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Abstract

Key message Variety age and population structure detect novel QTL for yield and adaptation in wheat and barley
without the need to phenotype.

Abstract The process of crop breeding over the last century has delivered new varieties with increased genetic gains, resulting
in higher crop performance and yield. However, in many cases, the alleles and genomic regions underpinning this success
remain unknown. This is partly due to the difficulty of generating sufficient phenotypic data on large numbers of historical
varieties to enable such analyses. Here we demonstrate the ability to circumvent such bottlenecks by identifying genomic
regions selected over 100 years of crop breeding using age of a variety as a surrogate for yield. Rather than collecting phe-
notype data, we deployed ‘environmental genome-wide association scans’ (EnvGWAS) based on variety age in two of the
world’s most important crops, wheat and barley, and detected strong signals of selection across both genomes. EnvGWAS
identified 16 genomic regions in barley and 10 in wheat with contrasting patterns between spring and winter types of the
two crops. To further examine changes in genome structure, we used the genomic relationship matrix of the genotypic data
to derive eigenvectors for analysis in EigenGWAS. This detected seven major chromosomal introgressions that contributed
to adaptation in wheat. EigenGWAS and EnvGWAS based on variety age avoid costly phenotyping and facilitate the iden-
tification of genomic tracts that have been under selection during breeding. Our results demonstrate the potential of using
historical cultivar collections coupled with genomic data to identify chromosomal regions under selection and may help
guide future plant breeding strategies to maximise the rate of genetic gain and adaptation.

Introduction food, feed and fibre to meet the expanding global human

population requires an acceleration in the pace of crop

In the last century, significant improvements in yield and
quality have been reported in almost all crop species as a
result of plant breeding driven by market demand (Fischer
and Edmeades 2010). However, the growing demand for
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genetic improvement (Varshney et al. 2018). Identification of
the genetic loci responsible for these changes will help accel-
erate the genetic gains required to meet future food security
needs, via their incorporation in marker-assisted selection
breeding strategies (Chiurugwi et al. 2019). Over the last
decade, genome-wide association studies (GWASs) have
become a prominent method for genetic analysis in plants
(Ingvarsson and Street 2011). In crops, GWAS require trait
data on large collections of varieties or accessions, which
are typically expensive to collect and can therefore result in
underpowered studies with relatively low numbers of lines
(Macarthur 2012; Mackay et al. 2019). An alternative is to
exploit the availability of historical data, such as that col-
lected during varietal development programmes.

For almost every major crop, yield is the most impor-
tant breeding target. Breeding programmes invest large
amounts of resources into realising the incremental
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genetic gains in yield that are required for continual vari-
etal improvement. Accordingly, the process of developing
new crop varieties involves rigorous screening in large
multi-location and multi-environmental trials over several
years. Large historical phenotypic data sets from such tri-
als have been successfully employed for GWAS in the past
(Huang and Han 2014) and in several cases have identi-
fied the functional genes underlying the genetic control
of the investigated traits (Cockram et al. 2010; Hamblin
et al. 2011; Ramsay et al. 2011; Comadran et al. 2012).
However, the availability of seed for variety collections
with appropriate trait data is not common for many crops.
Alternatively, seed of historical varieties may be available,
but the associated trait data may be lost or disjointed. In
both cases, the cost of collecting de novo trait data can be
prohibitive. In many cases however, the release date, sub-
sequently termed here ‘age’, of varieties is known. Given
that, in most crops, the breeding process has improved the
genetic potential of key agronomic traits over time, vari-
ety age can be used as a surrogate measure of merit and
mapped in GWAS. The approach in which environmental
or any other non-genetic variables are treated as traits in
GWAS to map loci associated with those variables, has
been termed EnvGWAS (Li et al. 2019), and we also adopt
that terminology for our analyses of variety age. However,
for many crops, the predominant genetic change over time
has been to increase yield (e.g. Mackay et al. 2011), and
the age of a variety may function directly as a surrogate for
yield, although loci detected may also be associated with
other temporal changes. EnvGWAS on variety age can also
be regarded as a simple genome-wide test for genetic loci
under directional selection, which may be subsequently
associated with traits. This approach may also provide
a way of identifying alleles associated with adaptation
(Rowan et al. 2020), which otherwise have been difficult
to detect. Finally, EnvGWAS can be a cost-effective strat-
egy since it can access large pre-existing datasets but is not
dependent on historical or de novo trait data.

A related approach requiring no-trait data is EigenGWAS
(Chen et al. 2016). Using genotypic data alone, the singu-
lar value decomposition of the genomic relationship matrix
provides loadings (eigenvectors) for each variety on each
eigenvalue of the matrix. For the largest eigenvalues, these
loadings are then treated as independent traits for GWAS.
Significant associations with any particular component high-
light genomic regions or markers of greatest importance for
that eigenvalue and therefore the potential major drivers of
population structure. Subsequent study of varieties differing
in these regions may also be interpretable in terms of drivers
of adaptation. EigenGWAS and EnvGWAS have recently
been used to study diversity among maize landraces and
identify lines and traits suitable for downstream analysis
without large-scale phenotyping (Li et al. 2019).
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In this study, we demonstrate for the first time the utility
of treating variety age as a surrogate trait for crop produc-
tivity when combined with EnvGWAS and EigenGWAS
to identify target regions and quantitative trait loci (QTL)
underpinning genetic improvements in crop performance
that have occurred during modern plant breeding. This is
a powerful but cost-effective method that does not require
extensive trait data or complex software. We demonstrate
the utility of these complementary approaches by: i) using
EnvGWAS on variety age to identify loci responsible for
genetic improvement in four complimentary datasets of
modern winter and spring types of wheat (Triticum aesti-
vum) and barley (Hordeum vulgare) from the United King-
dom (UK) and Brazil. (2) Validating the results from (1)
by GWAS on subsets of these varieties for which historic
yield data were also available. (3) Evaluating the temporal
changes of allelic state at the loci identified. (4) Perform-
ing EigenGWAS on the same four datasets. EigenGWAS
compliments EnvGWAS in that it too does not require
trait data and may also identify genomic regions that have
undergone selection. However, unlike EnvGWAS, it does
not explicitly search for regions associated with variety age
and is more likely to detect features associated with local
adaptation, which may change little in frequency over time.
As far as we are aware, no EnvGWAS analysis has been
published in plants for which variety age has been used as
a trait. The combination of EnvGWAS with EigenGWAS
used here provides insights into the recent breeding history
and population structure of two of the world’s most impor-
tant crops and highlights the effectiveness and simplicity of
these approaches to study recent selection history without
the requirement for phenotype data.

Materials and methods
Genotyping

Genotypic data were sourced from NIAB (https://www.niab.
com/research/agricultural-crop-research/resources) and JHI
(http://www.barleyhub.org/projects/impromalt/) by permis-
sion through WAGTAIL and IMPROMALT projects.

For wheat, 14,654 SNPs derived from genotyping with
the 90-K Illumina iSelect SNP array (Wang et al. 2014) gen-
erated within the Biotechnology and Biological Sciences
Research Council grant BB/J002542/1 were sourced with
permission from NIAB, and available at https://www.niab.
com/research/agricultural-crop-research/resources. For bar-
ley, 43,799 SNPs genotyped using the 50-K Illumina iSe-
lect array (Bayer et al. 2017) were sourced from (Looseley
et al. 2020). Genetic maps for wheat (Wang et al. 2014) and
barley (Bayer et al. 2017; Looseley et al. 2020) have been
previously described. The physical map locations of wheat
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and barley SNPs were retrieved from Sun et al. 2020 and
Bayer et al. 2017, respectively. SNPs with a minor allele
frequency < 5%, missing values > 10% and heterozygo-
sity > 10% were removed, leaving 12,656 wheat SNPs and
25,562 barley SNPs for downstream analyses.

EnvGWAS and EigenGWAS analyses

EnvGWAS and EigenGWAS analyses were performed using
the R-package GWASpoly (Rosyara et al. 2016) imple-
mented in R version 3.5.2 (http://www.R-project.org/). To
determine the population structure of the panels, principal
component analysis (PCA) was performed using the R-pack-
age SNPRelate (Zheng et al. 2012). The SNP-trait associa-
tion analyses were conducted using a linear mixed model
designated the K-model (kinship) by Yu et al. (2006). In
summary, the linear mixed model is described as follows:

y=Xb+Zg+e¢

where y indicates the phenotypic vector for varieties (year
of entry into trial in EnvGWAS, one of the first 10 principal
component (PC) in EigenGWAS and yield in GWAS); b is
a vector of fixed effects, here a mean effect and an effect for
a single SNP; X is the design matrix for the fixed effects;
here a vector of 1’s for the mean and a vector of zeros and
1 s indicating the presence or absence of the reference allele
in the inbred lines; g models the genetic background of each
line as a vector of random effects with mean zero and vari-
ance agz. Z is the incidence matrix for the residual genetic
effects, assigning varieties to observations. Random residual
effects are in the vector € with mean 0 and variance o,°.
Effects are estimated as:

b| [xx xz 17'[xy
¢l " |zZx7Zz+G! Z'y

where G=Kc7g2 is a square matrix with elements of K esti-
mated by van Raden’s (2008) method as:

ki = 2 [(wi = 2p¢) (Wi = 2P¢) | /2Z Pt

where Wy (jk) is equal to the standardised marker score for
marker k in variety i (j), p, is the average allele frequency of
marker k and g, =1 — p,. Summation is over markers.

A subset of markers pruned on genetic map distance was
used to estimate G (741 for wheat and 2500 for barley).
Marker coverage is variable over the genome, and the pruned
set of SNPs better represent whole genome level relation-
ships among varieties. Pruning was based on genetic posi-
tions using TASSEL 5.0 (Bradbury et al. 2007) to a mini-
mum 5 cM between adjacent markers. Although the barley
genome is substantially smaller than the wheat genome,
more markers remained after pruning; a consequence of

denser initial coverage and the uneven distribution of mark-
ers in wheat with marker clusters associated with introgres-
sions and marker deserts in the D genome. Given that wheat
and barley are highly self-pollinated species, an additive
model is appropriate in the analysis with marker effects
estimated as the effect of carrying the reference allele. All
effects, variances and the relationship matrix G were esti-
mated using GWASpoly.

Inclusion of the relationship matrix G subsumes genome-
wide changes over time resulting from drift. This is true of
GWAS on historical datasets for any trait.

For ease of comparison across GWAS scans, the thresh-
old for significance was set to —log;, (p-value) =4.0 which
in our GWAS scans was above the threshold obtained using
a false discovery rate of 5% (http://www.strimmerlab.org/
software/fdrtool/index.html). GWAS was carried out on all
markers, including those selected for estimation of kinship.
Manhattan plots and circular plots were generated using
R-packages qqman (Turner 2018) and CMplot (Yin et al.
2021), respectively.

Germplasm, age and trait data

For both wheat and barley, we selected two panels of varie-
ties representing national list entries and some older varieties
from the UK (404 winter wheat; 297 winter and 406 spring
barleys) and Brazil (355 spring wheat) (Supplementary
Table S1). The Brazilian spring wheat panel included entries
released between, 1922-2013. Year of varietal release and
trait data were obtained from Mellers et al. 2020. The UK
wheat panel consists of winter wheat varieties that were
either registered or in use from 1916 to 2010. The winter
and spring barley panels consisted of varieties grown in the
UK from 1960 to 2016. Only two-rowed spike morphology
types were included, and all hybrid varieties were excluded.
Variety age for UK germplasm was determined from the year
of entry into national list trials or from the first reported year
of trial data and was manually checked across different local
data and published sources ((Mackay et al. 2011); https://
ahdb.org.uk/rl & https://www.gov.uk/government/publicatio
ns/plant-varieties-and-seeds-gazette-2020 https://www.niab.
com/services/seed-certification/botanical-descriptions-varie
ties) with unresolvable ambiguities removed, reducing the
UK wheat panel from 450 to 404 varieties. Following Mac-
kay et al. 2011, only varieties with either three-year trials
data or equivalently which were known to be successful in
national list trials were included in the dataset. In addition to
variety age, we computed lifespan of UK varieties as the dif-
ference between the last and first years in national trials plus
one. This is usually equally to the total number of years each
variety remained in trial, though with some rare breaks in
the testing sequence over years. Grain yield data for the UK
wheat and barley panels were sourced from (Mackay et al.
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2011), previously modelled with REML, fitted in GenStat10
(Payne et al. 2007) as:

Yig = H+ Vi s+ vs; + L+ ey

where y;; is the varietal yield data of variety i in year j at
location k; the trial series mean is denoted as u; the effect
of the ith variety is represented as v;; year effect of the jth
year is represented as s;; the interaction of variety i in year
J 1s represented as vs;; [ is the effect of location k within
year j; and the residual is e, accounting for the combined
effects of within-trial error and variety x site within-year
interaction. Location effects within year and the interaction
of variety with year were treated as random effect and varie-
ties and years as fixed effects. Further details are in Mackay
et al. (2011).

MAGIC wheat analysis

Three highly significant genomic regions (—1log10 (p) > 6.0)
from the wheat EnvGWAS for age were tested for associa-
tion with the 38 agronomic characteristics recorded in the
‘NIAB Diverse MAGIC' population (Scott et al. 2021). This
population was created from sixteen distinct founders
derived from historical UK bread wheat varieties released
between 1935 and 2004 and was utilised here as an inde-
pendent resource to detect direct trait effects for the highly
important genetic areas found in the EnvGWAS for age.

Analysis was performed in R version 4.0.5 using adjust-
ments for the funnel structure of the cross as given in Scott
et al. (2021). Corresponding matching SNPs anchored to
physical map positions were obtained which were interro-
gated for associations in MAGIC RILs. All data used were
obtained from the following website that hosts the genotyp-
ing and phenotyping data of the 550 MAGIC-diverse RILs;
http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/index.
html.

Results

All markers were included in the GWAS, including those
selected for estimation of kinship. However, dropping those
markers from the association tests had no effect on the pat-
tern of results. For simplicity, only results from the full set
of markers are presented here.

Year of variety release as a surrogate measure
for yield

We have retrieved historical wheat and barley variety means

from the analyses of (Mackay et al. 2011) wherein yield
of varieties is adjusted for the effect of locations and years
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by fitting a linear mixed model using REML. The Pearson
correlations between historical yield data and age of variety
were calculated for the subsets of 192 UK wheat and 197 UK
barley varieties for which historical yield data were available
(Supplementary Fig. S1). High correlations between yield
and year of release (0.896 and —0.974) were found in both
UK data sets. This confirms year of release could be used as
a good measure of genetic progress in UK wheat and bar-
ley yield potential. No historical yield data for the Brazilian
wheat panel were available.

EnvGWAS for variety age

EnvGWAS wheat. Using variety age for EnvGWAS in the UK
winter wheat panel (n =404) identified thirteen significant
(—log;, (p) > 4.0) genomic regions, of which four loci were
found to be highly significant (—log,, (p) > 6.0), located on
chromosomes 1A, 2A, 2D and 6A (Fig. 1a, Table 1, Supple-
mentary Table S2). Subsequently, the region on 2D showed
an identical genotyping profile to that of 2A (Supplemen-
tary Fig. S2) indicating errors in the genetic map of Wang
et al. 2014, and we did not pursue the 2D region further.
For example, the peak marker on 2D (BS00022799_51)
correlates perfectly with nine markers on 2A that are also
significantly associated such as (BS00080836_51 mapped
on chromosome 2A at 158 cM). In Brazilian spring wheat
(n=355), three significant genetic loci were detected, two on
chromosome 2B (251 ¢cM, 318 ¢cM) and one on 5A (710 cM),
none of which were identified in the UK winter wheat panel
(Fig. 1b, Table 1, Supplementary Table S2).

EnvGWAS Barley. We identified three highly significant
genetic loci in the winter barley panel (n=297) and seven in
the spring barley panel (n=406) (Table 1; Fig. Ic, d); a sum-
mary of the associated markers is listed in Supplementary
Table S3. Two significant loci were identified in both barley
panels (chromosome 3H, ~68-70 cM; SH, ~20 cM) (Fig. 1
and Supplementary Table S3). Subsequently, EnvGWAS
was performed on the combined winter and spring panels
(n="704), identifying the same four major significant loci we
identified in the spring panel alone (Supplementary Fig. S3a,
Supplementary Table S3 and Table 1). In addition, we per-
formed GWAS on seasonal growth habit itself (using winter
and spring type as a trait), identifying three major genetic
loci on the long arms of chromosomes 1H, 4H and 5H (Sup-
plementary Fig. S3c), corresponding to major flowering time
and vernalisation genes known to be the major determinants
of winter and spring seasonal growth type (PPD-H2 on chro-
mosome 1H, VRN-H2 on 4H and VRN-HI on 5H) (Cock-
ram et al. 2007, 2015). EnvGWAS for variety age was then
repeated with these QTL as covariates (Supplementary Fig.
S3d). The most significant results mainly on chromosome
5H from the analyses with and without covariates changed
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Fig.1 EnvGWAS for variety age. Manhattan plots of the four pan-
els are shown. On the x-axis genetic positions based on the consen-
sus map (Wang et al. 2014) are displayed for a UK winter wheat
and b Brazilian spring wheat panels; for barley pseudo-genetic map

little. However, the magnitude of other significant peaks dif-
fered, such as the locus on chromosome 1H.

Validation of EnvGWAS based on trait analysis
and a multi-founder experimental population

To validate the EnvGWAS analyses, we performed GWAS
on the subset of 192 UK winter wheat varieties for which
historical yield data were available together with EnvGWAS
on variety age for direct comparison of the results. In this
subset, we found that GWAS for yield identified the same
genomic region on chromosome 1A (Supplementary Fig.
S4a) as detected by EnvGWAS for variety age (Supplemen-
tary Fig. S4, Supplementary Table S2). This is the same
region that we identified in EnvGWAS for variety age in the
complete set of 404 UK wheat varieties. Interestingly, while
the chromosome 5A QTL was detected with low significance
(—log;, (p)=4.45) by GWAS on yield, it was not identified
using EnvGWAS on variety age. These two loci (1A and 5A)
together explained 23.7% of the yield variation. In addition,
EnvGWAS analysis of variety lifespan detected a locus on
chromosome 1B that was not detected in any other of our
analyses.

Similarly, EnvGWAS on variety age and GWAS on yield
was repeated using the subset of 197 winter and spring bar-
ley varieties for which historical yield data were available,
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positions that relate to the physical positions (Bayer et al. 2017) of
the UK winter (c¢) and spring (d) barley panels are shown. On the
y-axis—log,, (p)-values are displayed. The red line indicates the
threshold value of the significance corresponding to—log;, (p) =4

detecting highly significant hits (—log;, (p) >4.0) on chro-
mosome 5H for variety age, variety lifespan and yield, using
seasonal growth habit as a covariate (Supplementary Fig. S5,
Supplementary Table S3). It is noteworthy here that the anal-
ysis of our subset of 197 lines consistently identified a highly
significant genetic locus on the short arm of chromosome 3H
for variety age, variety lifespan and yield which was uniden-
tified in the combined analysis of 703 varieties. In this case,
however, another SNP (JHI-Hv50k-2016-151,847 “4.6 cM”)
in a close location was close to significance (—logl0p=3.7)
for variety age in the same region (Figs. S3a, S3b).

Together, the two loci (3H and 5H) explained 12.36% of
the yield variation. An additional peak was detected with
EnvGWAS for variety lifespan on the long arm of chromo-
some 2H.

To further validate our EnvGWAS findings, we analysed
data from a 16 founder wheat multi-parent advanced gen-
eration inter cross (MAGIC) population consisting of 550
recombinant inbred lines generated by inter-crossing 16
wheat varieties released between 1935 and 2004 (Scott et al.
2021). We found that the three major genomic regions pre-
viously identified by EnvGWAS of variety age on chromo-
somes 1A, 2A and 6A were also significant in the MAGIC
population for several yield and grain-related traits as well
as for agronomic traits (Supplementary Table S4). Further
details of the 213 agronomic and disease resistance traits
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Table 1 Summary of the significant hits detected by EnvGWAS on variety age

Pop name SNP name Chrom  Position (cM)  Ref-allele  Ref-Allele-Freq  —log(p)  Effects
Winter wheat wsnp_Ex_c572_1138339 1A 221.0 A 0.50 6.01 -7.61
Kukri_c18109_682 1B 350.0 A 0.92 4.62 11.64
Excalibur_c15379_1305 2A 20.0 A 0.66 6.31 9.50
RFL_Contig4030_493 2A 162.0 A 0.65 5.24 8.32
BS00071630_51 2A 87.0 A 0.66 6.18 9.26
IACX6178 2A 158.0 A 0.66 6.18 9.26
BS00022799_51 2D 33.0 A 0.66 6.31 9.50
BobWhite_rep_c60245_107 5B 381.0 A 0.13 431 6.94
BS00021901_51 5D 180.0 T 0.85 5.04 9.58
BS00022120_51 6A 190.0 T 0.83 8.11 12.87
Kukri_c16404_100 6B 322.0 A 0.06 4.06 10.33
Kukri_c67076_479 7A 383.0 A 0.14 429 8.48
BobWhite_c42974_184 7B 236.0 A 0.94 4.88 -12.92
Spring wheat Ku_c5725_892 2B 251.0 A 0.49 4.44 -7.35
RFL_Contig4849_702 2B 318.0 T 0.76 420 -9.34
RAC875_c8642_231 SA 710.0 A 0.08 451 -13.21
Winter barley JHI-Hv50k-2016-200,315 3H 68.7 A 0.29 4.74 —-1.95
JHI-Hv50k-2016-222,233 3H 124.5 C 0.64 422 1.71
JHI-Hv50k-2016-279,849 SH 19.2 A 0.73 5.92 —-1.87
Spring-barley JHI-Hv50k-2016-37,011 1H 51.0 A 0.41 4.08 -3.07
SCRI_RS_148694 2H 0.0 A 0.42 5.17 -2.59
JHI-Hv50k-2016-149,544 3H 1.7 C 0.22 4.40 3.69
JHI-Hv50k-2016-202,332 3H 71.7 C 0.95 452 -4.42
JHI-Hv50k-2016-280,391 SH 20.5 C 0.12 4.90 3.38
12_30230 6H 53.1 A 0.88 5.22 4.45
JHI-Hv50k-2016-444,289 TH 7.8 A 0.93 5.40 5.37
Spring and winter barley ~ JHI-Hv50k-2016-58,537 2H 0.0 C 0.74 4.17 -2.15
JHI-Hv50k-2016-71,264 2H 20.3 C 0.92 5.74 —2.86
JHI-Hv50k-2016-167,517 3H 452 C 0.92 4.15 3.07
JHI-Hv50k-2016-200,365 3H 68.7 C 0.14 7.13 —4.41
JHI-Hv50k-2016-223,988 3H 126.6 C 0.80 4.29 3.64
JHI-Hv50k-2016-279,907 SH 19.2 C 0.82 7.67 —3.43
JHI-Hv50k-2016-325,618 SH 105.0 A 0.09 451 3.53
11_20546 SH 160.7 A 0.89 4.70 -2.94
JHI-Hv50k-2016-439,637 TH 3.8 C 0.05 5.56 —4.65

Details in Supplementary Tables S2 and S3

analysed and the corresponding significance levels are listed
in Supplementary Table S4.

Allele shift over time

To illustrate the changes in allele frequency present in our
variety collections over time, the allele carried (jittered) by
each variety was plotted on the Y-axis against the age of
the variety on the X-axis (Supplementary Fig. S6) for the
major genomic regions identified by EnvGWAS on variety
age (Supplementary Table S5-S8). In addition, graphical
genotyping of all the significantly associated SNPs (-log,
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(p-value) > 4.0) displays the allele changes over time (Sup-
plementary Fig. S2). Different patterns and intensities of
selection are evident across chromosomal regions over time.
For wheat, these fall into three broad classes: (1) late intro-
duction of ‘modern’ alleles followed by a rapid increase in
frequency (Supplementary Fig. S6a), (2) retention of both
‘modern’ and ‘old’ alleles at similar frequency across time
(e.g. Supplementary Fig. S6e), (3) relatively early intro-
duction of the ‘modern’ allele, followed by its retention
at low frequency (e.g. Supplementary Fig S6f). Details of
the alleles-shift examples are provided in Supplementary
Notes. In barley, the plots illustrated both gradual and rapid
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shifts in allele frequency at the genomic regions identified by
EnvGWAS on variety age (Supplementary Fig. S6i-n). For
example, for the UK spring barley genetic locus on chromo-
some 7H (~ 8.8 Mbp), only one allele was present until 1992
(Supplementary Fig. S6n and Supplementary Table S7),
after which the ‘modern’ allele remained at low frequency,
even among modern varieties. A genomic region on chro-
mosome 5SH, which was identified separately in winter and
spring barley, displays a pattern where the ‘modern’ allele
is introduced in 1986, after which both alleles are found at
intermediate frequencies among the most recent varieties in
winter barleys. However, modern spring barleys were pre-
dominantly of ‘modern’ allele type.

We accumulated the number of contemporary alleles car-
ried by each variety at the significant loci for each of the
four populations. Supplementary Fig. S7 visualises the joint
cumulative change of allele frequencies over time for these
significant regions. For UK winter wheat, only a handful
of modern varieties carry all the modern alleles compared
to Brazilian spring wheat where many more varieties carry
all the detected modern alleles. However, more significant
alleles were detected in the UK (12 compared to 3 in Brazil)
so the probability of a variety carrying all modern alleles
(though selection or sampling) is likely reduced. Interest-
ingly in barley, the modern alleles were more dispersed
among the modern varieties. It is still to be seen if there
are major benefits in bringing together all these alleles in a
single variety.

EigenGWAS scans

While EnvGWAS allowed us to use variety age to investigate
the genomic regions underlying QTL for yield and adap-
tation, we hypothesised that the complementary method,
EigenGWAS, would allow us to detect changes in larger-
scale structural variants in our target crop genomes over
time. For instance, we detected the well documented 1B/1R
translocation of wheat in the present study.

After determining the first ten PCs in each of our UK
and Brazilian wheat populations (Supplementary Table S9),
EigenGWAS detected numerous significant hits (N=11,567
SNPs with —log;, (p)>4.0) (Fig. 2 & Supplementary
Table S10). Since most of the variation among the panels
(>30%) is captured by the first ten PCs (only < 1.8% with
PC10), we did not extend our analysis beyond these. Seven
genetic loci distributed on chromosomes 1A, 1B, 2B, 5B,
6A and 6B were found to be significant for multiple PCs, in
both the Brazilian (spring) and UK (winter) panels (Fig. 2).
These loci corresponded to major chromosomal introgres-
sions from related cereal species into wheat (Supplementary
Table S10). For instance, the 1B locus co-locates with the
chromosome 1B/1R introgression from rye (Secale cereale),
which is known to regulate multiple traits including disease

Fig.2 Wheat EigenGWAS for the first ten principal components
(PCs). Circular plots of the two wheat panels investigated are shown.
Genetic positions based on a consensus map (Wang et al. 2014) are
displayed for a UK winter and b Brazilian spring wheat panels. Chro-
mosomal introgressions significant across multiple PCs are high-
lighted (See Supplementary, Table S10)

resistance and yield (Rajaram et al. 1983; Heslop-Harrison
et al. 1990). We identified an additional seventeen putative
introgression that were supported by a recent introgression
survey by Cheng et al. 2019, along with another 58 novel
putative introgressions (Supplementary Table S10). Among
these novel putative introgressions were regions on chromo-
some 5B, depicted in Fig. 2 as 5B_2 and 5B_3, which dis-
played amongst the most significant hits across the UK and
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Brazilian wheat data sets and multiple PCs. Interestingly,
two highly significant genomic regions (1A_2 and 5A_5)
identified by EigenGWAS on PC2 in winter wheat were also
detected by GWAS on yield in the validation data set (Sup-
plementary Table S11). In addition, three genomic regions
(5B_2, 6A_1 and 7B_1) identified in the winter wheat
EigenGWAS analysis were also detected in EnvGWAS on
variety age, suggesting that the approaches are not exclu-
sively identifying different genomic regions (Supplementary
Table S11). These introgression regions are not completely
fixed in the modern varieties. For example 1B/1R and 5B_2
are still segregating (Supplementary Fig. S8), which is not
surprising as often wheat breeders rely on several wild spe-
cies introgressions to diversify their germplasm (Walkow-
iak et al. 2020). In addition, these introgressions may have
favourable effects on some traits and be disadvantageous for
others and are therefore less likely to be fixed by selection.

In contrast to wheat, EigenGWAS in the winter and
spring barley varieties did not detect any major loci with
highly significant peaks across multiple PCs (Fig. 3 and Sup-
plementary Tables. PCs’ variation in Table S9 & results in
Table S12). However, two genomic regions in winter (1H_3
and 4H_3) and three in spring barleys (2H_3, 3H_1 and
7H_1) were identified in at least three PCs. Peaks were also
identified close to the locations of known genes control-
ling flowering time and height (Supplementary Table S12),
e.g. the PCS hit on chromosome 3H ~ 632 Mbp (explaining
2.46% of the variation) is near the semi-dwarfing gene sdw/
in spring barley. Interestingly, one of the most significant
hits in the spring barley panel (3H_1, identified using PC1
and explaining 6.91% of the variation) was also detected
using EnvGWAS on variety age and by GWAS on yield
(Supplementary Table S13). Given the location of this hit
in a highly recombinogenic region of the barley genome and
that it was detected only in the spring barley panel, this may
indicate a major locus under selection specific to spring bar-
ley breeding. No strong peak in winter barley was found for
PC1, with the most significant peak obtained using PC6. As
UK elite winter barley is more genetically diverse than UK
elite spring barley, these results indicate that UK elite winter
barley may be subjected to weaker selection pressures. Inter-
estingly, hits on genomic regions (5H_2 and 7H_1I) from the
spring barley EigenGWAS analysis were also identified in
GWAS analysis of seasonal growth-habit and variety age,
highlighting the importance of these loci under selection
(Supplementary Table 13).

Discussion
We demonstrate that use of variety age for EnvGWAS can

detect regions of crop genomes under selection during
breeding. In addition, we show variety age is a good proxy

@ Springer

Fig.3 Barley EigenGWAS for the first ten principal components
(PCs). Circular plots of the four panels are shown. Pseudo-genetic
map positions that relate to the physical positions (Bayer et al. 2017)
are displayed for a UK winter and b UK spring barley panels. Chro-
mosomal introgressions significant across multiple PCs are high-
lighted (see Supplementary, Table S12)

for yield, with the genetic loci identified for wheat validated
in an independent experimental multi-founder population
(Scott et al. 2021). Lastly, we showed that the genetic loci
detected by EnvGWAS showed gradual, as well as sharp,
shifts in allele frequency over time, indicating subtle changes
at these loci by breeders, which are less discernible to detec-
tion using approaches such as partitioning the populations on
age and searching for differences based on Fst. We illustrate
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a dynamic change in alleles at specific loci over time through
the deployment of plots that capture different patterns of
selection in both wheat and barley that are easily discernible.
However, the use of age as a surrogate for yield and other
traits under selection is not perfect; for example, we failed
to detect a 3H locus for variety age in the combined analysis
of 703 barley varieties although it was highly significant for
variety age, variety lifespan and yield in the subset of 197
lines. It is possible, but unproven, that the inclusion of the
kinship matrix to reduce the frequency of false positives
overcorrects when applied to historical datasets spanning
long time intervals. In agreement with this, the full set of
lines span the years 1963-2016, whereas the subset spans
years 1964-2005, and a simple linear regression of age of
variety on the 3H SNP [JHI-Hv50k-2016-150851] gives a
—1log10(p) of 14.0 compared to —1log10(p) of 7.2 in the phe-
notyped subset.

It is perhaps not surprising that selection of loci varies
between the UK winter and Brazilian spring wheat, given
that the target agricultural environments and growth types
are very different. Wheat yields in both Brazil and the UK
have improved greatly over the years (Rodrigues et al. 2007;
Mackay et al. 2011). Our contrasting results in wheat indi-
cate that different sets of genes have been selected over the
years and are likely involved in both yield component and
local adaptation traits. Future efforts will shed more light on
the types of genes underpinning these loci, allowing changes
in allelic diversity over the years to be investigated.

Our results for UK barley contrast with those for UK
wheat. Firstly, more hits were associated with variety age in
spring compared to winter barley, and secondly an identi-
cal peak on chromosome 5H (at~19 cM, ~7.5 Mbp) was
identified in both panels (as well as in the combined spring
and winter analysis). This is surprising as breeders rarely
cross spring and winter barley, and since the breeding tar-
gets in the two pools differ (malting and largely animal
feed, respectively). To further investigate this region, we
tested the candidate SNPs against phenotypic data available
from national trial data (Supplementary Table S14), find-
ing it to be associated with several malting quality traits,
powdery mildew resistance and yield in fungicide-untreated
trials. These findings suggest the potential importance of
this region for breeding for disease resistance and end-use
quality. Interestingly, this region on 5H houses a cluster of
terpene synthases that have been implicated in fungal dis-
ease resistance in other species (Chen et al. 2020) and that
potentially have been selected alongside direct targets such
as Mla and mlo genes (Jorgensen 1992).

The detection of significant hits with EnvGWAS provides
an opportunity to explore their relationship with yield and
other agronomically important traits. Some hits coincide
with previously published QTL in wheat and barley, for
example the highly significant loci on wheat chromosomes

1A and 6A (Zanke et al. 2015; Lehnert et al. 2018; Yang
et al. 2020). Our EnvGWAS hits on chromosomes 1A and
2A also overlapped with the reduced diversity peaks iden-
tified in the recent analysis of the UK wheat pedigree by
Fradgley et al. 2019. Specifically, the 2A locus may cor-
respond to a stripe rust resistance gene described by Beu-
kert et al. 2020, as the peak markers overlap. Interestingly,
a group of R genes Lr37-Yr17-Sr38 (Helguera et al. 2003)
which were important sources of resistance in the past also
lie in this region and might be more plausible candidates,
rising in frequency before their resistance broke down. Simi-
larly, the highly significant genetic locus on the short arm of
barley chromosome 3H for variety age and yield found in the
subset of 197 barley lines corresponds to the genomic region
associated with a malting quality trait, hot water extract, in
UK spring barley that demonstrated a major change in allele
frequency over the last thirty years (Looseley et al. 2020). In
addition, the region identified on chromosome 3H (~ 68 cM)
for variety age in winter barley in the larger dataset has been
shown previously to be associated with yield component
traits (grain length and grain area) in European winter barley
(Xu et al. 2018).

Similarly, in barley, the region identified on chromosome
2H (~65 cM, ~ 621 Mbp) for variety lifespan has been shown
previously to be associated with yield and yield component
traits (Sharma et al. 2018; Xu et al. 2018) and may corre-
spond to the OsBRI/D61 candidate genes reported previ-
ously that are associated with yield traits in barley (Sharma
et al. 2018; Xu et al. 2018). Such a correspondence could
be due to promising varieties being under cultivation for
longer as they harboured a yield advantage over the varieties
cultivated for a shorter period.

This is interesting as old varieties, despite being less pro-
ductive than modern varieties, were under cultivation for
longer periods. It may, however, be noted that with the intro-
duction of modern breeding practices yield has increased,
but with drastic effects on variety lifespan due to the more
frequent introduction of new varieties that outperform con-
temporary varieties. In wheat, EnvGWAS on variety lifespan
also identified a hit on chromosome 1A that co-located with
a hit for variety age. This further indicates a direct relation-
ship between variety age and variety lifespan in wheat and
barley.

Using EigenGWAS, we detected major introgressions in
the wheat varietal panels investigated, with several of these
found to be in common between the UK winter and Brazilian
spring wheat panels, indicating their wide use in breeding.
Scott et al. 2021, analysing the 16 founder MAGIC popula-
tion we used in our validation studies, proposed a major
role for multiple introgressions from wild species in UK
wheat breeding to date. In contrast, EigenGWAS results in
barley provide no evidence of a similar pattern of introgres-
sions in either the winter or spring panels. Wheat and barley
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breeding differ in their exploitation of genetic resources. In
wheat, several alien-introgressions from related species are
known to have occurred (Gill et al. 2011). While wheat is an
allohexaploid and can support large tracts of non-recombin-
ing alien chromosome, this may not be the case in diploid
barley. However, examples of introgressions in barley from
landraces and spontaneous mutant lines for agronomically
important genes have been reported, such as the semi-dwarf-
ing allele sdwld from the variety Diamant and the disease
resistance gene mlol1 from Ethiopian landraces (Haahr and
Wettstein, 1976; Jorgensen 1992).

Interestingly, within the genomic region of 6A_1,
detected by EigenGWAS in wheat (a non-recombining peri-
centromeric region) lies the gene TaGW2 (Zhang et al. 2018)
which influences grain-weight and protein content traits that
further suggest that the present approach is very effective in
discovering genomic regions undergoing selection for yield.
Another interesting finding is that the semi-dwarfing Rht2
gene in wheat (chromosome 4D) was not detected despite its
importance in the breeding history of the crop. This could
be due to population structure control of the analyses. In
the case of Rht2, it is noteworthy that GWAS on a panel
of French, German and UK lines failed to detect an effect
on yield or height unless a locus-specific marker was used
(Bentley et al. 2014; Ladejobi et al. 2019), suggesting weak
LD and low marker coverage on the 4D chromosome as the
cause of failure here too.

Conclusion

Breeding has resulted in considerable and sustained genetic
improvement of wheat and barley in recent decades, and
our results identify at least some of the major loci that have
contributed, and are still contributing, to these improve-
ments. Using EnvGWAS, we demonstrate the utility of
analysing variety age as a surrogate for traits selected by
breeders to detect the genetic loci under selection over time
and to assess the temporal changes in their respective allele
frequencies. For UK cereals, trends over time suggest that
these loci are likely QTL for yield or yield components.
While the resolution of this study in the non-recombining
peri-centromeric regions is insufficient to definitively associ-
ate known QTLs with the loci we have found, several such
QTLs were found. EigenGWAS on the same data proved a
simple method of detecting contrasting features of genome
organisation in wheat and barley, and in some cases these
too could be related to traits. We advocate the use of vari-
ety age as a surrogate trait and the use of EnvGWAS and
EigenGWAS to identify the genetic loci under selection that
have underpinned the productivity gains made via breeding.
These extensions to GWAS that exploit historical datasets
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are useful additions to the analysis toolbox of crop quantita-
tive genetics.
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