-
strated that peroxynitrite could be detected through up to
2 cm of avian tissue, and a galactosidase variant of the NIR
scaffold was used for cell and whole animal imaging.

A 1,2-dioxetane probe for HNO, HNOCL-1, was devel-
oped by using a triaryl phosphine HNO trigger and an acry-
lonitrile 1,2-dioxetane (Fig. 9) (6). A centrally important
aspect of this study was the development of a kinetics-based
approach that allowed quantification of the real-time dy-
namics of HNO production from the decomposition of An-
geli’s salt and the reaction between nitric oxide and hydrogen
sulfide.

The relevant rate constants for the reaction of the probe
with HNO and the rate-limiting step of the CIEEL mecha-
nism were measured, and the chemiluminescence emission
from the phenol scaffold was carefully calibrated. An equa-
tion was derived to convert the raw chemiluminescence
emission into a concentration of HNO and used to measure
picomolar concentrations of HNO generated in the reaction
between hydrogen sulfide and nitric oxide. The probe was
further used to detect HNO release from donor compounds in
living cells and live mouse models.

An early example of detecting H2S with a 1,2-dioxetane
used a dinitrophenyl group that could release the dioxetane
phenol via a nucleophilic aromatic substitution reaction
(Compound 6, Fig. 10) (127). A selective change in the ab-
sorbance was observed, and strong chemiluminescence emis-
sion was accomplished under alkaline conditions. CHS-1,
CHS-2, and CHS-3 use an azide-based strategy and a self-
immolative carbamate linker for the chemiluminescence
detection of H2S, with the chlorine-substituted CHS-3 being
the most effective (Fig. 10) (23). This probe was used to
measure H2S production in cells supplemented with cysteine
and was the first demonstration that 1,2-dioxetanes could be
used for in vivo imaging of reactive species such as hydrogen
sulfide.

CL-N3 and CL-DNP are another set of dioxetanes equip-
ped with an azide or dinitrophenyl trigger and a molecular
structure that is modified with an acrylonitrile group

FIG. 8. CIEEL mechanism for
1,2-dioxetane chemiluminescence.
CIEEL, chemically initiated elec-
tron exchange luminescence.
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(Fig. 10), which resulted in more efficient chemilumines-
cence emission in water without the need for the addition of
polymers for encapsulation, enzymes to initiate the chemi-
luminescence reaction, or other additives (76). This study
also provided a direct comparison of the sensitivity of these
two triggers. Interestingly, SCL-2, a 1,2-dioxetane probe
with a structure similar to CL-DNP but without a chlorine
atom, was shown to be able to detect hydrogen sulfide in cells
and animal (146).

A series of chemiluminescent probes for hydrogen sulfide
were reported to be using a disulfide, seleno-sulfide, or di-
nitrosulfonyl amide trigger (Fig. 11, Probes 1-3) (48). These
probes were used to show the production of hydrogen sul-
fide in the biodegradation of b-lactam antibiotics, suggesting
that hydrogen sulfide may be a useful biomarker of resistant
bacteria. A 1,2-dioxetane probe for cysteine, CL-cys, was
developed by using an acrylate trigger and appendage of a
methylacrylate to the chemiluminescent core that red-shifts

emission and improves chemiluminescence quantum yield
(Fig. 11) (124). This probe was used to image cysteine in
animal models and displayed an attenuation of signal when
treating with N-ethylmaleimide, consistent with blocking
endogenous thiol species.

Nanoparticle Chemiluminescence Approaches

There are now several examples of nanoparticle-based
chemiluminescence systems that have been used for the de-
tection and measurement of reactive sulfur and nitrogen
species. Cadmium telluride (CdTe) quantum dots (147) and
carbon dot nanoparticles (148) have been used for chemilu-
minescence peroxynitrite detection based on a proposed
mechanism of generating a hydroxyl radical/superoxide
radical-pair that leads to the generation of luminescence in
the nanoparticles. Another carbon dot system was used for
detecting nitrite by first oxidizing it to peroxynitrous acid,

FIG. 9. 1,2-Dioxetane probes for peroxynitrite and nitroxyl.
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FIG. 10. 1,2-Dioxetane probes for hydrogen sulfide.

FIG. 11. 1,2-Dioxetane probes for hydrogen sulfide and cysteine.
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followed by reacting with the carbon dots to initiate chemi-
luminescence (83). Carbon dots have also been reported to
have chemiluminescence emission when treated with acidic
potassium permanganate in a process that is enhanced by
sulfide (85).

Nanoparticles composed of an O-pentacene molecule dis-
play chemiluminescence on reaction with peroxynitrite via
a proposed mechanism that invokes the formation of an
O-pentacene peroxide species (134). These nanoparticles
were used to image peroxynitrite in several in vivo models
and represent an emerging chemiluminescence approach for
the detection of reactive sulfur and nitrogen species.

Conclusions

Chemiluminescence is a powerful approach for the de-
tection, measurement, and imaging of reactive sulfur and
nitrogen species. Ozone-based chemiluminescence is a well-
established and widely adopted method for monitoring hy-
drogen sulfide and nitric oxide in biological systems. High
selectivity and sensitivity for hydrogen sulfide can be
achieved when combining ozone-based chemiluminescence
detection with gas chromatography. Selectivity for nitric
oxide is generally achieved by using chemical treatments that
release nitric oxide from specific biological stores, block
reactivity from unwanted species, and cap other biological
molecules to keep them from recapturing any released nitric
oxide.

Although ozone-based chemiluminescence is very well
suited for sampled and homogenized tissues, it is not a viable
technique for making measurements in living intact speci-
mens due to the need to use highly reactive and toxic ozone to
generate a signal. Luminol systems have also been well
studied and are a useful technique for measuring reactive
nitrogen species when combined with careful controls to
determine which reactive species is leading to signals. Hy-
drogen sulfide has been measured by using an azide-caged
luminol derivative and this relatively unexplored strategy
may be amenable to the detection of other types of analytes.
Further, in vivo detection of reactive nitrogen species has
been accomplished by using luminol derivatives and careful
control experiments to determine which species are gener-
ated during the biological process being studied.

Caging strategies have been successful in using luciferin to
generate bioluminescent probes and spiroadamantane 1,2-
dioxetanes to generate non-enzymatic chemiluminescent
probes. A key advantage of these systems is that they can be
used in living cells and animals with a selectivity that is
imparted by the design of chemoselective reaction-based
sensing triggers. This represents a versatile strategy that
could be applied to a wide range of analytes. Biolumines-
cence requires genetically modified organisms, which can be
an advantage or disadvantage depending on the experiment.
Though quite promising, caged luciferin and dioxetanes are
not as well established as ozone-based luminescence and the
sensing triggers need to be carefully investigated and cross-
validated.

The development of quantitative methods using ratiomet-
ric (5, 107) or kinetics-based (6, 108) approaches should
further aid in the validation and general adoption of these
probes. Another challenge is that most caged luciferin and
dioxetane structures require complex multi-step organic

synthesis, which sometimes limits their use to the group that
developed the probe or close collaborators. It should be noted
that 1,2-dioxetanes have been commercially available for
many years, so commercialization of new molecular struc-
tures should not be an insurmountable problem.

An overview of the chemiluminescence literature brings
some comparisons to light. Although ozone-based and lu-
minol chemiluminescence have been used for measuring
reactive sulfur and nitrogen species for several decades, the
use of caged luciferin and 1,2-dioxetanes has only emerged in
the past 10 years or so. The development of ozone-based
chemiluminescence was marked by healthy scientific debate,
particularly for the measurement of S-nitroso compounds,
and eventually leads to the careful evaluation and construc-
tion of effective, reproducible methods. This has also been
seen to some degree with luminol systems and select caged
probes such as the bioluminescent probe PCL-1.

The field of caged probes, including caged luciferin and
caged 1,2-dioxetanes, is largely driven by synthetic chemists.
Because of this, there is often an emphasis placed on new
molecular structures with brighter and red-shifted emission,
sensitivity, solubility, and other molecular properties. Al-
though these are certainly important, they often overshadow
the critical need to develop rigorous quantitative methods,
transparent studies of reproducibility, and cross-validation
among different researchers (14). Nevertheless, given time,
careful studies, and a continuation of healthy constructive
debate, the prospects for using chemiluminescence for the
analysis and imaging of reactive sulfur and nitrogen species
in living systems are far reaching and sure to deeply impact
our understanding of the roles they play in physiology and
pathophysiology.
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Abbreviations Used

3-MST¼ 3-mercaptopyruvate sulfur transferase
CBS¼ cystathionine b-synthase

cGMP¼ cyclic guanosine monophosphate
CIEEL¼ chemically initiated electron exchange

luminescence
CSE¼ cystathionine c-lyase

Cys-SSH¼ cysteine persulfide
H2O2¼ hydrogen peroxide

H2S¼ hydrogen sulfide
H2Sn¼ polysulfides
HNO¼ nitroxyl
HO�¼ hydroxyl radical

HOCl¼ hypochlorite
HPLC¼ high-performance liquid chromatography
HSO�¼ hydrosulfinyl radical

iNOS, NOS-2¼ inducible nitric oxide synthase
L-012¼ 8-amino-5-chloro-2,3-dihydro-7-phenyl-

pyrido[3,4-d]pyridazine-1,4-dione
L-NAME¼ (x)-nitro-l-arginine methyl ester

LPS¼ lipopolysaccharide
NIR¼ near-infrared
NO�¼ nitric oxide

NO2
�¼ nitrogen dioxide radical

NOS¼ nitric oxide synthase
O2¼ oxygen
O3¼ ozone

ONOO-¼ peroxynitrite
PeT¼ photoinduced electron transfer

SIN-1¼ 3-morpholinosydnonimine
SO¼ sulfur monoxide

SO2¼ sulfur dioxide
SOD¼ superoxide dismutase
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