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The feasibility of pragmatic influenza vaccine randomized
controlled real-world trials in Denmark and England
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We estimated the frequency of non-specific influenza-associated clinical endpoints to inform the feasibility of pragmatic
randomized controlled trials (RCT) assessing relative vaccine effectiveness (rVE). Hospitalization rates of respiratory, cardiovascular
and diabetic events were estimated from Denmark and England’s electronic databases and stratified by age, comorbidity and
influenza vaccination status. We included a seasonal average of 4.5 million Danish and 7.2 million English individuals, 17 and 32%
with comorbidities. Annually, approximately 1% of Danish and 0.5% of English individuals were hospitalized for selected events,
~50% of them respiratory. Hospitalization rates were 40-50-fold and 2-10-fold higher in those >50 years and with comorbidities,
respectively. Our findings suggest that a pragmatic RCT using non-specific endpoints is feasible. However, for outcomes with rates
<2.5%, it would require randomization of ~100,000 participants to have the power to detect a rVE difference of ~13%. Targeting
selected groups (older adults, those with comorbidities) where frequency of events is high would improve trial efficiency.
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INTRODUCTION

The World Health Organization (WHO) recommends annual
vaccination as the most effective method to prevent influenza’.
Randomized control trials (RCTs) have, in recent years, relied on
laboratory confirmed influenza as a study endpoint to demon-
strate the efficacy of influenza vaccines®. However, there is a
growing body of evidence that influenza is associated with a
broader spectrum of non-respiratory events including cardiovas-
cular, neurological and other complications®>™. If influenza virus
infection precipitates these events, vaccination should be
expected to prevent a proportion of them®, Limited evidence of
the value of influenza vaccination at preventing non-respiratory
outcomes exists based on observational studies, meta-analysis of
RCT data and reanalysis of study safety data’~°.

RCTs are the most valid study designs to demonstrate causal
relationships'® but including non-specific endpoints in a tradi-
tional RCT may require large sample sizes because only a
proportion of captured non-respiratory events would be
influenza-associated [and therefore vaccine-preventable]. Results
would also be sensitive to unpredictable and poorly-understood,
time-lagged relationships between influenza and related out-
comes or complications which could ‘dilute’ vaccine efficacy/
effectiveness (VE)''. Differentiated influenza vaccines have
demonstrated improved immunogenicity and protection for older
adults and some studies have included non-specific cardiovascular
or other secondary events to illustrate the full public health value
of these vaccines as compared with traditional influenza
vaccines'?™"°. Studies comparing two vaccines measure relative
VE (rVE) which, using an efficacious comparator, report smaller
effect sizes and therefore require even larger sample sizes to

demonstrate superior protection from influenza-associated cardi-
ovascular and non-respiratory events.

Pragmatic trials, which typically measure outcomes using real
world data from existing databases or public health registers, may
be a feasible method of randomizing interventions in hundreds of
thousands of study participants and therefore increase power to
measure rVE against non-specific outcomes in a cost-effective
manner'®'?, Their sample sizes are dictated by the estimated rVE
and incidence rate of the outcome under assessment. These
studies would be feasible if it is logistically and financially possible
to randomize and vaccinate the necessary sample size within a
single or multiple healthcare systems from which outcomes could
be reliably captured.

We conducted a retrospective study using electronic medical
records from Denmark and England to estimate the incidence rate
of cardiovascular, respiratory and exacerbation of diabetes events
in adults =18 years, hospitalized during influenza season, to guide
future pragmatic RCTs exploring broader, clinically-important,
influenza-associated endpoints. We then estimated the sample
size requirements to conduct a pragmatic RCT under different
population inclusion and rVE scenarios and discussed the
feasibility of conducting such studies.

RESULTS

Demographics and influenza vaccination coverage rate

From Denmark, the study cohort aged =18 included a seasonal
average of 4,469,268 individuals, 50.7% female. Overall, 17% of the
study population had =1 high risk condition, increasing from 5.7%
in those 18-34 years to 43% in those =75 years (Table 1). From
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Table 1. Seasonal average study population (#) and percentage (%) by age group and high-risk conditions, Denmark (2010/11 to 2017/18) and
England (2010/11-2018/19).
Denmark England
Age group: 18-34yrs 35-49yrs 50-64yrs 65-74yrs >75yrs 18-34yrs 35-49yrs 50-64yrs 65-74yrs >75yrs
Study population # 1,184,338 1,162,715 1,091,518 607,953 422,744 2,124434 1,932,551 1,641,127 810,820 703,539
No high-risk condition # 1,116,222 1,048,161 888,877 418,772 240,462 1,770,594 1,451,475 1,031,906 395,988 259,218
% 943 90.1 814 68.9 57.0 833 751 62.9 48.8 36.8
Any high-risk condition # 68,116 114,554 202,642 189,182 182,282 353,840 481,076 609,221 414,832 444,320
% 5.7 9.9 18.6 311 43.0 16.7 249 371 51.2 63.2
Asthma # 9424 10,298 9990 5943 4181 149,687 152,166 137,866 73,471 61,578
% 0.8 0.9 0.9 1.0 1.0 7.0 7.9 8.4 9.1 8.8
Respiratory disorders # 1303 4329 15,975 20,205 24,617 1716 7642 37,639 48,471 52,624
% 0.1 0.4 1.5 33 5.8 0.1 0.4 23 6.0 7.5
Cardiovascular # 3959 17,050 58,372 72,192 95,037 4812 18,310 74,855 97,262 168,364
% 03 1.5 53 11.9 224 0.2 0.9 4.6 12.0 239
Diabetes # 10,027 26,678 69,683 67,618 51,795 19,534 56,832 137,204 116,557 121,541
% 0.8 23 6.4 1.1 12.2 0.9 3.0 8.4 14.4 17.3
Endocrine disorders* # 7455 14,029 16,489 10,800 10,628 18,516 38,451 52,165 33,277 35,860
% 0.6 1.2 1.5 1.8 25 0.9 2.0 3.2 4.1 5.1
Blood disorders # 476 488 716 953 1476 3584 2914 1591 696 787
% 0.0 0.0 0.1 0.2 0.4 0.2 0.2 0.1 0.1 0.1
Immunocompromised # 11,361 23,440 47,006 51,182 45,635 32,523 37,212 54,186 53,220 62,564
% 1.0 2.0 43 8.4 10.7 1.5 1.9 33 6.6 89
Kidney disorders # 840 1,918 4046 5792 9513 1735 6964 26,055 46,062 100,293
% 0.1 0.2 0.4 0.9 2.2 0.1 0.4 1.6 5.7 14.2
Liver disorders # 1849 4276 6517 3043 1177 3226 10,620 16,654 7704 3319
% 0.2 0.4 0.6 0.5 03 0.2 0.6 1.0 0.9 0.5
Neurological disorders  # 1498 3730 5462 5748 13,106 1331 3924 7279 11,354 52,003
% 0.1 0.3 0.5 0.9 3.1 0.1 0.2 0.4 1.4 74
*Excludes diabetes.

England, the cohort included a seasonal average of 7,212,471
people of whom 50.5% were female. In the overall population,
32% had =1 high risk condition, increasing from 16.7% in the
18-34 years to 63% in those >75 years. Cardiovascular, diabetes,
immunocompromised, asthma and other respiratory conditions
were the most common high-risk conditions in both countries.
Influenza vaccination coverage rates (VCR) captured in these
healthcare databases was 13% in Denmark and 24% in England,
increasing in the populations aged =75 to 55 and 78%,
respectively (Fig. 1; Supplementary Fig. 1). VCR was 6-10 fold
higher in people with high-risk conditions vs those without in
populations aged <65. This difference was much smaller in older
adults: in Denmark 59% of adults aged =75 with high-risk
conditions were vaccinated vs 52% of those without; in England
the corresponding proportions were 82 and 72% (Fig. 1 and
Supplementary Table 3).

Outcome rates in vaccinated and unvaccinated individuals

A total of 375,870 hospitalizations for any study outcome were
captured over eight influenza seasons in Denmark and 325,799
hospitalizations over nine seasons in England (Table 2). Hospita-
lization rates varied by age group in Denmark from a low of 119
(95% Cl: 117; 121) per 100,000 population in the 18-34 years age
group, increasing ~17-fold to 2037 (2024; 2050) in the 65-74 year
age group and ~40-fold to 4772 (4749; 4796) in the =75 years age
group. In England rates in those aged 18-34 were 49 (48-50) per
100,000; 1013 (1006; 1021) (21-fold higher) in those 65-74 years
old and 2,545 (2532; 2557) (~52x higher) in those aged >75 years.
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Influenza hospitalization rates varied between seasons in
Denmark from 2 per 100,000 in the 2011/12 season to 52 per
100,000 in the 2017/18 season; and in England from 0.6 per
100,000 in 2011/12 to 33 per 100,000 in 2017/18. Inter-seasonal
variation in cardiovascular or diabetic outcome groups was less
pronounced, normally varying by <20%.

Outcome rates were higher in influenza vaccine recipients than
non-recipients particularly in younger individuals in whom
vaccination was less common, giving rise to IRRs between vaccine
recipients and non-recipients which were nearly always >1 (Fig. 2
and Supplementary Tables 4 and 5). In Denmark, the IRR for all
outcomes in the 18-34-year-old age group was 19.4 (95% Cl: 18.1;
20.5) and declined in progressively older groups to 1.13
(1.12-1.14) in the =75 year old group. In England, the trend was
similar with an IRR of 8.3 (95% Cl: 8.0-8.7) in the youngest group,
declining to 1.10 (95% CI: 1.08; 1.11) in the oldest. These trends
were broadly similar across outcome groups with high IRRs in
younger age groups declining to ~1 in those aged =75 years.

Outcomes in individuals with existing high-risk conditions

Of the annual average of 46,984 hospitalizations captured in
Denmark, 30,377 (65%) occurred in individuals with =1 high risk
condition, an IR of 4014 (95% Cl: 3998-4030) per 100,000,
compared to 810 (807-813) in those without high risk conditions
(Supplementary Table 6). Similarly, in England, most (81%)
hospitalizations were in individuals with high risk conditions for
an IR of 1271 (1266-1275) compared to 141 (140-142) in those
without high-risk conditions (Supplementary Table 7). Among
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(2010/11-2017/18) and England (2010/11-2018/19).

275 218 yrs

Annual average influenza vaccination coverage rates by age group in individuals with and without high risk conditions from
Denmark and England. Individuals with record of influenza vaccination between August 1st and Jan 31st of each season from Denmark

Table 2.

Seasonal average number (#) and incidence rates (IR) of selected hospitalized outcomes per 100,000 population by age group for the total
study population, Denmark (from 2010/11-2017/18) and England (from 2010/11-2018/19).

Age group: 18-34yrs 35-49yrs 50-64 yrs 65-74 yrs >75yrs All ages
Denmark
Any hospitalization* # 1414 3350 9659 12385 20177 46984

IR 119 (113; 125) 288 (282; 294) 885 (872; 898) 2037 (1995; 2080) 4773 (4630; 4919) 1051 (1021; 1081)
Respiratory hospitalizations # 961 1741 4596 6432 11754 25484

IR 81 (75; 87) 150 (143; 157) 421 (406; 437) 1058 (1002; 1117) 2780 (2603; 2970) 570 (535; 606)
Influenza 4+ pneumonia # 616 1137 2709 3824 8109 16395

IR 52 (45; 60) 98 (91; 105) 248 (238; 258) 629 (586; 675) 1918 (1768; 2081) 367 (340; 395)
Influenza # 97 118 164 165 260 804

IR 82(55;12) 10 (7; 14) 15 (9; 24) 27 (14; 52) 62 (28; 136) 18 (10; 31)
Cardiovascular hospitalizations # 203 1095 3410 3993 6320 15022

IR 17 (16; 18) 94 (90; 98) 312 (307; 318) 657 (633; 681) 1495 (1417; 1577) 336 (329; 343)
Diabetic hospitalizations # 154 126 155 154 200 789

IR 13 (12; 14) 11 (10; 12) 14 (14; 15) 25 (24; 26) 47 (45; 50) 18 (17; 18)
England
Any hospitalization* # 1033 2401 6647 8215 36200 17904

IR 49 (45; 52) 124 (118; 131) 405 (386; 425) 1013 (964; 1065) 2545 (2337; 2771) 502 (467; 539)
Respiratory hospitalizations # 704 1282 3227 4404 19140 9523

IR 33 (30; 37) 66 (61; 72) 197 (182; 213) 543 (495; 596) 1354 (1172; 1564) 265 (236; 298)
Influenza + pneumonia # 348 702 1617 2356 11672 6649

IR 16 (14; 20) 36 (32; 42) 99 (85; 114) 291 (246; 343) 945 (784; 1140) 162 (136; 192)
Influenza # 66 89 151 139 688 241

IR 3.1(1.7;5.9) 4.6 (2.5; 8.7) 9.2 (4.6; 18) 17 (8; 38) 34 (14; 85) 9.5 (4.6; 20)
Cardiovascular hospitalizations # 202 1032 3367 3874 17173 8698

IR 9.5(8.8; 10) 53 (51; 56) 205 (199; 212) 478 (472; 484) 1236 (1202; 1272) 238 (231; 245)
Diabetic hospitalizations # 131 111 149 125 804 288

IR 6(67) 6 (5; 6) 9 (8; 10) 15 (14; 16) 41 (39; 43) 11(11;12)

95% confidence intervals (in brackets) from the Poisson distribution. *Any hospitalization for an outcome included in our analysis.
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Incidence rate ratios (log scale) of total hospitalizations in individuals with any high-risk condition or specified high risk

conditions vs those with none, by age group in Denmark and England. Error bars represent mean + SEM.

individual high risk groups, people with respiratory conditions
experienced the highest rates of any hospitalization in both
England and Denmark giving IRRs vs individuals with no high risk
conditions of 17.5 (17.4-17.7) in Denmark and 46.3 (45.8-46.7) in
England (Fig. 3, Supplementary Tables S8 and S9). IRRs in
individuals with =1 high risk condition were highest in the
18-34-year-old age group (7.3 in Denmark and 9.5 in England), an
effect driven by low hospitalization rates in healthy younger

npj Vaccines (2022) 25

adults, and declined in older age groups. Significantly elevated
incidence rates were observed in at-risk populations irrespective
of their age.

Sample size for a pragmatic RCT
Under different rVE assumptions, a range of incidence rate
scenarios (which we assumed as attack rates) representing the
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frequency of events reported above and a total sample size of
100,000, the power to conclude rVE >0 in a RCT varied from ~7%
to ~100% (Fig. 4). With attack rates <0.5% or rVE <7%, power was
low irrespective of other parameters. To achieve a power of 80%
to ascertain a rVE of 10%, the frequency of events to be used as
endpoints would need to be =1.5% in a population of at least
200,000 people. Rare event rates (<1%) as seen in certain
populations would require even higher sample sizes for a similar
expected rVE.

DISCUSSION

Our analysis over 8 years in Denmark and 9 years in England
showed that ~1% of Danish and ~0.5% of English individuals were
hospitalized for selected health events that could be associated
with influenza every season, with rates varying significantly
according to age and the presence of high-risk medical

Published in partnership with the Sealy Institute for Vaccine Sciences

conditions. Among these events, respiratory hospitalizations were
the most commonly seen in patients of all ages; the proportion of
cardiovascular events increased markedly with age; diabetic
exacerbations were exceedingly rare; and influenza as a primary
diagnosis was reported in <2% of hospitalizations, a proportion
which varied by season, synchronous with recorded epidemics'®.
Unsurprisingly, hospitalizations were more common in older
adults: respiratory and cardiovascular hospitalizations were ~40
fold and ~100-fold higher in those aged =75 than in those aged
18-34 years.

The presence of high-risk medical conditions was strongly
associated with hospitalization particularly in younger individuals
but, even in older adults, high risk conditions were associated with
a 2-3-fold elevated rate of hospitalization. Younger adults with
cardiovascular or respiratory conditions experienced 10-50-times
more hospitalizations than comparable individuals with no
comorbidities, underlining the importance of chronic disease

npj Vaccines (2022) 25
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management in these vulnerable groups, irrespective of their age.
The presence of high-risk conditions has been shown to elevate
risk of severe and hospitalized influenza outcomes, these
individuals benefit most from influenza vaccination, and could
therefore be considered priorities for inclusion in influenza vaccine
studies'®?°, Hospitalization rates were up to 20-fold higher in
younger influenza vaccine recipients compared with unvaccinated
groups of the same age, most likely because vaccination is
indicated only for high-risk groups in this age. Across all ages we
observed <50% of high risk individuals received influenza
vaccination annually, as is common in European countries?’, and
it is likely that only patients at highest risk, in frequent contact
with health services for example, receive annual influenza
vaccination. This confounding by indication or health care seeking
bias—whereby baseline health condition rather than vaccination
status predicts the frequency of healthcare events—has been
well-described in the influenza VE literature??23, The magnitude of
disparity in event rates between vaccine recipients/non-recipients
we observed highlights the challenges of confounder adjustment
in observational VE/rVE studies, and therefore the need for
randomized studies, to reliably measure the performance of
influenza vaccines®*.

This study was conducted to improve planning of rVE studies by
identifying populations likely to suffer hospitalizations and there-
fore offer reduced sample sizes. For example, in Denmark the
population with high-risk conditions experienced ~4x higher rate
of outcomes than those without, corresponding to an improve-
ment in power from ~30% to ~90%, with a sample of 50,000 if the
true rVE is around 15%. To achieve the same power in the
population  without high-risk conditions would require
>200,000 study participants and therefore incur significantly
greater resources and may be unfeasible in many settings.
Whether or not such a study is feasible would depend on the
size of eligible population within a participating healthcare
system, the ability to randomize that population into treatment
groups and the frequency of the outcome of interest. Individually-
randomized trials are more labor-intensive to conduct if a very
large sample size is required to receive vaccination during a short
period, which is the case for influenza vaccination campaigns that
start shortly before the season'’. There are wide variations in
influenza season intensity, and studies may need to be conducted
over a longer period if conducted in mild seasons.

Targeting populations at highest risk, in whom outcome rates
were higher, would therefore improve efficiencies at the risk of
reducing generalizability of study results, but because only high-
risk and older adults are recommended for influenza vaccination
in most countries, limiting inclusion may offer a feasible and
relevant population for study'®. Conversely, enrolling a highly
comorbid population would result in a high background rate of
non-specific events which are not vaccine-preventable, thereby
‘diluting’ and reducing rVE as endpoints become less specific,
particularly in seasons with low influenza circulation where the
proportion of attributable events would be low. This dilution effect
may explain a recent study in patients with high-risk cardiovas-
cular disease in which a high-dose inactivated influenza vaccine
did not significantly reduce all-cause mortality or cardiopulmonary
hospitalizations in comparison with a standard dose vaccine?®. To
increase specificity we conducted a thorough clinical validation of
included codes and included only respiratory and cardiovascular
hospitalizations which were considered likely to be associated
with influenza based on assessment of previous clinical stu-
dies*>®°, We assumed rVE scenarios of 5-20% based on existing
data and identified a number of scenarios where pragmatic RCTs
would provide high statistical power with a sample size of
<200,000 participants (Fig. 4)'>'32527  However, the influenza-
attributable burden of broader secondary outcomes remains
incompletely understood and will vary over time: endpoint
selection involves a compromise between frequency and
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specificity which affects rVE, and these assumptions will require
refinement as additional evidence arises including from ongoing
RCTs'7:28,

This study was conducted in large databases capturing
comprehensive healthcare outcomes with a long history of use
for medical research, but databases are not perfect. VCRs are
under-estimated because influenza vaccinations delivered at non-
medical settings such as pharmacies or workplaces may not
always be captured. Reassuringly, the VCR we captured from both
Denmark and England are similar to those reported in routine
national statistics?>3°. Trends were consistent by country, though
overall incidence rates were higher in Denmark, probably a result
of differential healthcare investments or health systems specifi-
cities, healthcare seeking behavior or clinical thresholds for
hospitalization®'. These findings may not be generalizable to
other healthcare settings or countries. Our study did not collect
individual-level data so could not describe the effect modification
of age on high-risk or vaccination status or intra-season
correlations due to repeated observations of the same participants
in multiple seasons. We included slightly different ICD-10 codes
than some other researchers, differences which should be
considered when interpreting the public health implications of a
given rVE value®32 Importantly, high-risk conditions in England
were based on primary care consultations rather than the hospital
contact data used in Denmark, likely explaining the higher
prevalence of some conditions, notably asthma and kidney
disorders, in England. Focusing on specificity, we captured only
the primary/main reason for hospitalization and therefore may
underestimate influenza: due to laboratory confirmation and
coding practices, the full influenza burden in the US, for example,
has been shown to be around 3-fold higher if codes relating to
“any” rather than the primary diagnostic position are included3334,

In conclusion, we identified groups at high risk of respiratory
and cardiovascular events who would represent ideal populations
for inclusion in pragmatic influenza vaccine controlled trials. In
addition to older individuals, younger adults with high-risk
conditions experienced frequent hospitalizations; enrolling this
population in rVE studies would increase the probability of
detecting true differences between influenza vaccine types and
platforms, allowing policymakers to make informed decisions on
vaccine recommendations for this priority population group. Such
studies appear feasible, particularly if enrollment was limited to
individuals aged >50yrs and/or with high-risk conditions. Prag-
matic RCTs such as these would represent a research tool to
understand the influenza-attributable proportion of respiratory
and non-respiratory diseases and the full public health benefits of
influenza vaccines in different population age and risk groups.

METHODS

Study design and population

We conducted a retrospective cohort study in the 2010/11-2017/18
influenza seasons from Denmark and the 2010/11-2018/19 seasons from
England using large healthcare databases in each country. Populations
aged =18 years on December 1st each year were included in seasonal
cohorts and the number of hospitalized events occurring between
December 1st and May 31st (defined as the influenza season) was divided
by these denominators to calculate seasonal incidence rates of various
outcomes stratified by age (18-34 vyears [yrs]; 35-49yrs; 50-64yrs;
65-74yrs; >75yrs), influenza vaccination status and the presence of
clinical high risk (hereafter “high risk”) conditions. In both countries,
influenza vaccination is recommended and provided free of charge for
high-risk adults and adults aged =65 yrs3>=6,

Data sources

All Danish citizens are assigned a unique personal identification number
which allows for exact linkage of nationwide administrative registers at the
individual level. The Danish Civil Registration System, which records date of
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birth, emigration status and vital status for all persons residing in Denmark,
was used to define cohorts®”. The Danish National Patient Registry (DNPR)
has shown high validity of cardiovascular diagnoses and captures all
inpatient and outpatient hospital contacts coded in International
Classification of Diseases 10 (ICD-10)?%3%. The DNPR was used to count
hospitalized events and to define high risk conditions. Influenza
vaccination status was captured from the Danish National General
Practitioners Reimbursement registry. Analyses were conducted by Danish
researchers with access to raw, de-identified nationwide registry data in
accordance with Danish law.

The UK Clinical Practice Research Datalink (CPRD) is a longitudinal and
representative primary care database from a network of over 1,800
primary care practices and includes 16 million currently registered active
patients>°~*2, This analysis used data from the CPRD GOLD and CPRD
Aurum primary care databases to define vaccination and high risk status,
linked to secondary care data from Hospital Episode Statistics Admitted
Patient Care database to capture hospitalized outcomes rates of
specified events®®, Influenza vaccinations administered in GP practices
or community pharmacies are captured in these electronic health
records. Analysis of the CPRD data was conducted internally by CPRD
researchers using databases of pseudonymized patient EHRs, therefore
individual participant consent is not required. The study protocol was
approved by the Independent Scientific Advisory Committee (ISAC) at
the Medicines and Healthcare products Regulatory Agency (protocol ref
20_115 RO A1).

Outcome selection

We pre-specified groups of medical events, most of which were acute,
based on previously documented and plausible associations with
influenza, and which we considered outcomes of public health
relevance for future pragmatic RCTs. ICD-10 coded primary discharge
diagnoses (i.e, the main reason for hospitalization) resulting in
hospitalization for =1 night were categorized into five groups: (1)
influenza; (2) influenza and pneumonia; (3) respiratory; (4) cardiovas-
cular; (5) exacerbations of diabetes. Groups were overlapping to explore
the impact on incidence rate of including broader or more specific
outcomes as potential study endpoints. The first occurrence of each
event per season was included. The list of final codes within each
category was selected from all “I” (cardiovascular), “J” (respiratory; of
which J09-J11 were used to define ‘influenza’) and “E” (diabetic) ICD
codes based on clinical review, available literature and discussion of the
pathology and typical usage of those diagnostic codes in medical
practice (Supplementary Table 1)%444>,

Definition of high-risk conditions

Clinical high-risk conditions corresponding to eligibility for free annual
influenza vaccination were modified from definitions used by the UK
National Health Service and Danish Statens Serum Institute. They included
cardiovascular disorders (including arrhythmias, congestive heart failure,
ischemic heart disease and congenital heart disease), respiratory condi-
tions (including asthma), hepatic and renal disorders, neurologic/neuro-
muscular disorders, blood disorders, metabolic/endocrine conditions
including diabetes and conditions compromising the immune system3>3¢,
For each condition, a list of ICD10 codes or prescription medication
representing these diagnoses (for diabetes only) was defined (Supple-
mentary Table 2). In the UK, primary care events coded with the SNOMED-
CT architecture were mapped to these ICD-10 codes following review by a
medical doctor (linked codes in Supplementary Data 1). Individuals
diagnosed with qualifying events within the DNPR or CPRD primary care
database within 3 years of the start of each influenza season, or a diabetes
prescription <6 months before the start of each season, were included
within that high-risk group for that season. Individuals receiving an
influenza vaccination between August 1st and Jan 31st of the following
year were considered vaccinated for that season.

Statistical methods

The total number of incident outcome events experienced by the study
population was summed for each season. Incidence rates of included
outcomes, expressed as rates per 100,000 population, were calculated
per season for populations overall and stratified by age group, high-risk
condition, and influenza vaccination status. Average seasonal incidence
rates over included seasons and their 95% confidence intervals (Cls) were
estimated using a Poisson model with the number of events as the
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dependent variable, no independent variables, and the log of the
population size as an offset, with Stata’s ‘glm’ command. In this
parameterization, the exponential of the intercept is the incidence rate.
The variance was adjusted by a scale factor equal to the deviance divided
by the residual degrees of freedom to accounting for under/overdispersion
in the underlying data®®“’. Incidence rate ratios (IRR) and their 95% Cls
comparing rates in: a) vaccinated vs unvaccinated and b) individuals with
high-risk conditions vs those with no high-risk conditions, were similarly
estimated with a Poisson model. A range of identified incidence rates were
used to estimate the power of an rVE study by exact method, specifically
coded in SAS, based on binomial distribution of cases in investigational
groups among overall number of cases, a type | error of 2.5%, 1:1 allocation
ratio and a maximum of 200,000 participants (100k per group). We
assumed rVE ranging from 5-20% and expressed the result as a series of
heatmaps. Analyses were conducted separately within the Danish and UK
databases; subsequent manipulations were performed using Stata v 15.1
and SAS.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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