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ABSTRACT
Objectives  Despite the uptake of nutrigenetic testing 
through direct-to-consumer services and healthcare 
professionals, systematic reviews determining scientific 
validity are limited in this field. The objective of this 
review was to: retrieve, synthesise and assess the quality 
of evidence (confidence) for nutrigenetic approaches 
related to the effect of genetic variation on plasma lipid, 
lipoprotein and apolipoprotein responsiveness to omega-3 
fatty acid intake.
Design  A systematic review was conducted using 
three search engines (Embase, Web of Science and 
Medline) for articles published up until 1 August 2020. 
We aimed to systematically search, identify (select) and 
provide a narrative synthesis of all studies that assessed 
nutrigenetic associations/interactions for genetic variants 
(comparators) influencing the plasma lipid, lipoprotein 
and/or apolipoprotein response (outcomes) to omega-3 
fatty acid intake (intervention/exposure) in humans—
both paediatric and adult populations (population). We 
further aimed to assess the overall quality of evidence 
for specific priority nutrigenetic associations/interactions 
based on the following inclusion criteria: nutrigenetic 
associations/interactions reported for the same genetic 
variants (comparators) influencing the same plasma lipid, 
lipoprotein and/or apolipoprotein response (outcomes) 
to omega-3 fatty acid intake (intervention/exposure) 
in humans—both paediatric and adult populations 
(population) in at least two independent studies, 
irrespective of the findings. Risk of bias was assessed 
in individual studies. Evidence was evaluated using the 
Grading of Recommendations Assessment, Development 
and Evaluation (GRADE) approach with a modification to 
further consider biological plausibility.
Results  Out of 1830 articles screened, 65 met the 
inclusion criteria for the narrative synthesis (n=23 
observational, n=42 interventional); of these, 25 met the 
inclusion criteria for GRADE evidence evaluation. Overall, 
current evidence is insufficient for gene–diet associations 
related to omega-3 fatty acid intake on plasma 
apolipoproteins, total cholesterol, high-density lipoprotein-
cholesterol, low-density lipoprotein (LDL)-cholesterol and 
LDL particle size. However, there is strong (GRADE rating: 
moderate quality) evidence to suggest that male APOE-E4 
carriers (rs429358, rs7412) exhibit significant triglyceride 

reductions in response to omega-3-rich fish oil with a 
dose–response effect. Moreover, strong (GRADE rating: 
high quality) evidence suggests that a 31-SNP nutrigenetic 
risk score can predict plasma triglyceride responsiveness 
to omega-3-rich fish oil in adults with overweight/obesity 
from various ethnicities.
Conclusions  Most evidence in this area is weak, but 
two specific nutrigenetic interactions exhibited strong 
evidence, with generalisability limited to specific 
populations.
PROSPERO registration number  CRD42020185087.

INTRODUCTION
Cardiometabolic disease is a health concern 
worldwide.1 Nutrigenetic research demon-
strates that there is significant inter-individual 
variability in cardiometabolic risk factor 
levels, in part based on a combination of 
genetic and nutrition-related risk factors.2 3 
For example, protein intake has consistently 
been shown to influence measures of body 
weight and composition dependent on FTO 
genotype (rs9939609 or loci in strong linkage 
disequilibrium (LD)).4 5 Consumers indicate 
great interest in personalised nutrition based 

Strengths and limitations of this study

	► Comprehensive systematic review guided by 
Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses.

	► Critical appraisal of the evidence guided by Grading 
of Recommendations Assessment, Development 
and Evaluation (GRADE) with a modification to fur-
ther consider biological plausibility in addition to the 
standard components of the GRADE approach.

	► Inability to conduct a meta-analysis given the 
comprehensive overview of studies and thus 
heterogeneity.

	► Several included studies without replication; most 
evidence was low or very low quality according to 
GRADE.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-9176-9645
http://orcid.org/0000-0002-2918-8049
http://orcid.org/0000-0002-7017-5848
http://dx.doi.org/10.1136/bmjopen-2021-054417
http://dx.doi.org/10.1136/bmjopen-2021-054417
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2021-054417&domain=pdf&date_stamp=2022-02-21


2 Keathley J, et al. BMJ Open 2022;12:e054417. doi:10.1136/bmjopen-2021-054417

Open access�

on genetics,6 7 however, a lack of industry oversight8 9 
has led to highly variable scientific validity of nutrigen-
etic tests available to consumers. While recognising that 
some groups question whether genetic testing for person-
alised nutrition is ready for ‘prime time’, Görman and 
colleagues suggested that there are certain specific nutri-
genetic interactions with strong evidence that could be 
considered for implementation into clinical practice 
by expert committees who are responsible for creating 
dietary guidelines.10 With this in mind, systematic 
reviews that include an evaluation of levels of evidence 
are urgently needed in order to determine if there are 
any nutrigenetic associations that may warrant potential 
implementation into practice.

The dominant omega-3 polyunsaturated fatty acids are 
eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA), which typically come from marine sources (eg, 
fish oil), and alpha-linolenic acid (ALA), which are rich 
in plant sources (eg, canola oil).11 12 It is well established 
that higher intakes of omega-3 fatty acids from foods 
or supplements (hereinafter referred to collectively as 
‘omega-3s’), particularly from long-chain EPA and DHA, 
tend to improve indicators of cardiometabolic health.12 13 
In terms of their lipid and lipoprotein lowering effects, 
omega-3s have consistently demonstrated an impact 
on triglycerides (TG).14 High-quality evidence from 
population-based studies suggests that long-chain 
omega-3s (EPA and DHA) reduce plasma TG by about 
15%.14 There is also high-quality evidence suggesting that 
EPA and DHA can raise high-density lipoprotein (HDL) 
cholesterol.14 Other studies have further demonstrated 
a relationship between omega-3 and HDL-cholesterol,15 
low-density lipoprotein (LDL)-cholesterol,15 total choles-
terol,16–18 apolipoproteins19 and LDL particle size.20 
Despite several studies with significant findings for 
these outcomes, when reviewing the evidence, studies 
have demonstrated conflicting results for the impact of 
omega-3 on many lipid profile outcomes.14 Genetic vari-
ation could explain this heterogeneity. EPA and DHA 
have been shown to significantly impact the expression of 
thousands of genes including those involved in inflamma-
tory and atherogenic pathways.21 22 Evidence now demon-
strates that the health impacts of omega-3 intake could 
differ based on genetic variation.23 24 Despite the poten-
tial for omega-3s to have a significant positive impact on 
health outcomes, population intakes of omega-3s tend to 
be low.25 While the WHO’s adequate intake level for adults 
is 200–250 mg EPA+DHA per day,26 27 the mean reported 
intake of EPA+DHA in the USA is only approximately 
100 mg/day.25 Nutrigenetic interventions have the poten-
tial to motivate improvements in dietary intake beyond 
population-based interventions.28 Additionally, evidence 
suggests that genetic variability affects health responses 
to omega-3s.23 Thus, critically appraising and grading 
the evidence for nutrigenetic interactions related to 
omega-3s and plasma lipids, lipoproteins and apolipopro-
teins is an important research priority. The most recent 
systematic review on nutrigenetic interactions related to 

omega-3s and intermediate phenotypes of cardiovascular 
disease was conducted nearly a decade ago, and this study 
did not evaluate the quality of evidence using an estab-
lished methodology.29 Therefore, we aimed to provide a 
comprehensive summary of current evidence related to 
inter-individual variability in plasma lipid, lipoprotein 
and apolipoprotein responses to omega-3 intake (plant 
and marine sources) based on genetic variations. Overall, 
the specific objectives of this study were as follows:

	► Objective 1. Systematically search, identify (select) and 
provide a narrative synthesis of all studies that assessed 
nutrigenetic associations/interactions for genetic 
variants (comparators; ie, outcomes in those with a 
specific genotype for a genetic variant compared to a 
different genotype) influencing the plasma lipid, lipo-
protein and/or apolipoprotein response (outcomes) 
to omega-3 fatty acid intake (intervention/exposure) 
in humans—both paediatric and adult populations 
(population).

	► Objective 2. Assess the overall quality of evidence for 
specific priority nutrigenetic associations/interac-
tions based on the following inclusion criteria: nutri-
genetic associations/interactions reported for the 
same genetic variants (comparators) influencing the 
same plasma lipid, lipoprotein and/or apolipopro-
tein response (outcomes) to omega-3 fatty acid intake 
(intervention/exposure) in humans—both paedi-
atric and adult populations (population) in two inde-
pendent studies, irrespective of the findings.

METHODS
Patient and public involvement
There was no direct patient involvement.

Literature search
The review process was guided by previously established 
methods, including a previously outlined five-step system-
atic review process.30 31 The search engines Embase, Web of 
Science and Medline OVID were used to conduct the search 
starting in May 2020 and screen for articles meeting inclusion 
criteria, using the comprehensive search terms outlined in 
online supplemental table 1, properly combined by Boolean 
operators. The literature was searched up until 1 August 
2020 (there was no minimum start date; any article published 
prior to this date was included in the search). A Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) diagram (figure 1) guided the article screening 
process.32

Inclusion and exclusion criteria
Original studies were included if they were written in English 
or French. Inclusion criteria were developed using the Popu-
lation, Intervention, Comparison, Outcomes (PICO) and 
Population, Exposure, Comparison, Outcomes (PECO) 
methods33 34 for interventional and observational research, 
respectively. These are detailed in table  1 for each study 
objective.

https://dx.doi.org/10.1136/bmjopen-2021-054417
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There were no limitations to the population characteris-
tics (all populations/patient samples were included). Animal 
studies were excluded. Dietary interventions and observa-
tional studies involving omega-3 fatty acid consumption 
(total omega-3 or various types; supplemental and/or dietary 
intake) and comparing lipid and/or lipoprotein and/or 
apolipoprotein outcomes between different genetic varia-
tions based on omega-3 dietary or supplemental intake (and 
not blood fatty acid levels; eg, EPA and DHA in red blood 
cells) were included in the narrative synthesis. In included 
studies, samples had to be stratified on the basis of genetic 
variation. Specific lipid and lipoprotein outcomes of interest 
were: HDL-cholesterol, LDL-cholesterol, LDL particle size, 
total cholesterol, apolipoproteins and TG. Studies that 
reported ratios of the aforementioned lipid parameters 
(eg, HDL-cholesterol to total cholesterol ratio) were also 
included. Both observational and interventional studies were 
included, as well as single-gene, polygenic and genome-wide 
association studies. Differences in study designs and methods 
were considered when developing the overall evidence 
grades, as further detailed later. Associations/interactions 
reported in two independent studies formed the basis of the 
inclusion criteria for objective 2, in which nutrigenetic asso-
ciations/interactions were prioritised for evidence grading. 
This is further detailed in table 1 and in the Evidence grading 
section.

Article selection and data extraction
Two independent investigators (JK and VG) screened 
articles using the computer software Covidence (including 
title, abstract and full-text screening) and extracted data 
from the included articles. Reference lists of included 
articles and of a systematic review on a similar topic29 
were also screened for relevant articles. Data extraction 
templates were piloted by two independent investigators 
(JK and VG) on ten included studies and revised accord-
ingly. The final data extraction templates included the 
following components for each study: first author name 
and year, study design, genetic approach, population and 
sample size, study duration (interventional studies only), 
genes and single nucleotide polymorphisms (SNPs) 
analysed with rs numbers, quantity and type of omega-3, 
comparisons (eg, a control group or different amount/
type of omega-3s as well as genetic grouping), lipid/
lipoprotein/apolipoprotein outcome(s), whether or not 
the study reported that they followed the STrengthening 
the REporting of Genetic Association Studies (STREGA) 
guidelines and a summary of statistically significant study 
findings relevant to the research question. Corresponding 
authors of included studies were contacted as needed to 
provide clarity and/or additional information about the 
included studies.

Evidence grading
Upon reading all full-text articles included, and 
summarising the body of evidence (online supplemental 
file 1), SNPs/nutrigenetic risk scores (nutri-GRSs) and 
subsequent lipid/lipoprotein/apolipoprotein outcomes 

Figure 1  Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) flow diagram. *The original 
PRISMA flow diagram indicated the number of studies 
included in meta-analysis in this box. This has been revised 
for the purposes of this research.

Table 1  PICO/PECO for study objectives

PICO/PECO for objective 1

Population Human studies (adult and paediatric)

Intervention/Exposure Omega-3s (total omega-3 or various 
types; supplemental and/or dietary 
intake)

Comparison Genetic variation

Outcomes HDL-cholesterol, LDL-cholesterol, 
LDL particle size, total cholesterol, 
apolipoproteins and/or TG

PICO/PECO for objective 2*

Population Human studies (adult and paediatric)

Intervention/Exposure Omega-3s (total omega-3 or various 
types; supplemental and/or dietary 
intake)

Comparison Genetic variation in the same genetic 
location (gene(s) and SNP(s))

Outcomes The same outcome of interest 
among studies with the same genetic 
comparators: HDL-cholesterol, LDL-
cholesterol, LDL particle size, total 
cholesterol, apolipoproteins and/or 
TG

*Nutrigenetic associations/interactions were included in objective 
2, in the evidence grading process, irrespective of the findings, 
provided that they had been reported in at least two independent 
studies on the same gene(s) and SNP(s), and the same plasma 
outcome.
HDL, high-density lipoprotein; LDL, low-density lipoprotein; SNPs, 
single nucleotide polymorphisms; TG, triglycerides.

https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417


4 Keathley J, et al. BMJ Open 2022;12:e054417. doi:10.1136/bmjopen-2021-054417

Open access�

were systematically prioritised and selected for evidence 
grading, if a specific nutrigenetic association/interac-
tion was reported in at least two independent studies. 
To clarify, this refers to the same SNP(s)/nutri-GRS (or 
SNPs in strong LD) being assessed and influencing the 
same lipid/lipoprotein outcome in at least two studies. 
For these nutrigenetic associations/interactions, we 
proceeded with evidence grading, while including all 
studies relevant to the particular nutrigenetic associa-
tion/interaction, irrespective of the findings. Consistency 
of results was then one of several factors considered when 
grading the body of evidence. The Grading of Recom-
mendations Assessment, Development and Evaluation 
(GRADE) approach indicates that a single study rarely (if 
ever) results in strong evidence, but two studies (typically 
randomised controlled trials (RCTs)) can indicate strong 
evidence if they are graded highly using the GRADE 
criteria.35 Prior to selecting the nutrigenetic associations/
interactions (genetic variants and lipid/lipoprotein/
apolipoprotein outcomes) for evidence grading, LD was 
assessed using the SNIPA SNP Annotator Software36 for 
genes located on the same chromosome and arm (deter-
mined using the Online Mendelian Inheritance in Man 
database) as outlined in the summary of results’ tables 
in the column labelled ‘Cytogenic location of gene(s)’ 
(online supplemental file 1). Strong LD was defined as 
r2>0.8 and location <250 kb away from the index SNP loca-
tion. SNPs in strong LD were considered together for the 
purposes of evidence grading.

Based on our abovementioned predetermined criteria 
for specific nutrigenetic topic selection for evidence 
grading, nutrigenetic associations/interactions that were 
not included in the evidence grading process likely have 
weak evidence (at minimum due to lack of replication, 
eg, ZNT8 rs13266634 and HDL-c or TG responsiveness to 
omega-3, which has only been assessed in a single study37). 
According to the GRADE guidelines, when only a single 
study exists indicating significant findings for an outcome 
of interest (especially when the study is observational), 
the overall quality of the evidence is generally rated to be 
low or very low.38 Therefore, our process for prioritising 
nutrigenetic topics for evidence grading aimed to filter 
out specific nutrigenetic associations/interactions that 
would likely be deemed low or very low quality (based on, 
at minimum, lack of replication). Two authors (JK and 
VG) critically appraised the selected nutrigenetic inter-
actions using the GRADE methodology, with one modi-
fication.38 39 The modified GRADE approach consisted 
of the additional consideration of biological plausibility 
whereby evidence was considered for upgrading if there 
was evidence of biological plausibility for the nutrigen-
etic interaction. Nutrigenetic interactions were grouped 
according to studies assessing the same SNP(s)/nutri-GRS 
and lipid/lipoprotein/apolipoprotein outcome and the 
quality of the body of evidence (studies with significant 
and non-significant results) was rated; this process was 
guided by the GRADE evidence profile, which included 
consideration of risk of bias, inconsistency, indirectness, 

imprecision, publication bias, plausible confounding, 
dose–response and other factors.38 For example, different 
sources of omega-3s (eg, EPA+DHA vs ALA; food sources 
vs supplementation) were taken into consideration when 
grading the evidence through the analysis of indirect-
ness within the modified GRADE approach.38 39 Risk of 
bias was assessed in each of the included interventional 
and observational studies using the National Institutes 
of Health Study Quality Assessment Tools, in line with 
recently published recommendations for risk of bias 
assessments.40 To assess measures of precision, coeffi-
cients of variation (CV) were calculated based on outcome 
means (mean change or absolute values—whichever was 
used for the analyses) and SD. In cases where standard 
errors of the mean were reported, these were converted 
to SD to calculate the CV. The nutrigenetic interactions 
were each given an evidence grade of high, moderate, low 
or very low.

RESULTS
Figure  1 outlines the PRISMA flow diagram, which was 
used to guide the systematic review. Online supplemental 
tables 2 and 3 provide a summary of the 65 included 
studies. The results columns of online supplemental 
tables 2 and 3 (far right) indicate nutrigenetic findings 
that were statistically significant. There were many results 
from the included studies that were not statistically signif-
icant. It is important to highlight that any results related 
to the studies’ analysed SNPs and outcomes of interest 
that were not statistically significant are not indicated in 
the results column. No studies explicitly reported that 
they followed STREGA guidelines. LD analysis of SNPs 
tested in different studies revealed strong LD in several 
SNPs from the FADS gene cluster (see table 2 note). As 
such, LD was taken into consideration in the selection of 
nutrigenetic interactions selected for evidence grading.

Observational studies
Of the 65 included studies, 23 were observational with 
the majority of these being cross-sectional, as outlined in 
online supplemental table 2. A total of 62 221 participants 
were included in the observational studies. These studies 
assessed correlations among a number of different genetic 
variations and outcomes, with several studies assessing 
genetic variations in the FADS gene cluster,41–47 TNFα48–50 
and PPARα.51–53 Most studies (n=13) assessed total 
omega-3s.37 41 46–48 50 53–59 The intake and type of omega-3s, 
lipid/lipoprotein/apolipoprotein outcomes and associa-
tions revealed from these studies were variable as further 
detailed in online supplemental table 2. In the obser-
vational studies assessing genetic variation in the FADS 
gene cluster, some studies indicated significant gene–diet 
findings related to HDL-cholesterol, LDL-cholesterol, 
TG, total-cholesterol while other studies demonstrated 
no significant gene–diet interactions for these outcomes 
thus indicating notable inconsistency among the results, 
while considering that SNPs differed by studies.41–47 In 
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the observational studies focused on genetic variation 
in the TNFα gene, there was some evidence of a gene–
diet relationship for omega-3 and LDL-cholesterol, 
total-cholesterol and total-cholesterol:HDL-cholesterol 
ratio, but again, results differed between studies.48–50 For 
gene–diet relationships and PPARα genetic variation, 
individual studies indicated significant findings related to 
total-cholesterol, LDL-cholesterol, TG, apoC-III and LDL 
peak particle diameter.51–53 Comprehensive details of the 
observational studies are outlined in online supplemental 
table 2.

Interventional studies
Of the 65 included studies, 42 were interventional including 
16 randomised trials. Non-randomised studies included 
single arm clinical trials and sequential non-randomised 
cross-over interventions. For interventional studies, there 
were 6225 participants on combining all sample sizes of the 
included studies. Again, these studies assessed relationships 
between a number of different genetic variants and study 
outcomes. In more recent years, several studies (n=8) used 
a nutri-GRS or polygenic approaches2 60–66 given the plausi-
bility that many gene-lipid/lipoprotein/apolipoprotein and 
omega-3 interactions are polygenic in nature. Numerous 
studies assessed genetic variations in the FADS gene 
cluster,60 61 67–69 APOE,60 69–78 CD36,65 79 80 PPARγ2 (62,67,83–
85) and PPARα.81–83 Among these studies, results related to 
significant gene–diet (omega-3) associations influencing 
lipid/lipoprotein outcomes were generally inconsistent 
except for APOE (rs429358 and rs7412), omega-3 and TG 
in males only,69–73 75–78 and for a 31-SNP nutri-GRS, omega-3 
and TG.63 64 There was also consistent evidence to indicate 
a lack of association among PPARγ2 (rs1801282) genetic 
variation, EPA+DHA and LDL cholesterol.61 65 81 84 85 Most 
studies (n=40) used supplemental EPA and/or DHA sources 
of omega-3s for the dietary intervention (see online supple-
mental table 3). The dosage/intake and type of omega-3s 
were variable with EPA and/or DHA dosages ranging from 
0.5 to 3.7 g/day across different studies, and one study with 
an ALA intervention dosage of 8.1 g/day, as further detailed 
in online supplemental table 3.

Levels of evidence using GRADE
A total of 25 articles were included in the evidence grading 
process, representing 11 unique nutrigenetic associations/
interactions as outlined in tables 2 and 3, and online supple-
mental table 4. Through the modified GRADE process, it was 
determined that there is strong evidence (GRADE rating: 
moderate quality) for APOE genotypes (rs7412, rs429358), 
omega-3s and TG lowering in male adults only.69–73 75–78 
This evidence suggests that adult males (but not females) 
with the APOE-E3/E4 or E4/E4 genotype (rs429358, 
rs7412) tend to experience significant reductions in TG in 
response to 0.7–3.7 g/day of EPA and/or DHA, with higher 
dosages demonstrating greater TG lowering effects.69–73 75–78 
Furthermore, it was determined that there is strong evidence 
(GRADE rating: high quality) for using a 31-SNP nutri-GRS 
(detailed in online supplemental tables 5 and 6) to assess 

Table 3  Summary of risk of bias across SNPs and 
outcomes following omega-3 exposure/intervention

Study Risk of bias

CD36, rs1761667 and HDL-c

 � Dawczynski et al80 ⊝

 � Madden et al79 ⊝

CD36, rs1761667 and TG

 � Dawczynski et al80 ⊝

 � Madden et al79 ⊝

CD36, rs1049673 and HDL-c

 � Dawczynski et al80 ⊝

 � Madden et al79 ⊝

CD36, rs1527483 and TG

 � Zheng et al65 ⊕

 � Madden et al79 ⊝

ApoE, rs429358, rs7412 and TG

 � AbuMweis et al69 ⊝

 � Carvalho-Wells et al70 ⊕

 � Caslake et al71 ⊕

 � Dang et al72 ⊕

 � Jackson et al73 ⊝

 � Minihane et al75 ⊕

 � Olano-Martin et al76 ⊕

 � Paschos et al77 ⊝

 � Thifault et al78 ⊕

ApoE, rs429358, rs7412 and total-c

 � AbuMweis et al69 ⊝

 � Carvalho-Wells et al70 ⊕

 � Caslake et al71 ⊕

 � Dang et al72 ⊕

 � Fallaize et al54 ⊝

 � Jackson et al73 ⊝

 � Minihane et al75 ⊕

 � Olano-Martin et al76 ⊕

 � Paschos et al77 ⊝

 � Thifault et al78 ⊕

31-SNP nutri-GRS and TG

 � Vallée Marcotte et al63 ⊕

 � Vallée Marcotte et al64 ⊕

PPARg2, rs1801282 and LDL-c

 � Binia et al81 ⊝

 � Harsløf et al61 ⊕

 � Itariu et al84 ⊕

 � Lindi et al85 ⊝

 � Zheng et al65 ⊕

PPARg2, rs1801282 and total-c

 � Binia et al81 ⊝
 � Harsløf et al61 ⊕

Continued

https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
https://dx.doi.org/10.1136/bmjopen-2021-054417
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the effectiveness of omega-3s for TG lowering in adults with 
overweight/obesity in various ethnicities.63 64 The evidence 
suggests that in adults with overweight/obesity, lower GRSs 
demonstrate greater responsiveness to omega-3 supplemen-
tation.63 64

All other evidence that was evaluated was determined to 
be weak (GRADE rating: low or very low quality), as further 
detailed in table 2. Imprecision, indirectness and inconsis-
tency were common reasons for downgrading the evidence 
(refer to table 2 note). There was evidence for a plausible 
mechanism of action for most of the nutrigenetic interac-
tions that were graded; evidence of a dose–response was less 
common.

DISCUSSION
Overall, this systematic review found strong evidence (ie, 
GRADE ratings: moderate and high-quality evidence) 
for only a limited amount of evidence in this area: APOE 
(rs429358 and rs7412) genotypes and TG responsiveness 
to omega-3s in men, and a 31-SNP nutri-GRS and TG 
responsiveness to omega-3s in adults with overweight/
obesity. Limited evidence exists for individual genetic-
based responsiveness of omega-3s on apolipoprotein 
and/or LDL particle size, with no studies from the present 
comprehensive review meeting the criteria for evidence 
grading. This highlights the need for more replication 
studies in these areas. While more research exists on 

omega-3 responsiveness for other lipid outcomes such as 
total-c, HDL-c and LDL-c, the level of evidence for nutri-
genetic interactions related to these outcomes remains 
low. Again, more studies are needed related to these 
outcomes, including replication studies of previously 
identified nutrigenetic interactions. These studies should 
first replicate the interventions (ie, use the same type and 
amount of omega-3s as the original study), and recruit 
samples with similar characteristics to the original study. 
Once replication is established, research should then seek 
to expand the population studied to improve generalis-
ability and explore the effectiveness of different interven-
tions (ie, different formulations and doses of omega-3s). 
The variability of the interventions and sample sizes in the 
studies conducted to date often resulted in the quality of 
evidence being downgraded (see table 2). It should also 
be noted that study heterogeneity precluded the ability 
to conduct a meta-analysis. Thus, the GRADE approach 
worked well for evaluating the quality of the evidence 
given that this approach takes into consideration several 
factors when determining the quality of evidence such 
as risk of bias, indirectness of evidence, inconsistency or 
results, imprecision and publication bias.38

It is important to note that our results demonstrating 
strong evidence for interactions between APOE genotypes 
and lipid responses to omega-3s have notable ethical 
implications. Compared with non-carriers, carriers of 
APOE-E4 have a 15 times greater risk of developing Alzhei-
mer’s disease.86 Moreover, APOE genotypes are signifi-
cantly associated with CVD risk including risk of coronary 
artery disease and hyperlipidaemia.87–89 Interestingly, 
the pathology of Alzheimer’s disease has been linked to 
cardiovascular mechanisms.86 Future research should 
explore nutrigenetic interactions, with risk of developing 
Alzheimer’s disease as the study endpoint/outcome of 
interest. Despite the current lack of knowledge about 
how diet may play a role in mitigating the genetic-based 
risk of Alzheimer’s disease, several potentially modifi-
able risk factors account for around 40% of dementia 
and Alzheimer’s disease globally,90 and the link between 
Alzheimer’s disease risk and APOE is well-established.91 
Therefore, despite the strong scientific validity identified 
in the present review, there are other factors that must 
be considered before this test should be implemented in 
a practice setting; these include ethical, legal and social 
implications.92

In addition, our finding of strong evidence for APOE 
genotypes and TG responsiveness to omega-3s in men but 
not women speaks to the importance of taking biological 
sex into account in nutrigenetics research. The impor-
tance of this has been further highlighted elsewhere, 
where it has been noted that the results of nutrition and 
nutrigenetic research may differ in men and women.93 
For example, UDP-glucuronidation isoenzyme expres-
sion profiles have been demonstrated to be regulated 
by sex hormones, and thus sex-specific differences in 
glucuronidation of resveratrol have been observed.94 As 
more studies are completed, researchers may find that 

Study Risk of bias

 � Itariu et al84 ⊕

 � Lindi et al85 ⊝

 � Zheng et al65 ⊕

PPARg2, rs1801282 and TG

 � Binia et al81 ⊝

 � Harsløf et al61 ⊕

 � Itariu et al84 ⊕

 � Lindi et al85 ⊝

 � Zheng et al65 ⊕

FADS, rs174547 and total-c

 � AbuMweis et al69 ⊝

 � Alsaleh et al60 ⊕

 � Lu et al46 ⊝

 � Standl et al47 ⊝

 � Dumont et al43 ⊝

 � Dumont et al44 ⊝
 � Roke and Mutch67 ⊝

⊕ no serious risk of bias; ⊝ serious risk of bias; ⊝⊝ very serious risk 
of bias (for study design type using NIH Study Quality Assessment 
Tools).
GRSs, genetic risk scores; HDL-c, high-density lipoprotein cholesterol; 
LDL-c, low-density lipoprotein cholesterol; SNPs, single nucleotide 
polymorphisms; TG, triglycerides; total-c, total cholesterol.

Table 3  Continued
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certain nutrigenetic interactions differ depending on 
biological sex, ethnicity, age or other factors, similar to 
our findings on APOE, omega-3s and TG in which there 
was robust evidence of a nutrigenetic interaction in males 
only. Researchers may also find explanations for this, 
which are currently poorly understood. In general, it is 
becoming increasingly recognised that health-related 
responses to different interventions may vary based 
on biological sex; this is an important consideration of 
personalised nutrition.93 Nutrigenetic research often 
groups men and women together, but stratifying based on 
biological sex could provide further insights for specific 
nutrigenetic interactions and could also help explain why 
some replication studies have had conflicting findings.93 
Moreover, biomedical research in general historically has 
been conducted more in men than women. However, 
such research findings are often generalised to women 
despite limited research conducted in samples of women, 
which is problematic for a number of reasons.95 In the 
present review, the evidence was strong for the APOE 
findings in men only, but not women in part because 
there were more studies conducted in men. Specifically, 
there were five studies conducted in men and women 
(combined),69 71 72 96 97 and four studies conducted in 
samples of only men,73 76 77 98 yet no studies conducted 
in samples of only women. This brings to light important 
issues of equity and warrants further discussion and 
consideration.

As research continues to develop, it appears likely that 
lipid and lipoprotein responses are polygenic in nature. 
Therefore, future research should consider using nutri-
GRSs or other polygenic methods of assessing respon-
siveness to nutrition interventions. This work should 
use unbiased approaches or non-hypothesis driven 
approach to derive nutri-GRSs, such as establishing them 
from genetic-wide association studies. In addition to the 
two nutri-GRS studies meeting the criteria for evidence 
grading in the current work,63 64 a modified version of the 
31-SNP GRS was tested in men and women in the FINGEN 
study, using 23 of the 31 SNPs.63 While this did not meet 
our inclusion criteria for evidence grading given that a 
different GRS was used, the 23-SNP GRS was significantly 
associated with TG responsiveness to omega-3 supple-
mentation in this population as well, providing further 
evidence for the scientific validity of this nutrigenetic 
interaction.63

While we used a modified version of the GRADE 
approach (with the additional consideration of biolog-
ical plausibility) to evaluate the body of evidence, several 
tools are available for evaluating the quality of scientific 
evidence. In 2017, Grimaldi et al proposed a set of guide-
lines to assess the scientific validity of genotype-based 
dietary advice.30 While we originally intended to use these 
guidelines for assessing the evidence, we came across 
some limitations that ultimately led us to use the GRADE 
guidelines. Specifically, Grimaldi et al suggested that 
only studies that include STREGA guidelines should be 
included in the assessment of scientific validity.30 However, 

limiting the evidence to only these studies could result 
in several important studies being missed. In the present 
review, none of the included studies explicitly indicated 
that they followed STREGA guidelines. In addition, it was 
recommended by Grimaldi et al to use STREGA guide-
lines to assess risk of bias.30 However, the STREGA check-
list is only intended for observational genetic association 
studies—not interventional research.99 In the present 
review, 42 of the 65 included studies were interventional 
(65%) (online supplemental table 3). In addition, the 
STREGA guidelines are intended to improve the trans-
parency and adequate reporting of genetic association 
studies, but it is not intended to be used as a study quality 
assessment tool.99 However, Grimaldi et al nicely high-
lighted the importance of understanding the nature of 
the genetic variation, at a functional level, when assessing 
scientific validity.30 This is not included in the standard 
GRADE approach but is an important niche component 
of nutrigenetic evidence evaluation. As such, an analysis 
of functional SNPs (biological plausibility) was included 
as an additional component of the standard GRADE 
process, as indicated in the Methods section. Overall, we 
found that the methods used in this systematic review 
were effective and can be used to synthesise and eval-
uate nutrigenetic studies assessing other gene–nutrient–
health outcome interactions.

The additional consideration of functional SNPs to the 
standard GRADE approach helped to strengthen this 
review, as biological mechanistic evidence can help ensure 
that study findings did not occur by chance alone; this is a 
standard component of evidence evaluation frameworks 
in medical genetics.100 101 Transcriptomic and pathway 
analyses can help inform the direction of future nutrige-
netic studies by generating hypotheses about the impact 
of specific genetic variations on varying responses to 
nutrition on health-related outcomes. For example, using 
transcriptomics and pathway analyses to identify changes 
in lipid metabolism following omega-3 supplementation, 
Rudkowska and colleagues identified six genes expressed 
in opposite directions between responders and non-
responders to omega-3 supplementation for TG lowering: 
FADS2, PLA2G4A, ALOX15, PEMT, MGLL and GPAM.102 
Tremblay et al then built on this knowledge and discov-
ered that PLA2G6 rs132989, PLA2G7 rs679667, PLA2G2D 
rs12045689, PLA2G4A rs10752979 and rs1160719 
together explained 5.9% of post-omega-3 supplementa-
tion TG levels, with several individual PLA2G4A SNPs also 
having a significant impact on the TG lowering effect of 
omega-3 supplementation.103 Others have built on this 
mechanistic knowledge as well.104 Future research should 
now seek to replicate this work given that we found that 
there have been no replication studies completed and 
thus, this research103 104 did not meet the criteria for 
evidence grading.

In the current body of literature, there are some limita-
tions that should be highlighted. Given the variability in 
allele frequencies for each SNP, it should be noted that 
study limitations can arise with small sample sizes whereby 

https://dx.doi.org/10.1136/bmjopen-2021-054417
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some genotype groups may not be adequately powered to 
detect significant differences. For example, Dawczynski 
et al detected significant changes in TG among the GA 
genotype group of CD36 rs1761667 (n=18) in response 
to omega-3s but neither of the homozygote groups (AA: 
n=8, GG: n=7) exhibited a significant difference, despite 
similar directions and magnitudes of effect among the GA 
and GG genotypes.80 It is thus possible that this study was 
not adequately powered. Some researchers aim to miti-
gate this issue of small numbers by grouping minor allele 
carriers together (ie, heterozygotes+homozygotes for the 
minor allele).67 However, such an approach precludes the 
possibility to detect an allele-dosage effect. From a phys-
iological perspective, an allele dosage effect would be 
expected whereby a significant change among a hetero-
zygote group would likely be accompanied by a signifi-
cant change in one of the homozygote groups but with 
an even greater magnitude of the effect. This consider-
ation highlights the importance of having an adequately 
powered sample size, while factoring in the prevalence of 
each genotype.

While single SNP research provides important infor-
mation about individual gene–nutrient interactions, the 
results of this review indicate that individual responses 
to omega-3s for altering lipids, lipoproteins and apoli-
poproteins appear to be polygenic in nature. Thus, we 
encourage researchers to further explore the use of nutri-
GRSs to improve the accuracy of genetic-based predic-
tions. See, for example, the work of Vallée Marcotte et 
al, which obtained a high-quality evidence grade in the 
present review.63 64 This is further exemplified in the anal-
yses recently conducted by Chen et al,41 which has yet 
to be replicated and thus was not selected for evidence 
grading.

The present analysis of scientific validity provides an 
important first step towards the development of clinical 
practice guidelines for genetic-based responses to dietary 
intake, which have been recently published.105 With 
questionable and variable scientific validity of existing 
consumer nutrigenetic tests, the development of clinical 
practice guidelines is an important accomplishment as 
these can be used by healthcare professionals (HCPs) and 
industry alike to help promote evidence-based practice in 
personalised nutrition. Ideally, industry should use clin-
ical practice guidelines to inform the nutrigenetic asso-
ciations and related dietary recommendations included 
in their reports. Decision aids can also be useful to guide 
clinical practice for HCPs,106 and future research should 
seek to develop a decision aid related to omega-3s and 
lipid/lipoprotein outcomes based on genetic variation.

It should be noted that there are some limitations to 
the present systematic review. First, the literature was 
searched up until August 2020; as such, any articles 
published after this date were not included. Furthermore, 
certain nutrigenetic associations/interactions were prior-
itised for evidence grading therefore evidence grades 
remain unknown for numerous associations/interactions 
included in the narrative synthesis. However, evidence 

from a single study typically results in an evidence grade 
of low or very low using the GRADE approach,38 therefore 
it is unlikely that any/many nutrigenetic associations/
interactions with strong scientific validity (which could 
be considered for use in clinical practice) were missed. 
Future research groups may choose to instead select a 
specific SNP or nutri-GRS as the focus of future system-
atic reviews. The specific SNP or nutri-GRS chosen may 
be selected based on the results of a preliminary scoping 
review. This would allow for all articles included in the 
systematic review to undergo evidence grading. The 
approach taken in the present review was more compre-
hensive, but has its limitations as stated earlier.

Overall, we have provided a comprehensive overview of 
the body of evidence related to nutrigenetics, omega-3s 
and plasma lipids/lipoproteins/apolipoproteins, while 
providing an overview of levels of evidence in this field. 
To our knowledge, this is the first systematic review with 
GRADE evidence evaluation in the broader field of nutri-
genetics. The results of this work should be used in clin-
ical practice guideline development, to ultimately guide 
evidence-based practice in personalised nutrition and 
move this emerging field forward.
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