Table 4.
Estimate | SE | t value | Pr(>|t|) | ||
---|---|---|---|---|---|
FA Multiple R2: 0.649; Adjusted R2: 0.597 |
(Intercept) | 2.488 | 12.122 | 0.205 | 0.838 |
Density | −5.219 | 18.413 | −0.283 | 0.778 | |
Efficiency | −25.316 | 44.521 | −0.569 | 0.572 | |
Modularity | 10.774 | 4.663 | 2.310 | 0.025 | |
Clustering coefficient | 10.402 | 16.795 | 0.619 | 0.539 | |
Mean strength | 0.274 | 0.716 | 0.383 | 0.703 | |
Gender | 0.212 | 0.091 | 2.339 | 0.024 | |
Age | 0.023 | 0.003 | 6.634 | <0.001 | |
MD Multiple R2: 0.660; Adjusted R2: 0.609 |
(Intercept) | −0.017 | 0.937 | −1.801 | 0.078 |
Density | 0.025 | 0.0138 | 1.800 | 0.078 | |
Efficiency | 0.456 | 0.260 | 1.755 | 0.086 | |
Modularity | 7.297 | 3.330 | 2.192 | 0.033 | |
Clustering coefficient | 1.147 | 1.041 | 1.102 | 0.276 | |
Mean strength | −0.689 | 0.3856 | −1.787 | 0.080 | |
Gender | 0.255 | 0.096 | 2.658 | 0.011 | |
Age | 0.019 | 0.003 | 5.439 | <0.001 | |
RD Multiple R2: 0.652; Adjusted R2: 0.600 |
(Intercept) | −70.348973 | 63.352860 | −1.110 | 0.272 |
Density | 104.913926 | 98.913304 | 1.061 | 0.294 | |
Efficiency | 17.315908 | 16.691008 | 1.037 | 0.305 | |
Modularity | 8.127231 | 3.249140 | 2.501 | 0.016 | |
Clustering coefficient | 1.020346 | 1.005984 | 1.014 | 0.316 | |
Mean strength | −0.271909 | 0.256680 | −1.059 | 0.295 | |
Gender | 0.235082 | 0.094214 | 2.495 | 0.016 | |
Age | 0.019849 | 0.003594 | 5.522 | <0.001 | |
ISOVF Multiple R2: 0.650; Adjusted R2: 0.598 |
(Intercept) | −2.588 | 8.710 | −0.297 | 0.768 |
Density | 3.139 | 13.664 | 0.230 | 0.819 | |
Efficiency | −2.507 | 5.519 | −0.454 | 0.652 | |
Modularity | 8.077 | 3.415 | 2.365 | 0.022 | |
Clustering coefficient | 3.588 | 3.125 | 1.148 | 0.257 | |
Mean strength | −0.011 | 0.094 | −0.114 | 0.910 | |
Gender | 0.221 | 0.089 | 2.481 | 0.017 | |
Age | 0.020 | 0.003 | 5.710 | <0.001 | |
EXTRAMD Multiple R2: 0.66; Adjusted R2: 0.611 |
(Intercept) | −0.018 | 0.018 | −1.639 | 0.108 |
Density | 0.025 | 0.016 | 1.558 | 0.126 | |
Efficiency | 0.509 | 0.318 | 1.599 | 0.116 | |
Modularity | 8.502 | 3.297 | 2.579 | 0.013 | |
Clustering Coefficient | 1.455 | 1.128 | 1.290 | 0.203 | |
Mean strength | −0.749 | 0.474 | −1.580 | 0.121 | |
Gender | 0.270 | 0.094 | 2.880 | 0.006 | |
Age | 0.018 | 0.004 | 4.857 | <0.001 | |
EXTRATRANS Multiple R2: 0.655; Adjusted R2: 0.603 |
(Intercept) | −64.478 | 33.700 | −1.913 | 0.062 |
Density | 102.322 | 54.520 | 1.877 | 0.069 | |
Efficiency | 16.863 | 9.344 | 1.805 | 0.077 | |
Modularity | 6.648 | 3.295 | 2.018 | 0.049 | |
Clustering coefficient | 0.840 | 1.047 | 0.803 | 0.426 | |
Mean strength | −0.273 | 0.147 | −1.861 | 0.069 | |
Gender | 0.248 | 0.095 | 2.606 | 0.012 | |
Age | 0.020 | 0.003 | 5.670 | <0.001 |
The statistically significant results are highlighted in bold.
Robust linear models to identify the correlation between the changes in the structural connectivity of MS patients through the global network metrics and the increase of sNfL. Age and gender are included as covariates. For compactness, only the maps that show significant results are presented. Both models explain ∼60% of our data. In the six models, in addition to age, which explain most of sNfL increase, gender and modularity also seem to contribute to explaining the increase of NfL blood concentration, highlighting that the network segregation is related to increased inflammation and axonal damage.
sNfL, serum neurofilament light polypeptide.