Skip to main content
. 2022 Feb 11;12(1):6–17. doi: 10.1089/brain.2021.0047

Table 2.

Comparison of Network Metrics Computed Using Different Microstructural Weightings Between Multiple Sclerosis Patients and Healthy Controls

  Network metrics Healthy controls MS patients Adjusted p value metrics Adjusted p value model
FA Efficiency 0.410 ± 0.014 0.394 ± 0.021 0.639 1.000
Modularity 0.065 ± 0.010 0.078 ± 0.020 0.477 0.812
Clustering coefficient 0.382 ± 0.015 0.367 ± 0.020 0.639 1.000
Mean strength 27.300 ± 1.400 25.500 ± 2.380 0.639 1.000
-ln(MD) Efficiency 6.030 ± 0.087 5.900 ± 0.179 0.020 0.075
Modularity 0.080 ± 0.015 0.097 ± 0.027 0.606 1.000
Clustering coefficient 5.810 ± 0.100 5.69 ± 0.160 0.218 0.812
Mean strength 412.000 ± 13.900 393.000 ± 28.100 0.020 0.062
-ln(RD) Efficiency 6.320 ± 0.097 6.180 ± 0.196 0.049 0.124
Modularity 0.078 ± 0.015 0.095 ± 0.027 0.489 1.000
Clustering coefficient 6.080 ± 0.110 5.950 ± 0.176 0.203 0.812
Mean strength 432.000 ± 14.800 411.00 ± 30.000 0.049 0.130
ICVF Efficiency 0.499 ± 0.023 0.472 ± 0.034 0.017 0.057
Modularity 0.069 ± 0.014 0.088 ± 0.026 0.017 0.069
Clustering coefficient 0.470 ± 0.023 0.444 ± 0.034 0.017 0.069
Mean strength 33.500 ± 2.020 30.700 ± 3.370 0.017 0.050
-ln(ISOVF) Efficiency 2.120 ± 0.119 2.090 ± 0.131 1.000 1.000
Modularity 0.116 ± 0.014 0.131 ± 0.025 1.000 1.000
Clustering coefficient 1.980 ± 0.113 1.950 ± 0.119 1.000 1.000
Mean strength 141.000 ± 9.060 135.000 ± 12.500 1.000 1.000
INTRA Efficiency 0.486 ± 0.024 0.456 ± 0.038 0.028 0.077
Modularity 0.069 ± 0.014 0.087 ± 0.025 0.030 0.214
Clustering coefficient 0.456 ± 0.024 0.426 ± 0.038 0.028 0.077
Mean strength 32.500 ± 2.080 29.600 ± 3.600 0.028 0.077
-ln(EXTRAMD) Efficiency 5.660 ± 0.082 5.550 ± 0.161 0.174 0.261
Modularity 0.080 ± 0.015 0.098 ± 0.027 0.794 1.000
Clustering coefficient 5.450 ± 0.094 5.360 ± 0.143 0.794 1.000
Mean strength 387.000 ± 13.000 369.000 ± 26.000 0.174 0.261
-ln(EXTRATRANS) Efficiency 6.020 ± 0.101 5.870 ± 0.193 0.023 0.077
Modularity 0.079 ± 0.015 0.096 ± 0.027 0.514 1.000
Clustering coefficient 5.780 ± 0.111 5.650 ± 0.175 0.090 0.261
Mean strength 411.000 ± 14.600 390.000 ± 28.800 0.023 0.070
NOS Efficiency 2109 ± 83.500 2120 ± 104.000 0.494 /
Modularity 0.360 ± 0.025 0.382 ± 0.039 0.867 /
Clustering coefficient 197 ± 7.880 203 ± 9.630 0.243 /
Mean strength 43,658 ± 1346 43,094 ± 1920 0.867 /

Results of group comparison performed with robust linear model accounting for gender, age, and density as covariates. To account for multiple comparison, we applied Holm post hoc correction (1) for each network metrics of each microstructural map (adjusted p value metrics) and (ii) for each network metrics extracted from all the microstructural maps of each diffusion-based model (adjusted p value model). The statistically significant results are highlighted in bold.

EXTRAMD, extraneurite mean diffusivity; EXTRATRANS, extraneurite transverse diffusivity; FA, fractional anisotropy; ICVF, intraneurite volume fraction; INTRA, neurite volume fraction; ISOVF, isotropic volume fraction; MD, mean diffusivity; MS, multiple sclerosis; NOS, number of streamlines; RD, radial diffusivity.