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Abstract
The nerve cells are responsible for transmitting messages through the action potential, 
which generates electrical stimulation. One of the methods and tools of electrical stimula-
tion is infrared neural stimulation (INS). Since the mechanism of INS is based on electro-
magnetic radiation, it explains how a neuron is stimulated by the heat distribution which 
is generated by the laser. The present study is focused on modeling and simulating the 
conditions in which deformed temperature related to the Hodgkin and Huxley model can 
be effectively and safely used to activate the neurons, the fires of which depend on temper-
ature. The results explain ionic channels in the single and network neurons, which behave 
differently when thermal stimulation is applied to the cell. It causes the variation of the 
pattern of the action potential in the Hodgkin-Huxley (HH) model. The stability of the 
phase-plane at high temperatures has lower fluctuations than at low temperatures, so the 
channel gates open and close faster. The behavior of these channels under various mem-
brane temperatures shows that the firing rate increases with temperature. Also, the domain 
of the spikes reduces and the spikes occur faster with increasing temperature.

Keywords Neural network · Neuronal spiking · Action potential · Hodgkin and Huxley · 
Temperature effect

1 Introduction

An action potential is one of the most essential features of the nerve cells. Using precise 
measurements of the action potential, scientists can examine the mechanisms of repre-
senting the behavior of the nervous system of organisms. To understand the transmitted 
messages between nerve cells in the network, it is necessary to study action potential pat-
terns. So, the accurate understanding of action potential enables us to know the neuronal 
communication procedure, because the messages are the action potential patterns. In other 
words, the action potential is considered as a signal that carries data in different areas of 
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the nervous system. It is assumed that this transmission does not change along the axon’s 
path. Information is transmitted from one location to another using the frequency and the 
pattern of the action potential. It can also be called a spike, or a nerve impulse. General 
characteristics are common in the action potential in all animals. Therefore, the action 
potential behavior of some animals can be generalized to some other animals. One of these 
animals that play an essential role in the formation of the biophysical model to justify the 
action potential is squid, because squids have large enough axons to manipulate and use 
their specially built glass electrodes on [1].

The action potential varies under environmental factors such as temperature. The first 
experimental studies on the effect of temperature on the behaviors of the action potential 
were carried out by Sjodin and Mullins [2] and Guttman [3]. The observations of Sjodin 
and Mullins in stimulated pulses for one millisecond showed that the excitability threshold 
decreased with increasing temperature. At the same time, Gutman used the results of pulses 
obtained in 100 milliseconds and found that it raised. Electrical stimulation of axons was 
based on mathematical modeling by Hodgkin and Huxley. In 1950, Hodgkin and Huxley 
conducted studies on the axon of a squid, which led to the formation of a model for the 
action potential. They studied the ionic current by placing an electrode inside the cell and 
injecting current to measure the current of ions and cell membranes based on stimulation 
current. After several experiments and numerous studies, they obtained precise equations 
for how ionic current changes.

In the HH model, the membrane’s capacity does not change with temperature. Therefore, 
in this study, the membrane capacity is considered constant. Also, the single neuron and then 
a network of neurons have been studied such that the membrane potential is related to the 
temperature [1, 4].

However, in some studies [5–6] the effect of temperature on the HH model has been 
investigated but the  effects of temperature changes on the number of spikes and action 
potential value in the repetitive firing model have not been determined. The study of temper-
ature variation on the behavior of ion channels by Kaung et al. [8] indicates that the spiking 
threshold in the HH model occurs in a minimal temperature(Tc ) in the range of 4 ◦C to 25 
◦C . Also, Yuan et al. [9] studied a pattern for the effects of the various environmental tem-
perature as a sinusoidal function on the cell spiking. They observed that the shape of action 
potential has been changed by rising temperature from −18 ◦C to 18 ◦C.

Numerical and analytical methods have been improved to heat transfer during Infrared 
neural stimulation (INS) [10–13]. Since the INS is dependent on thermal changes, proper 
knowledge of the distribution of heat in the nervous system may improve the production 
of optical devices for stimulating the neuron [14]. Norton et al. [15] developed an analyti-
cal method by considering a Green’s function for thermal changes during the INS. They 
studied the cochlea nerves and showed the temperature variations activate the neurons and 
concluded that the minimum temperature Tc increases and also a minimum temperature 
rate of change dTc∕dt are required for neural stimulation. Xu et  al. [16] found that tem-
perature changes with thermistors could control neuronal dynamics. Also, Zhang et al. [17] 
used thermistors to control the dynamics of the neural network to consider the fluctuation 
of temperature on the neuronal network behavior.

This paper addresses temperature exposure effects on single and network neurons based 
on HH biophysical model. First, the spiking patterns of a single neuron under the different 
values of the temperature are reviewed. Second, the action potential and phase-plane are dis-
cussed for the one-dimensional neural network. The results for a single neuron reveal that by 
increasing environmental temperature from T = 0 ◦C to T = 18 ◦C the spiking occurs faster 
and the average of the action potential magnitudes decrease. These results were also observed  
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at the neural network scale. Also, the results show that the Stable Steady-Points (SSP) gap 
approach to its lowest value by raising the size of the neural network and the influence of 
temperature on it. The biophysical basis of this phenomenon, along with its biological sig-
nificance, is explored and discussed in the context of ion channels gating dynamics. Finally, 
the concluded results are compared with the experimental results.

2  Temperature effects on Hodgkin‑Huxley model

The HH model [1] is introduced as one of the simplest models but most efficient to justify the 
action potential of nerve cells. The HH model is defined as the set of differential equations to 
describe the membrane potential behaviors. In general, the dynamical equations of the HH 
model are described by the following set of equations [19]:

where V is the membrane potential, Ie is the stimulation current, Iion is the ionic current 
through the channels, Cm is the capacitance of the membrane, T is defined as the cell tem-
perature, n is the activation variable of the potassium channel, m and h are the variables for 
activating and deactivating of the sodium channel, m∞, h∞ , n∞ are the steady-state values 
for m, n and h and �m , �h , �n represent the time constants of the gating variables m, n and 
h as a function of V and T. Also m, n, and h play the channel gates controlling parameters 
role in the differential equations. In the specific case of single neuron [19, 20], the HH 
model is introduced by the time-dependent membrane potential as the following first-order 
nonlinear differential equation:

where the first term ( dV
dt

 ) shows membrane current. Let’s consider the membrane capac-
ity as Cm = 1�F∕cm2 , and the maximum channels conduction as: ḡNa = 120mS∕cm2 , 
ḡK = 36mS∕cm2 , ḡL = 0.33mS∕cm2 . Also VL,VNa and VK are the equilibrium potential 
which are calculated by the Nernst equation [27]. The sentence ḡL(V − VL) is called the 
leak current, that comprises mostly chloride and other voltage-independent ion channels. To 
calculate the action and rest potential related to each of the ion channels, the Nernst equa-
tion is used more precisely. Calculations on the HH model showed that the probability of 
open and closed channels are n4 for potassium and m3h for sodium. Let’s use an assumption 
to visualize the modes of a gate as bimodal states such that, when a channel is turned off, 
the gate is closed, and one can say its state is changed from open mode 1 to closed mode 0 
in a specific time period. o justify the dynamic of the gate’s behavior, some new constant 
parameters �i and �i (opening and closing rates) should be defined, whereas i refers to ionic  

(1)

dV

dt
= (Ie − Iion)∕Cm

dm

dt
= (m∞(V) − m)∕�m(V , T)

dh

dt
= (h∞(V) − h)∕�h(V , T)

dn

dt
= (n∞(V) − n)∕�n(V , T),

(2)
Cm

dV

dt
= − ḡNam

3h(V − VNa) − ḡKn
4(V − VK)

− ḡL(V − VL) + Ie,
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channels type. Now the dynamics of each of m,  n and h is determined by the difference 
between open, and close modes [19] as the functions of �i and �i:

Also, by using interpolation HH model results with experimental data, [19] one can find 
the coefficients � and �:

where V is the potential at temperature T and Φ(T) is the temperature dependence of the 
membrane parameters. It’s proving that the properties of membranes such as flexibility, 
inharmonious-ability, and penetrability depend on temperature, electromagnetic field, and 
pressure. However, the HH model predicts that the channels are sensitive to temperature 
change as well [22].

In a recent investigation, scientists used an alternative method to electrical stimulation by 
low-intensity infrared light, such that the temperature increase led to the more electrical excit-
ability of neurons [21]. This occurs because infrared light is well-absorbed by tissue to yield 
a photo-thermal influence at appropriately high wavelengths. Furthermore, there are several 
biophysical properties of electrically excitable cells that have temperature sensitivity either 
explicitly or implicitly. An example of these biophysical processes is the gating kinetics of ion 
channels, maximum conductances of each ion channel, and equilibrium potentials. Tempera-
ture-sensitive components of the HH model include the rate constants, maximum membrane 
conductivity, and the Nernst potential. Neuronal electrical activity is dependent on membrane 
patch temperature, and the change in the electrical activity by membrane patch temperature 
occurs by modulating the rate of opening and closing of ion channels.

The effect of temperature on the action potential in the HH model is introduced as a 
temperature scaling factor [23] Q10 , which is an estimation of rate coefficient increase con-
cerning 10◦C temperature change alteration:

where X1 and X2 are biophysical parameters at temperatures T1 and T2 such as temperature, 
electrical charges, pH and pressure. To create the desired model, T2 refers to a reference tem-
perature at which the electrophysiological examination temperature occurs. The factor Q10 
was applied to all � and � values of the gating variables n, m, and h to incorporate tempera-
ture sensitivity for them. In this study, the reference temperature is chosen as T2 = 6.3 ◦C 
for the considerations on the HH model [22]. According to the article [23], from the Law of  
Arrhenius it is deduced that X1∕X2 = 3 , Φ(T) was defined as follows:

(3)
dx

dt
= �x(V)(1 − x) − �x(V)x, x = m, h, n.

(4)

�n = Φ(T)0.01
10 − V

e(10−V)∕10 − 1

�n = Φ(T)0.125e
−V

80

�m = Φ(T)0.01
25 − V

e(25−V)∕10 − 1

�m = Φ(T)4.0e
−V

18

�h = Φ(T)0.07e
−V

20

�h = Φ(T)0.1
1

e(30−V)∕10 + 1
,

Q10 =

(

X1

X2

)(T1−T2)∕10

,
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3  Results

Equations  3 and 4 were numerically solved using the Euler method with the time step 
Δt = 0.001ms . From t = 1ms , the membrane potential starts to rise and firing is obtained. 
Figure 1 is spiking time patterns at different temperatures, T = 6 ◦C , and T = 18 ◦C , in 
which the current stimulation was kept constant at I = 100�A . The number of spikes rises 
by increasing temperature and the average of potential magnitudes decrease with tempera-
ture by steps ΔT = 0.5 ◦C from a range of 0 ◦C to 18 ◦C . Figures 2 and 3 display these res
ults.

There is a two-dimensional system that can be studied on the (n, V) phase-plane. Fig-
ure 4 shows the phase diagram for a single neuron at the different temperatures with con-
stant stimulation current. The neuron can be remodeled from equilibrium to train of action 
potentials and this evolution is compatible with a change of phase portrait. However, if the 
stimulation current is considered as a constant, the cell’s dynamics completes the loop by 
increasing the temperature more regularly and faster (Fig. 4).

The temperature evolution in the HH model changes the three components: the equi-
librium potential, the maximum membrane conductivity, and the voltage-dependent rate 
constants �i and �i . These changes were checked in the constant domain range. With this 
evolution, the system was also investigated in the equilibrium potential. In fact, taking into 
account the temperature changes at the potential of equilibrium, the number of spikes does 
not change; it only causes the height difference in the membrane potential. Meanwhile, 
when changes were applied to the ion conduction domain, it has no significant development 

(5)Φ(T) = Q10 = 3(T−6.3)∕10.

Fig. 1  The time course of membrane potential at environmental temperatures T = 6 ◦C , and T = 18 ◦C
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on the pattern of spikes [18]. Figures 2 and 3 illustrate the temperature evolution in the � 
and � constant parameters cause significant changes in the height and number of spikes. 

Fig. 2  The spike rate of a single neuron rises as a function of temperature under a constant stimulation cur-
rent

Fig. 3  Under a constant stimulation current, action potential decreases with temperature
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Figure  5 compares the evolution of n, m, and h gates with temperature, when tempera-
ture increases, the maximum activated m gate for sodium ion decreases while the inactive 
gate h increases. One can see the effects of the temperature rise on the potassium channels 
which decrease the gating variable n.

It was also investigated the situation in which for two temperatures of T = 6 ◦C and 
T = 18 ◦C , the variable current injection was considered. Figure  6 shows that by keep-
ing the temperature constant, the number of spikes increases as the current increases. By 
increasing the excitation current the number of spikes increases for the higher temperature.

4  Temperature effects on neural networks

A neuronal network consists of combinations of tens, hundreds, thousands, and even over 
100 million of neurons depending on the size of the network. There are very complicated 
connections between neurons on the networks such that each neuron can have almost 104 
connections with other neighboring neurons. The neurons that are responsible for receiving 
information from the outside are known as “unit” neurons.

A biological neural network is a set of algorithms or circuits of neurons to recognize 
patterns, and an artificial neural network is designed for solving artificial intelligence 
problems. In the human brain, types of neurons are very different, and the neural net-
work is a mathematical description of the electrophysiological properties of these neu-
rons. Actually, neurons link to each other using action potential through synapses that 
interface with axons and dendrites. One of the well-known mathematical models for 
simulations of the brain is the HH model, which depends on the mathematical param-
eters to describe the ionic and synaptic conductances, corresponding to the dynamics 

Fig. 4  A plot of gating variable (n) versus the potential (V(mV)) for temperatures T = 6 ◦C and T = 18 ◦C
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of ionic channels. The simulation of this model includes difficult computation, which 
makes the implemented brain networks complex.

Most neural networks are fully connected, this means that neurons in a network are 
connected to other layers in network.

The connection between neurons is represented by a parameter which is called the 
weight of the connection. The weight is positive, if one unit excites another one, or it is 

Fig. 5  (a) The maximum percentage of gating of m and h gates for sodium channels. (b) The maximum 
percentage of gating of n gates for potassium channels
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negative, if one unit suppresses the other one. It is proven that by raising the weight of 
the connection, the impact of one unit on the other neurons will grow [26].

The HH model is elegantly generalized for a neural network model [24, 25]. Here, it is con-
sidered a linear network of N neurons (Fig. 7) with the weight of connection gi between two 
neighboring neurons. The weight of connection represents the ability of synaptic connections 
of the excitatory neurons to each other. Ion channels have some significant rules for this linear 
network. In general, the HH model introduces the membrane potential difference of a biologi-
cal neural network as:

where the index i labels the neuron in the network and Isyni is synaptic current by the fol-
lowing definition:

where (VN − Vi) is the difference of potential between the membrane of neuron N and neu-
ron i in the network and Ie is the stimulation current. Let’s define a network of identical 

(6)
CmV̇i(t) + ḡNam

3h(Vi − VNa) + ḡKn
4(Vi − VK)

+ ḡL(Vi − VL) + Isyni = Ie,

(7)Isyn = gi(VN − Vi),

Fig. 6  A plot of the number of spikes during a 100 ms vs current injection for temperatures T = 6 ◦C and 
T = 18 ◦C

Fig. 7  A linear network of N-neurons
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HH cells that are connected with a user-controlled conductance. So, as an example gi can 
optionally set to 5 for all neurons [25].

The dynamics of a variable (such as gating variables) in the network mode can be writ-
ten as:

where x contains each of the gating parameters m, h ,and n.
Let’s consider two neural networks contain 10 and 50 neurons, and the fifth neuron is 

selected for each of them to concentrate the simulations on its spiking and the potential 
changes, as it is shown in Figs. 8 and 9. The rise of temperature changes the dynamics of 
the HH model to demonstrate a stable oscillatory behavior. The stable oscillations in physi-
cal terms are due to a stable limit cycle, seen in Figs. 10 and 11 on the (V, n) phase plane. 
As Fig. 11 shows there are some small fluctuations in the voltage from the initial resting 
potential, and it decays back to resetting potential again. By increasing temperature, these 
fluctuations are obviously reduced. The phase plane was supposed to change when there 
was any variation in the equation parameters. By increasing the scale of the neural network 
and the effect of temperature on it, the stable steady-points (SSP) distance will be reached 
to its minimum value (Fig. 11). One can find from Figs. 8 and 9 which introduce potential 
mappings in terms of time at two temperatures of 6 ◦C and 18 ◦C , by raising the tempera-
ture, the number of spikes increases and the spiking height of the action potential reduces 
(Fig. 12).

Here, it is demonstrated that the temperature can change the action potential patterns 
of the neuronal network. By keeping the stimulation current constant, it is observed that 
the width and height of the action potential become smaller by warming up the neuron 

(8)
dxi

dt
=

x∞(Vi) − xi

�x(Vi,T)
,

Fig. 8  Responses of the HH 10-neuron network model to applied temperature T = 6 ◦C and T = 18 ◦C
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environment. It is clear that the sensitivity to temperature in the given constant cell mem-
brane parameters m and h is considered a significant evolution like a single neuron. By 

Fig. 9  Responses of the HH 50-neuron network model to applied temperature T = 6 ◦C and T = 18 ◦C

Fig. 10  Shows gating variable (n) versus the potential (V(mV)) at T = 6 ◦C and T = 18 ◦C (The number of 
neurons is 10)
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changing the temperature from 0 ◦C to 18 ◦ C, the action potential amplitude decreases, 
representing that resting membrane conductances start to change membrane potential 

Fig. 11  Shows gating variable (n) versus the potential (V(mV)) at T = 6 ◦C and T = 18 ◦C (The number of 
neurons is 50)

Fig. 12  Under diverse temperature stimulation, it is seen that the potential reduces
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performance of any neuron which is chosen from the network of the considered neurons. 
At room temperature, it is also observed that the number of spikes decreases. At warm tem-
peratures, only one action potential is occurred in the 10-neuron network, while no spike is 
observed in the 50-neural network (Fig. 13).

The firing patterns of the HH network neuron model can change when the system is 
under different parameters beyond a certain threshold. The threshold dynamic is investi-
gated by using a diagram of the interspike interval (ISI) as varying the external forcing. In 
this study, the temperature is an external forcing in the neuronal network. The valuations 
of ISI during the rising temperature were lesser than those during the falling periods of the 
temperature change (Fig. 14). The mean interspike interval for each network ( N = 10 and 
N = 50 ) decreases like a logarithmic function by increasing the temperature.

To evaluate our theoretical and simulation results, let’s consider the experimental stud-
ies. Nam Gyu Hyun et al. performed experiments using Aplysia neurons to show that the 
action potential amplitude decreases by raising the temperature and the spiking frequency 
parameter increases, which are completely consistent with our simulation results [28].

Recently, Van Hook studied the temperature influence on ion channels function, and syn-
aptic properties in thalamocortical relay neurons [29]. He found that temperature variation has 
an important consequence on neuronal function and synaptic integration, and it may affect 
neuronal physiology by acting on the cell’s ion channels. Further, it is shown that increas-
ing the temperature led to a general reticence of synaptically-driven spiking performance 
in thalamocortical relay neurons. Moreover, heating the superfusate caused stimulation  
of a repairing potassium current and changed the voltage-gated Na+ and K+ currents.

On the other hand, the investigation by Kim et al. showed that high temperature can cause 
different mode transitions in the electrical activities of the neuron [30]. They illustrated the 
impacts of hyperthermia on the hippocampus in vitro by recording from pyramidal neurons 
and inhibitory oriens-lacunosum molecular internuncial neurons. Increasing temperatures to 41  

Fig. 13  The number of spikes at T = 18 ◦C , room temperature T = 25 ◦C , and high temperature T = 34 ◦C
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◦C induced depolarization, spontaneous action potentials, decreased input resistance and 
membrane time constant, and increased spontaneous synaptic activity in most pyramidal 
cells and oriens-lacunosum molecular interneurons. Their recording of patch-clamp showed 
that exposure to hyperthermia temperatures caused pyramidal neurons to depolarize and fire 
spontaneously.

In the study by Graham and et al. on mouse superficial dorsal horn neurons, they discov-
ered that increasing the temperature from 22 ◦C to 32 ◦C not only reduces input resistance 
but also increases the percentage of neurons that do not fire action potentials from 2% to 13% 
[31]. At higher temperatures, all superficial dorsal horn neurons had lower input resistance and 
shorter action potentials.

In this study, the results obtained from the simulation of a biological neural network are 
consistent with Van Hook’s results. Also, in the studied network, which is based on the HH 
model, the results are in agreement with Van Hook’s work.

5  Conclusion

The study of the neural network provides a suitable approach to find the moderation of  
the activities and behavior of neurons concerning external parameters such as temperature.  
In this work, the effect of temperature on a single neuron and a neural network consist-
ing of identical neurons was investigated based on the HH model. Actually, the neuronal 
network is a linear one that stimulates adjacent cells by synaptic current, the temperature 
process can affect the behavior of the network by changing the sodium and potassium ion  
gates. Temperature can be added by factor Q10 in the HH model. In this study, the effects  

Fig. 14  A bifurcation diagram of the interspike interval (ISI) as a function of the temperature, which varies 
from T = 0 ◦C to T = 18 ◦C
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of temperature exposure on neuronal spike properties of the action potential are system-
atically investigated. Although the temperature change is not the direct factor for stimu-
lating the cell, it changes the spiking pattern in constant stimulation current.

The simulation of a single neuron shows that the spiking frequency and amplitude of the 
spikes reduce significantly by increasing the temperature. Due to the temperature changes 
from 0 ◦C to 18 ◦C , the number of spikes increases approximately 2.6 times, and the fre-
quency of the spikes are approximately 1.4 times more. In fact, by increasing tempera-
ture, membrane hyper-polarization and depolarization occur faster, so, spikes are produced 
earlier. The accelerated v-gated K+ conductance underlie this, as it allows a pull toward 
K+ equilibrium to be activated earlier during the spike, thereby truncating the upward Na-
dominated phase. By keeping factors such as stimulus current, capacity, conduction, and 
type of neuron constant, change in the potential pattern of action occurs by all � and � val-
ues. This indicates that membrane potential at temperatures of fewer rises more than that of 
higher temperatures. It is noteworthy that the results obtained in the simulated heat transfer 
method in this study are compatible with the changes in temperature caused by infrared 
irradiation.

In two neural networks contain 10 and 50 neurons, according to Fig.  14, the ISI 
decreased exponentially, which implies that with increasing temperature, spikes occur 
faster. It should be noted that using the above simulation method at room temperature and 
35 ◦C , it is observed that the results are consistent with Van Hook’s experimental findings.

Another way to look at ion channel behavior during spiking is to examine activation and 
inactivation states. Plotting the trajectory of the activation or inactivation variable against 
the membrane voltage generates a phase portrait or phase-plane. At higher temperatures, 
the phase-plane has a stable limit cycle, indicating stable, repetitive action potential firing 
with low deviations, while this is not seen at lower temperatures. Finally, the results show 
that the change of the temperature of the body can widely generate a different pattern of the 
action potential. A warm body conducted less potassium and sodium ion than a cold body. 
This causes the messaging of the nervous system to function differently.

It seems that further investigation is needed to study an external magnetic field and vari-
ation of temperature effects on a neurological disorder system.
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