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Abstract

Steering law reveals a linear relationship between the movement time (A7) and the index of
difficulty (/D) in trajectory-based steering tasks. However, it does not relate the variance or
distribution of MTto /D. In this paper, we propose and evaluate models that predict the variance
and distribution of MT based on /D for steering tasks. We first propose a quadratic variance model
which reveals that the variance of MT is quadratically related to /D with the linear coefficient
being 0. Empirical evaluation on a new and a previously collected dataset show that the quadratic
variance model accounts for between 78% and 97% of variance of observed M7 variances;

it outperforms other model candidates such as linear and constant models; adding the linear
coefficient leads to no improvement on the model fitness. The variance model enables predicting
the distribution of M7 given /D: we can use the variance model to predict the variance (or scale)
parameter and Steering law to predict the mean (or location) parameter of a distribution. We have
evaluated six types of distributions for predicting the distribution of A/7. Our investigation also
shows that positively skewed distribution such as Gamma, Lognormal, Exponentially Modified
Gaussian (ExGaussian), and Extreme value distributions outperformed the symmetric distribution
such as Gaussian and truncated Gaussian distribution in predicting the MT distribution, and
Gamma distribution performed slightly better than other positively skewed distributions. Overall,
our research advances the MT prediction of steering tasks from a point estimate to variance and
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distribution estimates, which provides a more complete understanding of steering behavior and
quantifies the uncertainty of M7 prediction.

Keywords
Steering law; probabilistic modeling

1 INTRODUCTION

Steering law [1] predicts that the movement time (MT7) for steering a pointer through a
tunnel with width Wand length A is determined by the ratio of %, that is:

MT =t b (1) .
where aand b are empirically determined parameters. Past research [1] has shown that
Steering law well predicts MT in a wide range of trajectory-based HCI tasks including
steering through straight, circular, or narrowing tunnels. Steering law has also been widely
used in interface and interaction design such as modeling the selection time in hierarchical
menus [1], and game-playing behaviors [4].

Despite its success, however, one limitation of Steering law is that it provides only a point
estimate on M7 - namely the mean of M7. While there is no doubt that the mean is an
important statistic, it reflects only the central tendency and provides no information on the
dispersion of the data. Summarizing a distribution into one statistic inevitably introduces
information loss. To provide a more complete understanding of steering movement, could
we also estimate the variance of M7, and then predict the full distribution of M7? In
addition to deepening our understanding on steering movement behavior, variance and
distribution estimates can predict the probability of observing a particular MT value or
range, and quantify the uncertainty of the M7 estimate.

Modeling the variance and distribution of interaction time has gained attention as it provides
a more complete understanding of users’ behaviors and quantifies the prediction uncertainty.
For example, past research [23] has shown that the variance of MT in pointing tasks
increases as the index of difficulty (/D) of a pointing task increase, and the MT distribution
of pointing tasks can be modeled by Lognormal [20], Gamma [14], Extreme value [6], and
Exponentially Modified Gaussian (exGaussian) [11, 12] distributions.

However, in contrast to Fitts’ law, our understanding of the variance and distribution of MT
of steering law tasks is limited. Is the variance of M7 of steering law tasks also related to /D
of a task? Is it constant or does it increase as /D increases? What is the distribution of M7?
Can we also develop mathematical models that can predict the variance and distribution of
MT based on /D? We aim to answer these questions in this research.
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In this paper, we have proposed models for predicting the variance and full distribution of
MT in trajectory-based movements [1]. We first propose a quadratic variance model, which
predicts that the variance of MT is quadratically related to the index of difficulty /D:

62=c+d-ID% @

where ¢, and dare empirically determined parameters. The /D s defined as ID = % [1]. We

refer it as quadratic variance model, which reveals that the variance of AT is quadratically
related to /D with the linear coefficient being 0. Our evaluation on two steering law datasets
shows that this variance model can well predict the variance of MT in different types of
steering tasks including steering through straight, narrowing and circular tunnels. It accounts
for 78% to 97% of variance of observed MT variances, and outperforms other models
including constant, linear, and quadratic models with a linear term.

Second, we combine the quadratic variance model with the typical Steering law to predict
the distribution of M7. We use Steering law to predict the mean (or location) parameter, and
the quadratic variance model to predict the variance (or scale parameter) of MT distribution.
We evaluated six types of distributions, including Gaussian, truncated Gaussian, Lognormal,
Gamma, Extreme Value, and Exponentially Modified Gaussian (exGaussian) distributions.
These distributions have been used to model MT distributions in pointing tasks. In the
present research, we extend them to model the variance and distribution of M7 in steering
tasks. Our investigation showed that using the quadratic variance model and Steering law
can well predict the distribution of M7, and positively skewed distributions such as Gamma,
exGaussian, Lognormal, and Extreme value distributions better model the MT distributions
than other types of distributions such as Gaussian and Truncated Gaussian distributions.
Next, we will review the literature, and discuss the explanation and validation of the
quadratic variance and distribution models.

2 RELATED WORK

We review previous research on Steering law and probabilistic modeling, and discuss how
our work is built on and contrasts with them.

2.1 Steering Law Research in General

Steering law [1, 8, 22] has played an important role in interface design, optimization, and
evaluation along with the Fitts’ law [9] in which Steering law is derived from. It has been
proposed three separate times by Rashevsky [22] on automobile driving, Drury [8] on
drawing tasks, and Accot and Zhai [1] on trajectory-based tasks on computer interfaces.
Because the steering tasks are crucial in the interaction on graphical user interfaces,
understanding, evaluating, and predicting the steering performance is of great interest to
HCI practitioners and researchers. Steering law has various applications, for example: to
help navigate through immersive virtual environments [18, 30], to design and evaluate input
devices [2, 16, 24], to optimize user interfaces [3] and so on.

Researchers [15, 17, 19, 25, 31] have provided various refinements and interpretations
of /D. For example, by accounting for the subjective operational biases, Zhou [31]
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suggested 1D = % for a standard deviation of sample points SD. Furthermore, Kulikov

[15] introduced an effective index of difficulty /D, that includes the spatial variability in
steering law models to replace the original index of difficulty /D. Nancel and Lank [19]
recently combined Steering law with path curvature radius /and they showed that steering
speed increases when R increases. This result is different from Montazer et al’s [17] findings
which state that the movement speed increases as 1/R decreases. These different results are
solved by Yamanaka and Miyashita [25] through integrating different formulas to be a united

one. As customary, we have adopted Accot and Zhai’s formulation of /D [1], which is %,

since it is the most widely used in HCI.

Some other researchers [21] have provided various models to accommodate different path
shapes. For example, models are proposed for steering through a corner [21], narrowing and
widening paths [26, 27], and constrained path segments [28, 29].

Although the models mentioned above explain why MT is linearly related to /D, they do not
reveal the relationship between variance and distribution of M7 with /D. Our research built
upon Accot’s steering model [1], extending it to reveal the relationship between variance and
distribution of MTand /D.

2.2 Variance and Distribution of Movement Time in Motor Control Tasks

Although there is a sizable amount of work investigating how the mean of M7 relates to the
1D, the investigation on the variance and distribution of AT is sparse. One of the relevant
works was the research conducted by Zhou and Ren [31], which showed that the standard
deviation of MT increases as A and Wincreases. However, Zhou and Ren [31] did not
investigate how the distribution of MT related to the task parameters.

Although the literature on variance and distribution of Steering law is sparse, there has been
a sizeable amount of interest in understanding and modeling the variance and distribution
of MT in other motor control tasks, such as Fitts” law. Our research is particularly related
to the previous research investigating the variance and distribution of M7 in Fitts” law tasks
because both Fitts’ law and Steering law reflect the regularity of the human motor control
system.

Regarding Fitts” law, it has been observed that the variance of MT is not constant across /Ds
(e.g., [6, 11, 14]). In contrast, it is positively related to the /D of the tasks: the higher the /D,
the wide the dispersion of MT. It coincides with many psychophysics observations that the
standard deviation of a quantity increases with its mean value [23]. Our quadratic variance
model reveals that the variance of MT on steering task is quadratically related to /D, which
is similar to previous findings on Fitts’ law.

There is also plenty of research investigating the distribution of MT in Fitts’ law. Previous
research (e.g., [6, 11, 14, 20]) suggested that the distribution of MT in Fitts’ law tasks
tends to have a positive skew: it has a long tail in the positive direction. To account for
both characteristics, a number of possible models including Gamma [14], Log-normal [20],
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Generalized Extreme Value [6], or exponentially modified Gaussian (called exGaussian)
distributions [11] have been suggested.

Inspired by the aforementioned previous research on Fitts” law, this research investigated
whether these distributions can be applied to model M7 distribution in Steering tasks. Next,
we describe the intuition-driven explanation of the quadratic-variance model and distribution
models for steering tasks, followed by model evaluation.

3 MODELING THE VARIANCE OF MOVEMENT TIME

We first investigated how to model the variance o? of MT given /D of a steering task. Our
intuition-driven explanation shows that o2 is likely quadratically related to /D

62=c+d-ID? ©)

where cand dare empirically determined parameters. Equation 3 is also referred to as
quadratic variance model.

3.1 Explanation of Quadratic Variance Model

We hypothesize this quadratic relationship by assuming that (1) the movement of the pointer
in the steering task consists of multiple sub-movements and (2) each sub-movement takes

a unit time which is a random variable #with a fixed mean () and variance (o£) across

all sub-movements. The first assumption is consistent with the observation in other motor
control tasks (e.g., Fitts’ law) that the pointer movement can be broken into multiple
sub-movements.

Based on these two assumptions, we can obtain the quadratic variance model (Equation

3) as follows. First, it is straightforward to obtain that the number of sub-movements is
proportional to /D (explained later). Second, as the variance of submovements accumulates
during the process, the variance of M7 will increase if /Dincreases. If the duration of
submovement is represented by a random variable #with a fixed mean (x) and variance
(of), simple analysis as shown below reveals that the variance of MT is quadratically related
to /D.

Take the constant tunnel as an example. The instantaneous speed form of steering law [1]
specifies that the instantaneous speed v of the pointer is proportional to the tunnel width WA

v=— )

where bis a constant. Under the aforementioned assumptions, the average travel distance of
the pointer in each sub-movement (denoted by A) is calculated as follows:

w
A=/4t‘U=Mt‘T’ ®)
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where £;is the mean duration of each sub-movement, Wis the width of the tunnel and &
is an empirically determined constant. The number of sub-movements (denoted by ) a user
needs to complete the steering task is calculated as:

A . b
n=—-= :ID—, 6
a4 W He ©

where A is the length of the tunnel. Equation 6 indicates that the number of sub-movements
nis proportional to /D. Therefore, the total time AT for completing the task is

MT =n-t, (7
where tis a random variable, representing the duration of each submovement.

Equation 7 shows that MT is the product of a random variable #and the number of sub-
movements 7. It implies that variance of M7 will be n? - 62, where 67 is the variance of ¢,

regardless of the distribution type of # Plugging in Equation 6, we can calculate o2 as:

p\2 b - 62
O'2=n2-0't2=(A b) .62=1D*- 2’
My

()]
Wy

where b, 15, and o are all constant. Equation 8 shows that o2 is proportional to /02,

If it is assumed that the initial sub-movement takes some extra time to activate the
movement, this extra time should be added to M7. MT then becomes the summation of two
random variables. The uis expressed as the summation of the means containing two random
variables and the o2 is the summation of the variances of these two random variables:

62=c+d-ID? ©)

where cand dare all constants. Equation 9 implies that variance of M7 is quadratically
related to /D.

Extending quadratic variance model to non-constant tunnels.—For non-constant
tunnel, the instantaneous speed of the pointer at the location sis expressed in Equation 10:

o(s) = 95 = ),

(10)

where ($) is the instantaneous speed of a pointer at position salong the tunnel, (s)
is the width of the tunnel at point s, and 4 is a constant. The mean travel distance in a
sub-movement at location s (denoted by A(S)) then becomes:

As) =ty 00s) = - T4, an

where W) is the width of tunnel at location s. The number of sub-movements then
becomes:
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ds b
/ (s) / W(s) 7, W~ w P (12)

As shown in Equation 12, the number of submovements will also be linearly related to /D
for non-constant tunnels. Simple derivation as shown from Equations 7 to 9 reveals that the
variance of MT is quadratically related to /D.

Alternative Explanation of Quadratic Variance Model.—We can alternatively
explain the quadratic relationship between variance of M7 and /D based on the common
observation in psychology experiments that the variability of response time increases with
task difficulty increases [11, 23].

More specifically, previous research [23] shows that the standard deviation of response time
is often linearly related to its mean. A greater mean results in greater variability. The MT
in steering task is one type of such response times and we expect it will also follow this
relationship. Therefore, it implies that the standard deviation of MTis linearly related to the
mean of MT7. A similar explanation was made about the variance of Fitts’ law tasks in the
previous research [11]. We expect the variability of MT in steering tasks conforms to this
relationship too, drawing on the findings from previous work [11, 23].

Because variance is the square of standard deviation, it implies that the variance of MTis
quadratically related to the mean of M7. As mean of MTis linearly related to /D (Steering
law, Equation 1), it implies that variance of MT is quadratically related to /D. This simple
alternative explanation also lead to a similar conclusion as the quadratic variance model
(Equation 3), confirming the validity of explanation in the previous section.

3.2 Other Variance Model Candidates.

Besides the quadratic variance model, we also introduce 5 other candidates to model
variances. They are constant, linear, and quadratic forms with different complexity levels.
All of the six model candidates are listed in Table 1. Among these 6 candidates, constant
(#1) and linear (#3) models are used to investigate whether quadratic term would help

to improve the fitting accuracy while #2, #5 and #6 models are compared with quadratic
variance model #4 to see whether a candidate with higher or lower complexity would benefit
model fitness.

4 MODELING THE DISTRIBUTION OF MOVEMENT TIME

Combining variance models and Steering law, we can predict the distribution of MT
according to different /D. We introduced six kinds of distributions which are Gaussian,
Truncated Gaussian with lower bound 0, Lognormal [20], Gamma [14], Extreme value
(GEV) [6], and Exponentially modified Gaussian (ExGaussian) [11, 12] distributions.

The reasons why we bring these models into comparison are as follows. The Gaussian
distribution is the model with a maximum entropy given a mean and variance. And it is
usually a good candidate as the least-informative default [13]. While truncated Gaussian

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2022 February 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al. Page 8

reflect that M7 has a natural lower bound. So, we proposed both Gaussian and truncated
Gaussian models. In addition, the distribution of M7 in Fitts’ law is suggested as positively
skewed. Previous work showed that the distribution of Lognormal [20], Gamma [14],
Extreme value (GEV) [6], and Exponentially modifed Gaussian (exGaussian) [11, 12] can
be used to model the M7 distribution in Fitts” law. Since Fitts’ law and Steering law both
reflect the regularity of the human motor control system, we included the models that

have been used to model Fitts” law MT distributions as candidates for M7 distribution in
Steering tasks too. Among three types of Extreme value distributions, we chose Extreme
value type I, the one with a shape parameter as zero. In the previous Fitts” law study [6], the
shape parameter fitted was approximately 0 (ranging between 0 and 0.4) when the authors
used Generalized Extreme value distribution to model distribution of M7. This suggested
that type | could serve as a suitable candidate. All the distributions mentioned above are
described in Table 2.

We constructed a distribution model in three steps. (1) Give a distribution type £©)
parameterized by a vector ®, we expressed its mean (M) using Steering law: M=a+ b

- ID, and expressed its variance (V) using one of the six variance models in Table 1. For
example, if we adopt the quadratic variance model, it means V= ¢+ ¢ /0. (2) We expressed
the parameter vector ® using Mand V. Take the Gamma distribution as an example. As

a Gamma distribution can be parameterized as X~ I'(a, £), we used Mand V'to express

2
the parameters a and Sas a = MT and g = % Table 2 shows how the parameter vector

© of each distribution is expressed using Mand V. (3) We matched the distribution model
with the empirical MT data to estimate the parameter values, such as &, b, ¢, and d'in the
aforementioned Gamma distribution example. This procedure was also called model fitting.
We achieve so using the probabilistic modeling language Stan [5]. Stan used a Bayesian
method to fit the model. After we described the model and provided the data, Stan calculated
the posterior distribution of the model parameters using the Hamiltonian Monte Carlo
(MCMC) sampling method. Please refer to Appendix B for sample Stan code of describing
the Gamma model. Note that for a truncated Gaussian distribution we used the Steering law
and a variance model to predict the mean and variance for the original Gaussian distribution
before the truncation (which are also called location and scale parameters in the truncated
Gaussian), because (a) we view a truncated Gaussian is a simple modification of the original
Gaussian distribution by reflecting the natural lower bound of movement time (i.e., 0), (b)
there is no analytical form to express the parameters of a truncated Gaussian (i.e., location
and scale o) using Mand V.

In total we have 31 distribution model candidates. For 5 distribution types, namely Gaussian,
Truncated Gaussian, Lognormal, Gamma, and Extreme value distributions, each of the

6 variance models in Table 1 can be used to predict the variance parameters. For the
ExGaussian distribution, previous research [11] shows that it naturally implies a quadratic
relationship between variance and /D, so we use only the quadratic variance model for this
distribution as shown in Table 2. Therefor we have 31 models in total:

6 variance models X 5 distribution types + 1 ExGaussian model = 31 distribution models
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Next, we evaluate the variance models and distribution models using a stylus-based steering
task data set (Zhou and Ren’s dataset [31]), and a mouse cursor-based steering law data set
collected in the present research.

5 EVALUATION ON A STYLUS-BASED STEERING LAW DATASET

We first evaluate the variance and distribution models on a stylus-based steering law data set
collected by Zhou and Ren [31].

5.1 Zhou and Ren’s Steering Law Dataset

This Zhou and Ren’s dataset [31] was collected from 10 participants who were divided into
two groups randomly. The participants in each of the groups were required to perform a
straight tunnel and a circular tunnel steering task with a stylus. Both tasks had 9 conditions
with 3 amplitude (66.1, 92.6, 119.1 mm) and 3 width (2.6, 6.6, 10.6 mm) pairs with

9 distinct /Ds. We only choose the operation strategy with neutral (N) because neutral
instruction means the experiment accuracy and speed have the same level of importance in
our study while other strategies would result in bias. There were 9 trials for each participant
under each /D condition. Therefore, in each task, we obtained 810 trials (10 -9 -9 =

810) totally. Zhou and Ren’s steering law dataset was a stylus-based mouse movement,
complementing our dataset (explained later) which was based on mouse steering movement.
Evaluating this data set would help us further identify the fitness of variance and distribution
models.

5.2 Evaluating Variance Models

In order to model the MT variance, we introduced six model candidates (Table 1). In each
condition of the two tasks, we calculated the MT variance and used a typical MLE method
to fit these six candidates. Table 3 shows model parameters, A2 value, leave-one(A, W)-out
cross-validation Root mean square error (RMSE), Akaike information criterion (AlIC), and
Widely Applicable Information Criterion (WAIC) for the three tasks. For the leave-one(A,
WM)-out cross-validation, we separated the dataset into testing data and training data. The
testing data contained one (A, W) condition while the training data contained the rest of
them. We fitted the training data to get the model parameter and calculated the RMSE based
on the testing data. We repeated this procedure 12 times since each of the (A, W) conditions
was chosen as testing data once. We calculated the mean and standard deviation of RMSE
based on 12 cross-validations to verify whether the overfitting occurred in the variance
model candidates. AIC and WAIC metrics are widely adopted as information criteria to
compare the fitness of the dataset and the complexity of the model (i.e., the number of
parameters) between different models. Figures 2 — 3 visualizes variance prediction against
observed variance of M7 of six variance candidates in each of the straight, and circular
tasks.

As shown in Table 3 and Figures 2 — 3, the quadratic-variance model (Model #4 in Table

1) proposed according to the instantaneous form of Steering law performs well in modeling
variance. This model outperforms other variance model candidates in AIC, WAIC, and
leave-one-(A, W)-out cross-validation in both straight tunnel and circular tunnel tasks. In
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the observed MT variance, although the quadratic variance model (#4) accounts for around
78.5% variation for the straight task and 84.4% for the circular task which are lower than

or equal to the quadratic variance model with a linear coefficient (78.8% variation for the
straight task and 84.4% variation for the circular task) correspondingly, the latter one (Model
#6 in Table 1) overfits the data in both tasks since the RMSE of leave-one-(A, W)-out
cross-validation increases compared with the quadratic variance model (#4). Besides, the
AIC and WAIC results also suggest that the quadratic variance model (#4) in both straight
and circular tunnel performs the best among all variance candidates within its task after
taking the model complexity into account.

We also compared the quadratic variance model (Model #4 in Table 1) with models that use
Aor Wonly to predict variance. Zhou and Ren [31] observed that standard deviation of M7
increased as A or Wincreased, and further proposed to model ocby o= c+ d- A oro=c+
d- W. Their models indicated that variance can be modeled as:

62 =(c+d- A (13)
or
2 =(c+d W), (14)

where cand dare all constant. We evaluated these two models on this data set. The /2 value
for Equation 13 were 0.248 (straight tunnel), and 0.268 (circular tunnel), and for Equation
14 were 0.053 (straight tunnel) and 0.093 (circular tunnel). All of them were much lower
than the quadratic variance model. It indicates that it is more appropriate to use /D, rather
than A or Wto model variance.

5.3 Evaluating Distribution Models

In addition, we introduced 6 distribution model candidates (Table 2) to model the
distribution of MT. As explained in Section 4, we used Steering law (Equation 1) to predict
its mean (or location parameter) and variance models (Table 1) to predict its variance (or
scale parameter). As a result, we end up having 31 model candidates

Fitting Models.—We calculated the parameters for 31 model candidates using the
Bayesian method. We used Stan [5] to fit these models and obtained the distribution of their
parameters. Since we have no prior knowledge of the parameters, We set the parameters
priors as uniform distribution. We adopted the default setting that used 4 chains in Markov
chain sampling. Each chain contained 1000 iterations. The Rhat values were often used as
an indicator to measure whether chains had converged or not. These values in our models
were all close to 1.0, meaning the Markov chains had converged. Table 4 described the
distribution of model parameters (mean and 95% credible interval).

We compared the prediction accuracy of 31 model candidates on probability M7 distribution
to evaluate these models. Concretely, we used the three following metrics to investigate
prediction accuracy. The results of 31 model candidates were showed in Tables 8 — 9 from
Appendix.
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Information Criteria.—We used WAIC (Widely Applicable Information Criterion) and
AIC (Akaike Information Criterion) [10] to compare prediction accuracy for 31 distribution
model candidates regarding M7 distribution. For WAIC and AIC, a lower value indicated
better prediction accuracy of the model. These two metrics also took the penalty of the
number of parameters, over-fitting control, and model complexity into account.

Tables 4 shows the fitting results for quadratic variance models (Model #4 in Table 1) in
both straight and circular tasks on Zhou and Ren’s steering law dataset. As shown in both
tasks, the Gamma, Lognormal, Extreme value and exGaussian distributions outperformed
Gaussian and truncated Gaussian distributions.

Posterior Predictive Checking on Probability Density Function.—We also
provided further evaluation for 6 model candidates by performing posterior predictive
checking on Probability Density Function (PDF) of MT. In straight and circular tunnel
tasks, the variance predicted by the quadratic variance model (Table 4) performed best (or
second-best) among all distribution types in both tasks. We draw simulated curves from
the posterior predictive distribution from randomly generated variables according to the
parameters learned from each dataset and compared the simulated curve with the observed
curve. In order to estimate a random variable’s PDF, we used kernel density estimation
(a.k.a Parzen—-Rosenblatt window method) [7] to simulate the observed probability density
function. The simulated curve and observed curve should be similar to each other if the
model fits well. This method showed the degree of similarity between the predicted PDFs
and the observed PDFs regarding MT distributions.

In each of the two tasks, posterior predictive checks on PDF of MTa cross (A, W) pairs
were simulated. Concretely, we first generated 100 samples based on model parameters’
posterior distributions, providing 100 sample models. Then, for each model generated, we
sampled 2000 data points and used these points to plot the probability density functions
(PDF) against the observed PDF regarding MT. As a result, 100 predicted PDFs were
presented for each (A, W) condition using each distribution model. We included all the
predicted PDFs associated with the observed M7 PDF (Figure 4). The simulated curve and
observed curve should be similar to each other if the model fits well.

Figure 4 shows the results for 3 conditions in each of the straight and circular tunnel tasks.
As shown, the predicted PDFs from Gamma, lognormal, Extreme value, and exGaussian
models resembled the observed data, indicating a strong fit.

Next, we carried out an experiment to evaluate 6 variance models and 31 distribution models
on our newly collected steering law dataset.
6 EVALUATING VARIANCE AND DISTRIBUTION MODELS VIA A TUNNEL
STEERING EXPERIMENT

In order to further evaluate the variance and distribution models introduced, we conducted a
mouse cursor-based steering law study.
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6.1 Participants and Apparatus

Twelve participants (5 females, 7 males) aged from 21 to 44 (mean = 28.9, std = 6.2)
participated in our user study. All of them claimed that they used GUI on a daily basis
and had laptops using experience. An ASUS Q551L laptop computer with a Windows 10
operating system was adopted as the main device to run the user study. It had a screen size
of 15.4 inches and a resolution of 1920 x 1080. Before the study, we turned of the mouse
acceleration and adjusted the cursor speed to the midpoint (10/20) in the system settings.

6.2 Procedure and Design

6.3 Data

Three steering tasks were considered in our study: a straight tunnel task, a narrowing tunnel
task, and a circular tunnel task. Each of them contained 12 (A, W) pairs with 12 unique /Ds
due to unrepeatable /D. Table 5 shows the amplitude (A) and width (W) chosen for each of
the three tasks. In each (A, W) condition, the participant was instructed to steer the cursor
through the tunnel as quickly and accurately as possible. The order of three types of tunnels
(straight, narrowing, and circular tunnels) were fully counter-balanced across participants.
The orders of 12 (A, W) conditions in each task were randomly chosen for each subject.

At the beginning of a trial, one of the three types of tunnels was displayed in grey on

the computer screen (Figure 5). A participant was instructed to move the cursor across the
starting line to start the trial. Upon crossing the starting line, the tunnel turns in green,
indicating that the trails started. The mouse trajectory was displayed in blue once the

trial started. After the cursor was steered through the tunnel and crossed the ending line,
the trail ended successfully and a new trial appeared. If the cursor crossed the boundary
of the tunnel in the middle of the trial, the tunnel turned red, indicating a failure. The
participant was then required to re-do the trial. For a narrowing tunnel (Figure 8(b)), the
width instantaneous changed at each position along the tunnel, which resulted in a shrinking
width from the left to the right. For both straight and narrowing tunnels (Figure 8(a, b)),
participants were instructed to steer from left to right, and for a circular tunnel (Figure
8(c)), the subject steered in the counter-clockwise direction. A participant was required to
successfully complete 10 trials in each (A, W) condition for a specific type of tunnel, in
order to move to the next (A, W) condition.

In total, our study included:

3 tunnel types X 12 (A, W) combinations X 10 successful trials X 12 users = 4320 successful trials .

In the three tasks, we collected 1511 trials for the straight tunnel, 1559 trials for the
narrowing tunnel, and 1700 trials for the circular tunnel. After removing unsuccessful trials,
we ended up with 1440 (12 - 12 - 10 = 1440) trials for each tunnel. In each condition, the
data points outside the 5 standard deviations were considered as outliers. Only one trial

in the narrowing tunnel was removed according to this criterion. We ended up with 4319
successful trials. The error rate for the straight tunnel, narrowing tunnel and circular tunnel
were 4.7%, 7.6% and 15.3%.
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We first ran steering law regression of collected data for each type of tunnel. As shown in
Figure 6, the mean of M7 under each (A, W) can be well modeled by steering law (Equation
1).

As shown in Figure 6, the offsets of some models are negative. These negative offsets were
the outcome of the fitting process, which are common in steering regressions. For example,
negative offsets were observed in the steering law regressions in the Accot and Zhai’s
seminal work (e.g., Equations 8 and 11 in [1]).

6.4 Evaluating Variance Models

Similar to the previous experiment, We first introduced 6 variance model candidates (Table
1) to model MT variance on both straight, narrowing, and circular tunnel tasks, and then
compared the model fitness within each task. The results of /2, Root mean square error
(RMSE) of leave-one-(A, W)-out cross-validation, AIC, and WAIC metrics are shown in
Table 6. Also, Figure 7 visualizes variance prediction against observed variance of M7 using
quadratic variance model (Model #4 in Table 1) in each of straight, narrowing and circular
tunnel tasks.

Although no single model performed the best across all conditions, the results (Table 6 and
Fig 7) showed that the quadratic variance model (Model #4 in Table 1) proposed according
to the instantaneous form of Steering law [1] performs well in modeling variance. This
model performs the best (or second-best) among the three tasks in /2, RMSE, AIC, and
WAIC. In each task, the corresponding quadratic variance model accounts for more than
949% variation in the observed variance of M7. Although it improves /2 value by adding
linear coefficient (Model #6 in Table 1), the results of quadratic variance model with a linear
coefficient (#6) in RMSE, AIC, and WAIC are higher compared to quadratic variance model
(#4), indicating overfitting regarding the variance of MT.

Similar to the analysis of Zhou and Ren’s dataset [31], we also compared the quadratic
variance model (Model #4 in Table 1) with models that use A or Wonly to predict variance.
The /2 value for Equation 13 were 0.145 (straight tunnel), 0.293 (narrowing tunnel), and
0.037 (circular tunnel), and for Equation 14 were 0.513 (straight tunnel), 0.152 (narrowing
tunnel), and 0.517 (circular tunnel). All of them are much lower than the /2 values of the
quadratic variance models, confirming the finding that it is more appropriate to use /D,
rather than A or W/to model variance.

6.5 Evaluating Distribution Models

Likewise, 31 distribution model candidates were adopted to predict the distribution of MT.
Stan [5] was used to perform Bayesian modeling without informative priors as parameters.
The process for building models was the same as our previous experiment. Table 7 showed
the posterior distribution generated from model parameters of three tasks using quadratic
variance model (Model #4 in Table 1).

As in our previous experiment, the same method was used to evaluate model performance
by AIC and WAIC metrics and the results of 31 distribution model candidates were showed
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in Tables 10 — 12 from Appendix. Then posterior predictive checks on probability density
functions (PDFs) were introduced to compare distribution model candidates.

Information Criteria.—Similarly, we used AIC and WAIC information criteria to compare
prediction accuracy for 31 distribution model candidates. As shown in Table 7, Lognormal,
Gamma, exGaussian, and Extreme value outperform Gaussian and truncated Gaussian in
predicting the MT distribution.

Posterior Predictive Checking on Probability Density Function.—Adopting
previous experimental methodology, we extracted 100 samples from the posterior
distribution of model parameters, and used the extracted samples to plot the probability
density function (PDF) of MT predicted by the model. Next, we compared the predicted
PDF with the PDF of MT observed in Figure 9. As shown, the PDF simulated by the
quadratic variance Lognormal, Gamma, Extreme value, and exGaussian models looks more
similar to the observed data while other models show a discrepancy.

7 GENERAL DISCUSSION AND FUTURE WORK
7.1 Modeling Variance of MT

Our investigation on two steering law datasets shows that the quadratic variance model
(Equation 9, Model #4 in Table 1) perform wells in predicting the MT variance across
different steering tasks. On Zhou and Ren’s dataset [31], the quadratic variance model (#4)
performs the best. It has the lowest in AIC, WAIC, and RMSE of leave-one-(A, W)-out
cross-validation values among the six model candidates, and can account for more than 78%
of the variation in the observed M7 variance. On our cursor-based dataset, the quadratic
variance model (#4) performs the best (or second-best) among 6 variance models in three
types of steering tasks. It also accounts for more than 94% of variance in observed MT
variance, showing a strong model fitness. Adding the linear coefficient (Model #6 in Table
1) increases the RMSE in leave-one-(A, W)-out cross-validation, indicating that further
increasing the complexity of the quadratic variance model causes overfitting. This provided
further validation that the quadratic variance model (#4) is an appropriate candidate for
modeling the variance of MT.

7.2 Modeling Distribution of MT

Our results indicates that a combination of quadratic variance model (Equation 9, Model

#4 in Table 1) and Steering law (Equation 1) can well predict M7 distribution, especially
when assuming that the MT distributions follow positively skewed distributions such as
Gamma, Lognormal, Extreme value, and exGaussian distributions. The posterior predict
check on Probability Density Function (PDF) prediction shows that the predicted PDF

under these distributions well resembled the observed PDF. They especially performed better
than Gaussian and Truncated Gaussian distributions. The AIC and WAIC metrics, which
reflect the prediction accuracy, also showed that Gamma, Lognormal, Extreme value and
exGaussian distributions performed better than other distributions. The Gamma distribution
performs slightly better than Lognormal, Extreme value in most of the steering tasks.. These
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findings are similar to the previous findings on MT distribution for Fitts” law that MTis
positively skewed (e.g., [6, 11, 14, 20]).

7.3 The Source of Variance and Dynamics of Steering Tasks.

Variability is commonly observed in response times in psychology experiments [23]. There
is no exception in MT of steering tasks. Variability in M7 could be caused by (1) different
motor control abilities across users, and (2) neuromotor noises in the perceptual and motor
systems. Take the steering task on the straight tunnel (in mm) with A = 350 and W= 10 as
an example. The mean MT (insecond) ranges from 1.175 to 6.676 across 12 users, indicating
that users’ abilities of steering are different. Additionally, as the steering action involves
perceptual and motor systems, the neuromotor noises in these systems could contribute to
the variability in MT too. Previous research(e.g., [23]) has shown that variability has widely
existed in task completion time in psychological experiments, and we expect steering tasks
to conform.

We also analyzed the dynamics of the steering movement including speed, acceleration,
and traveling distance. The analysis showed there are variances in these measures. Take the
steering task on the straight tunnel (in mm) with A = 250 and W= 20 as an example. The
mean (std) of travel distance (in mm) is 316.4 (3.97); the mean (std dev) of moving speed
(mm per second) is 352 (339); the mean (std dev) of acceleration (mm per second squared)
is 53 (10583). It showed that variability widely exists in the steering process.

7.4 Applications of Variance and Distribution Models.

The variance and distribution models advance the MT prediction from a point estimate to
variance and distribution estimates, which ofers the following benefits. First, the results’
uncertainty can be predicted through distribution models. For instance, given an amplitude-
width (A, W) condition’s distribution, we can calculate the probability of M7 occurring in
any range.

Second, the distribution model of M7 could lay the cornerstone for establishing probabilistic
models for interactions of higher-level in consideration of the key role Steering law serves in
behavior modeling. For instance, selecting a target from a nested menu can be regarded as

a sequence of steering tasks and can be modeled by Steering law. The distribution of target
selection speed could be known based on the distribution of steering time. This is more
informative compared with estimating the mean speed from Steering law only.

7.5 Limitation and Future Work

The quadratic variance model accounts for between 78% and 97% of variation in observed
o on two tested datasets. Such prediction accuracy is lower than the prediction on the

mean of MT which is typically higher than 95% [1]. Figures 7 shows the error of prediction
increases when /D increases. As shown, the observed variance close to the ending position
of the curve increases faster than predicted, which suggests that there might exist other
factors affecting the variance. The quadratic variance model is just the starting point to study
the distribution of M7 variance and it is worth exploring what these factors are in future
research.
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8 CONCLUSION

We propose and evaluate models that predict the variance and distribution of MT in steering
tasks. Our investigation led to the following contributions.

First, we have proposed the quadratic-variance model, which reveals that the variance of MT
of the steering task is quadratically related to the index of difficulty of the task (ID = %)

with the linear coefficient being 0:
o?=c+d-ID? (15)

where cand dare empirically determined parameters. We proposed this model according to
the instantaneous form of steering law, assuming that the steering movement is comprised of
multiple sub-movements.

The evaluation on two steering law datasets, one for stylus-based and the other for
cursor-based input, show that the quadratic variance model (Equation 15) can account for
between 78% and 97% of variance of observed M7 variances, and outperforms other model
candidates such as the constant and linear models. Further increasing the complexity of the
model, such as adding the linear coefficient, does not improve the fitness of the model.

Second, combining the quadratic variance model (Equation 15) and Steering law, we are
able to predict the MT distribution given /D: we use the quadratic variance model (Equation
15) to predict the variance and use Steering law to predict the mean (or location) parameters
of a distribution. Among six types of distribution, positively skewed distributions such as
Lognormal, Gamma, and Extreme value, and exGaussian distributions have better prediction
accuracy than Gaussian and Truncated Gaussian (lower bound is 0) distributions. The
Gamma distribution performs slightly better than other models in most of the steering tasks.
Overall, our research advances the M7 prediction from a mean estimate to variance and
distribution estimates for steering tasks.
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Fitting results for 31 distributing models on Zhou and Ren’s straight tunnel dataset. As
explained in Section 4, we use Steering law (Equation 1) to predict the mean (or location)
parameter, and one of the six variance models (Table 1) to predict the variance (or scale)
parameter, as explained in Table 2. 2and b are parameters of Steering law, and ¢, dand eare
parameters of variance models. Parameter estimations are shown in mean and 95% credible
interval of posterior distributions. Fitness results are reported in AIC and WAIC metrics. As
shown, the quadratic variance model (Model #4 in Table 1) has the best (or second-best)
fitting results across all distribution types, measured by AIC, and WAIC.

Model Model Parameters (Mean and 95% Credible Interval) Inng_ma'_[ion
riteria
Variance DiStTr;%‘giO“ a b c d e K Alc | waic
0529 | 0.02
Gaussian | [0.467, | [0.026, 0'28‘2[2'52]18' N/A N/A NA | 123368 | 12335.9
0.59] | 0.031] :
0402 | 0.032
Luncated 1 1031, | [0.029, 0'2%33[304]258' N/A N/A NA | 122711 | 122703
0.485] | 0.035] '
_ 0704 | 0.021
#1';’2‘ Lognormal | [0.652, | [0.019, °'3lg3[$']276' N/A N/A NA | 121868 | 12184.9
0.756] | 0.023] '
0681 | 0.022
Gamma | [0.628, | [0.02, 0'2%[2%]223* N/A N/A NA | 122034 | 122015
0.734] | 0.024] :
0721 | 0.019
Extreme | [0.669, | [0.017, 0'2%22[3)2']235' N/A N/A NA | 120480 | 12246.7
0.773] | 0.021] :
0469 | 0.033
Gaussian | [0.417, | [0.028, °'°%30[§)5§J31' N/A N/A NA | 124305 | 124375
0.522] | 0.037] :
0564 | 0.02
Luncated | [0.496, | [0.013, | O03 531035' N/A N/A NA | 12357.4 | 1238551
0.639] | 0.027] :
- 032 | 0.045
?62: ‘/’;)‘2 Lognormal | [0.279, | [0.042, 0'0%60[3095’34' N/A N/A NA | 122030 | 122001
0.359] | 0.049] '
0324 | 0.045
Gamma | [0.281, | [0.042, °'0%30[305‘]’31' N/A N/A NA | 12246.4 | 122435
0.366] | 0.049] :
0202 | 0.046
Eégﬁj’:e [0.252, | [0.042, o.og%?[,g.]os, N/A N/A N/A | 122620 | 12259.1
0.329] | 0.049] :
0519 | 0.029 0.01
Gaussian | [0.465, | [0.026, 0.0%60[&5)09, [0.008, N/A NA | 120451 | 122422
0573] | 0.032] : 0.013]
43 2= 0489 | 0.020 0.011
p ggﬂ;’;ff 0426, | (0026, [ %% 1[2']017' [0.007, N/A NA | 122180 | 122153
D 0.547] | 0.033] ' 0.014]
0527 | 0.02 0.013
Lognormal | [0.466, | [0.026, 0'0%61%4%'01' [0.009, N/A NA | 121314 | 121274
0.59] | 0.033] ' 0.018]
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Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mapon
riteria
Variance | Distribution
Model Type a b c d e k AlC WAIC
0522 | 0.029 0.038 0.011
Gamma | [0.468, | [0.026, | [0.0001, [0.008, N/A NA | 121197 | 121156
0.58] | 0.032] 0.052] 0.014]
Eqreme | 0511 | 003 0.023 0.012
xurer [0.456, | [0.026, | [-0.012, [0.01, N/A NA | 121314 | 121246
0.567] | 0.033] 0.061] 0.015]
0531 | 0.029 0.0002
Gaussian | [0.473, | [0.026, 0'1%31[5?5';]1“' [0.0001, N/A NA | 122500 | 12249.2
0.587] | 0.032] : 0.0003]
0492 | 0.029 0.0002
ggﬂg;fg [0.424, | [0.026, 0'1822([)2']13' [0.0001, N/A NA | 120232 | 122007
0.557] | 0.033] : 0.0003]
0526 | 0029 | 141010 | 0324
Lognormal | [0.465, | [o.026, | 4013507 | [o211, N/A NA | 121284 | 121243
4. 2= 0.589] | 0.033] : 0.462]
c+d-:
10 0533 | 0029 | 110007 | 00002
Gamma | [0475, | [0.025, | *TISP" | o.0002, N/A NA | 121205 | 121162
0.587] | 0.032] : 0.0003]
0512 | 003 0.0003
Bxtteme | 0452, | [0.026, °'1%)11[§7~?88' [0.0002, N/A NA | 121204 | 121249
0.569] | 0.033] : 0.0004]
044 | 0035 | (oc 007 | 000006 0.04
exGaussian | [0.377, | (0031, | O 2" | 000004, | A | 004 | 121037 | 120047
05 | 0.04] : 0.00008] 0.05]
0524 | 0.029 0.01
Gaussian | [0.47, | [0.026, 0'2%13%)2']252' [0.007, N/A NA | 12247.1 | 122443
0582] | 0.032] : 0.012]
0.491 | 0.029 0.009
ggﬂg;fg [0.427, | [0.026, 0'3%53[%]274' [0.007, N/A NA | 122196 | 122169
0.553] | 0.033] : 0.012]
#5. 2= 052 | 003 | (oe010000 | 0013
(c+d- | Lognormal | [0.458, | [0.026, b [0.009, N/A NA | 121285 | 121244
1Dy 0.579] | 0.033] : 0.017]
0523 | 0.029 0.011
Gamma | [0.471, | [0.026, 0'2%93[105]224' [0.008, N/A NA | 121185 | 121143
0.579] | 0.032] : 0.014]
0508 | 003 0.012
Exteme | [oas6, | [0.027, 0.2%22[&]212, [0.01, N/A NA | 121279 | 1212338
0.564] | 0.033] : 0.015]
0522 | 0029 | (oee 0008, | 0007 | 000007
Gaussian | [0465, | 0026, | 0P D | o.ooor, | ooooooz | nA | 122485 | 122438
0.578] | 0.032] : 0.01] 0.0002]
049 | 0029 0007 | 0.00008
g:ﬂscgfr? [0.424, | [0.026, 0'0%91[&?31' [-0.002, | [0.000003, | N/A | 120219 | 122178
0.553] | 0.033] : 0013 | 0.0003]
#. 0= 0525 | 008 | o000050 | 0002 | 0.0003
i | Lognormal | [oae2, | foozs, | O4° B4 | 001 | ooooovs, | A | 121312 | 121261
e 0.588] | 0.033] : 0.014] | 0.0006]
0525 | 0.020 0.005 0.0001
Gamma | [0.469, | [0.026, 0'0%21[%?22' [-0.004, | [0.00001, | NWA | 121215 | 121161
0.581] | 0.032] : 0011] | 0.0003]
0509 | 003 0.005 0.0002
Bxeme | 0453, | [0.027, o 0(1"3?(7)7151] [-0.005, | [0.000002, | N/A | 12131.1 | 121254
0.565] | 0.033] [ [0-013.0. 0.013] | 0.0004]
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Table 9:

Fitting results for 31 Zhou and Ren’s circular tunnel dataset. As explained in Section 4, we
use Steering law (Equation 1) to predict the mean (or location) parameter, and one of the

six variance models (Table 1) to predict the variance (or scale) parameter, as explained in
Table 2. aand b are parameters of Steering law, and ¢, dand e are parameters of variance
models. Parameter estimations are shown in mean and 95% credible interval of posterior
distributions. Fitness results are reported in AIC and WAIC metrics. As shown, the quadratic
variance model (Model #4 in Table 1) has the best fitting results across all distribution types,
measured by AIC, and WAIC.

Model Model Parameters (Mean and 95% Credible Interval) Ing)rrirtr;arl};on
Variance | Distribution
Model Type a b c d e k AlC WAIC

065 | 0084 | 0617
Gaussian [055 | [0.08, | [0.559, N/A N/A N/A | 13103.7 | 13102.0
0.75] | 0.089] | 0.681]

0538 | 0.088 0.69
[0.421, | [0.083, | [0.617, N/A N/A N/A | 13066.4 | 13064.3
065 | 0.092] [ 0.771]

0.88 0.075 0.825

Truncated
Gaussian

#. ;’2 = | Lognormal | [0.80, | [0.071, | [0.722, N/A N/A N/A | 130223 | 130228
097] | 0.079] | 0.941]
084 | 0076 | 0665
Gamma [0.76, | [0.072, | [0.595, N/A N/A N/A | 130253 | 130243
093] | 0.080] | 0.742]
1024 | 0.8 0.901
E\f;i’:e [0.928, | [0.063, | [0.815, N/A N/A N/A | 13154.4 | 13157.9
1.123] | 0.072] | 0.996]
056 | 0090 | 0058
Gaussian | [0.46, | [0.082, | [0.056, N/A N/A n/A | 133561 | 133549
0.65] | 0.099] | 0.061]
0612 | 0083 | 0062
Tégﬂ:;fr? [0.507, | [0.073, | [0.058, N/A N/A N/A | 133229 | 133215
0.716] | 0.092] | 0.066]
0 o= 024 | o012 0.056

(c. /oy | Lognormal | [0.17, | [011, | [0053 N/A N/A N/A | 13077.3 | 13074.8
031] | 0121 | 0.060]

0.27 0.11 0.054
Gamma [0.20, | [0.11, | [0.052, N/A N/A N/A | 131409 | 131385
035] | 012] | 0.058]

0.22 0.114 0.052

Eé‘arlife [0.159, | [0.109, | [0.049, N/A N/A N/A | 13081.6 | 12078.9
0282] | 012] | 0.054]
064 | 0085 | 0.269 0.02
Gaussian [0.54, | [0.080, | [0.179, [0.01, N/A N/A | 13057.2 | 130537
073] | 090] | 0.362] 0.03]
0583 | 0087 | 0.345 0.016
#3. 0= Tégﬂ:;f: [0.48, | [0.082, | [0.233, [0.01, N/A N/A | 13040.2 | 13037.0
c+d-ID 0.68] | 0.092] | 0.469] 0.023]
062 | 0086 | 0.166 0.03
Lognormal | [0.53, | [0.081, | [0.0445, | [0.02, N/A N/A | 129654 | 129633
0.72] | 0.092] | 0.306] 0.04]
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Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mayon
riteria
Vm‘?jgfe DiSt.Ir.;t;)“e“O” a b c d e K Alc | waic
063 | 0085 | 0171 0.02
Gamma [054, | [0.080, | [0.0781, | [0.175, N/A N/A | 12056.8 | 12953.8
072] | 0.091] | 0.273] 0.031]
Extreme 0578 | 0089 | 0.003 0.042
ol [0.487, | [0.084, | [-0.081, | [0.035, N/A N/A | 120853 | 12985.1
0.67] | 0.095] [ 0.093] 0.049]
065 | 0085 | 0419 0.0004
Gaussian [055, | [0.080, | [0.356, | [0.0003, N/A N/A | 13058.7 | 13055.4
0.74] | 0.090] | 0.489] | 0.00086]
0587 | 0086 | 0.483 0.0003
ggﬂg;ff [0.48, | [0.081, | [0.406, | [0.0002, N/A N/A | 13040.1 | 13036.9
0.69] | 0.092] | 0574] | 0.0005]
061 | 0087 | 0.360 0.0008
Lognormal | [0.51, | [0.081, | [0.274, | [0.0008, N/A N/A | 12059.3 | 120575
#4. o2 = 071] | 0.093] | 0.463] 0.001]
c+d-
I 064 | 0085 | 0344 0.0006
Gamma [054, | [0.080, | [0.276, | [0.0004, N/A N/A | 12054.4 | 129515
073] | 0.091] | 0417] | 0.0008]
Extreme 055 | 0091 | 0.258 0.0011
Vel [0.46, | [0.085 | [0.196, | [0.0009, N/A N/A | 120741 | 129711
0.65] | 0097] | 03277 | 0.0014]
0342 | 0107 | 0.119 0.0002 0.03
exGaussian | [0.131, | [0.085, | [0.001, | [0.00006, NA | [0.02, | 130396 | 130745
0.652] | 0.124] | 0.369] [ 0.0004] 0.05]
064 | 0.085 0.56 0.011
Gaussian [0.55, | [0.080, | [0.50, [0.008, N/A N/A | 13057.2 | 130537
0.73] | 0.090] [ 0.63] 0.015]
0585 | 0087 | 0615 0.01
ggﬂg;ff [0.477, | [0.082, | [0.538, | [0.006, N/A N/A | 13039.9 | 13036.6
0.683] | 0.092] | 0.697] 0.013]
#5.= (c 060 | 0.087 0.48 0.019
L9y | Loonormal | 050, | [0.082, | [039, [0.014, N/A N/A | 12061.8 | 12960.2
070] | 0.094] | 057] 0.024]
063 | 0.086 0.48 0.015
Gamma [053, | [0.080, | [0.41, [0.012, N/A N/A | 120549 | 12952.1
072] | 0001] | 056] 0.020]
Extreme 0546 | 0091 | 0.356 0.026
ol [0.453, | [0.085, | [0.28, [0.022, N/A N/A | 120769 | 12974.9
0.642] | 0.097] | 0.434] 0.031]
064 | 0085 | 0.358 0.007 0.0003
Gaussian [055 | [0.080, | [0.221, | [-0.102, | [0.00001, | N/A | 13060.2 | 13055.4
0.74] | 0.090] | 0521] 0.021] | 0.00086]
Truncated | 0587 | 0087 [ 0477 0.0004 | 0.0003
Causaan | 10469, | [0.081, | [0.0.299, | [-0022, [ [0.00002, | N/A | 130427 | 13038.1
07] | 0.092] 0.7] 0.017] | 0.0008]
#6. o2 = 061 | 0087 | 0454 -0.012 0.001
c+d-ID | Lognormal | [0.52, | [0.081, | [0.174, | [-0.047, | [0.0002, | N/A | 129622 | 12960.2
+e- D2 0.72] | 0.093] | 0.766] 0.022] 0.002]
063 | 0086 | 0.326 0.002 0.0005
Gamma [054, | [0.080, | [0.147, | [-0.02, | [0.00005, | N/A | 12957.2 | 120533
0.73] | 0.091] | 0.539] 0.02] 0.001]
Extreme 0551 | 0.001 0.3 -0.006 0.001
ol [0.456, | [0.085, | [0.118, | [-0.032, | [0.0006, | N/A | 12976.9 | 12973.7
0.65] | 0.098] [ 0.499] 0.02] 0.002]
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Fitting results for 31 straight tunnel dataset. As explained in Section 4, we use Steering law
(Equation 1) to predict the mean (or location) parameter, and one of the six variance models
(Table 1) to predict the variance (or scale) parameter, as explained in Table 2. gand bare
parameters of Steering law, and ¢, dand e are parameters of variance models. Parameter
estimations are shown in mean and 95% credible interval of posterior distributions. Fitness
results are reported in AIC and WAIC metrics. As shown, the quadratic variance model
(Model #4 in Table 1) has the best (or second-best) fitting results across all distribution
types, measured by AIC, and WAIC.

Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mapon
riteria
Variance | Distribution
Model Type a b c d e k AlC WAIC
-0.11 0.084 0.991
Gaussian [-0.23, | [0.078, [0.92, N/A N/A N/A | 239726 | 23972.2
0.005] | 0.091] 1.069]
-4.96 0.23 1.834
ggﬂg;fg [-6.41, | [0.196, | [1.643, N/A N/A N/A | 230085 | 23005.6
-3.84] | 0.273] 2.054]
e 0.42 0.056 1.545
-7 Lognormal | [0.36, | [0.051, | [L.318, N/A N/A N/A | 227965 | 22793.4
0.5] 0.06] 1.817]
0.57 0.047 0.972
Gamma [050, | [0.042, | [0.882, N/A N/A N/A | 23021.4 | 230185
0.65] 0.052] | 1.0729]
0.424 0.048 0.645
E\fglirge [0.348, | [0.044, [0.59, N/A N/A N/A | 233101 | 233075
0504] | 0.053] | 0.708]
-0.1 0.083 0.055
Gaussian [-0.18, | [0.077, | [0.053, N/A N/A N/A | 233705 | 23367.8
-0.021] | 0.09] 0.057]
-0.249 | 0.035 0.087
ggﬂg;fr? [-0.464, | [0.011, | [0.079, N/A N/A N/A | 228939 | 22890.8
~0.044] | 0.055] | 0.096]
4 e -0.1 0.085 0.068
(. 7y | Lognormal | [-0.16, | [0.080, | [0.064, N/A N/A N/A | 227115 | 22708.0
-0.055] | 0.091] | 0.074]
-0.086 | 0.082 0.053
Gamma [-0.14, | [0.077, | [0.051, N/A N/A N/A | 227305 | 227267
-0.033] | 0.088] | 0.056]
-0.086 0.08 0.049
Ei‘lglig"e [-0.145, | [0.075, | [0.048, N/A N/A N/A | 22907.8 | 22904.6
-0.031] | 0.085] | 0.051]
-0.095 | 0.083 -0.457 | 0.0837
Gaussian [-0.17, | [0.077, | [-0518, | [0.0761, N/A N/A | 23389.8 | 23386.4
-0.021] | 0.089] | -0.396] | 0.0918]
#8.2= | Truncaed | ~1269 | 0093 -0.473 0.163
ctd. oaeast | 1949, | [0.064, | [-0809, | [0.128, N/A N/A | 22001.4 | 22897.2
D ~0.693] | 0.123] | -0.085] | 0.203]
-0072 | 0.083 -0.633 1.216
Lognormal | [-0.15, | [0.076, | [-0.827, | [0.099, N/A N/A | 22698.7 | 22694.2
0.013] 009] | -0.437] | 1.477]
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Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mapon
riteria
Variance | Distribution
Model Type a b c d e k AlIC WAIC
-0.059 | 0.081 -0.4 0.076
Gamma [-0.13, | [o.075, | [-047s, | [0.067, N/A N/A | 227338 | 22729.2
0.013] | 0.087] | -0.325] | 0.085]
Extreme -0058 | 0078 | -0327 | o0.062
ol [-0.119, | [0.073, | [-0.381, | [0.055, N/A N/A | 220153 | 22908.4
0.008] | 0.083] | -0.272] | 0.069]
-0.1 0083 | -0.019 | 0003
Gaussian | [-0.18, | [0.077, | [-0.051, | [0.003, N/A N/A | 233719 | 23368.4
-0.025] | 0.091] | ©0016] | 0.004]
-0.448 | 0.047 0.098 0.007
ggﬂg;fg [-1.059, | [0.008, | [-0.106, | [0.005, N/A N/A | 22896.4 | 228917
0031] | 0081 | 03711 | 0.009]
-014 | 0088 | -0053 | o0.005
Lognormal | [-0.23, | [0.08, | [-0.165, | [0.004, N/A N/A | 227135 | 22709.0
#4. o2 = -0.028] | 0.097] | o0.118] | 0.007]
c+d:
I -011 | 0084 | -0022 | o0.003
Gamma [-0.18, | [0.078, | [-0.061, | [0.0026, N/A N/A | 227321 | 227274
-0.034] | 0091] | 0.026] | 0.0034]
Extreme -0.108 | 0082 | -0016 | o0.002
ol [-0.175, | [0.076, | [-0.045 | [0.002, N/A N/A | 229095 | 22905.1
-004] | 0.088] | 0018 | 0.003]
-0.056 | 0.8 0.0004 | 0.004 0.02
exGaussian | [-0.092, | [0.076, | [0.00001, | [0.0003, N/A [0.02, | 22692.1 | 22685.9
~0.022] | 0.084] | 0001 | 0.004] 0.002]
-0.1 0083 | -0025 | 0057
Gaussian | [-0.17, | [0.077, | [-0.082, | [0.052, N/A N/A | 233725 | 23369.1
-0.022] | 0.09] 0.035] | 0.062]
0.071 0012 | -0123 | 0.096
ggﬂg;fg [0.003, | f0.0006, | [-0.22, | [0.085, N/A N/A | 228986 | 22893.3
0217] | 00271 | -0.024] | 0.11]
#5. P = -0.078 | 0.084 0.057 0.065
(c+d- | Lognormal | [-0.19, | [0.075, | [-0.12, [0.05, N/A N/A | 227141 | 22709.6
1D 0.034] | 0.092] 0.26] 0.079]
-0.093 | 0.083 -0.01 0.054
Gamma -0.17, | [0.076, | [-0.084, | [0.048, N/A N/A | 227333 | 227285
-0.015] | 0.089] | 00721 | 0.061]
Extreme -0097 | 0081 | -0.014 0.05
ol [-0.166, | [0.075, | [-0.077, | [0.045, N/A N/A | 220105 | 22906.4
-003] | 0087] | 00471 | 0.055]
-0099 | 0083 | -0103 | o0.016 0.003
Gaussian | [-0.18, | [0.077, | [-0.279, | [-0.018, | [0.001, | N/A | 233737 | 23369.4
-0.026] | 0.09] 0.081] | 0.049] | 0.004]
Truncated -064 | 0058 | -0073 | 0045 0.005
Causaan | =138, | [0.013, | [-0533, [ [-0.059, [ [0.0008, | N/A | 22898.7 | 22893.0
-0.024] | 0.098] | 0426] | 0.149] 0.01]
#.7= -0004 | o00ss | -0535 | 0009 | o001
o +e. | Lognormal | [-0.18, | [0.078, [ [-0.73, | [0.085, | [0.00005, | N/A [ 227011 | 22694.6
e -0.007] | 0.092] | -0202] | 0135 | 0.003]
-0.095 | 0.083 -0.21 0.037 0.002
Gamma [-0.17, | [0.077, | [-0.353, | [0.009, | [0.0006, | N/A | 22728.1 | 22722.0
-0.024] | 009 | -0.068] | 0063 | 0.003]
Extreme -0093 | 0081 | -0147 | 0025 0.001
ol [-0.157, | [0.075, | [-0.273, | [0.002, | [0.0006, | N/A | 22907.6 | 22904.1
~0.023] | 0086] | —0.022] | 0.049] | 0.003]
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Fitting results for 31 narrowing tunnel dataset. As explained in Section 4, we use Steering
law (Equation 1) to predict the mean (or location) parameter, and one of the six variance
models (Table 1) to predict the variance (or scale) parameter, as explained in Table 2. aand 6
are parameters of Steering law, and ¢, dand e are parameters of variance models. Parameter
estimations are shown in mean and 95% credible interval of posterior distributions. Fitness
results are reported in AIC and WAIC metrics. As shown, the quadratic variance model
(Model #4 in Table 1) has the best fitting results across all distribution types, measured by

AIC, and WAIC.
Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mapon
riteria
Variance | Distribution
Model Type a b c d e k AlC WAIC
0.42 0073 | 0719
Gaussian [0.32, | [0.066, | [0.667, N/A N/A N/A | 234916 | 23491.4
052] | 0.080] | 0.776]
-071 | 0119 | 1.159
ggﬂg;fg [-1.028, | [0.105, | [1.084, N/A N/A N/A | 23071.0 | 23069.5
~0.433] | 0.135] | 1.248]
e 0.75 0051 | 1.208
-7 Lognormal | [0.67, | [0.046, | [1.0437, N/A N/A N/A | 22988.7 | 22985.9
0.82] | 0.057] | 1.400]
0.80 0045 | 0.755
Gamma [0.73, | [0.039, | [0.687, N/A N/A N/IA | 229976 | 22994.7
0.88] | 0.051] | 0.830]
0786 | 0042 | 0617
E\fglirge [0.726, | 0.037, | [0.567, N/A N/A N/A | 231132 | 23110.3
0.855] | 0.047] | 067
0.33 0081 | 0071
Gaussian [0.26, | [0.072, | [0.088, N/A N/A N/A | 232452 | 232425
041] | 0.090] | 0.073]
0511 | 0.035 0.09
g:ﬂg;fr? [0.39, | [0.018, | [0.084, N/A N/A N/A | 229802 | 229772
0.632] | 0.052] | 0.096]
4 e 0.12 0107 | 0.951
(c. iy | Lognormal | [0.064, | [0.1, | 0088 N/A N/A NIA | 229949 | 22992.1
048] | 0.114] | 0.102]
0.13 0102 | o.074
Gamma [0.715, | [0.095, | [0.702, N/A N/A N/IA | 229205 | 220173
0.191] | 0.109] | 0.077]
0142 | 0.099 0.07
Ei‘lglig"e [0.085 | [0.002, | [0.067, N/A N/A N/A | 23014.0 | 23010.7
0.203] | 0.106] | 0.073]
0366 | 0078 | -0.146 0.068
Gaussian [0.284, | [0.07, | [-0.21, | T[0.059, N/A N/A | 231839 | 23180.2
0.442] | 0.085] | -0.077] | 0.077]
#3.2= | Truncated 0238 | 0066 | -0.209 0.104
ot d- s [0.079, | [0.052, | [-0.366, | [0.084, N/A N/A | 22953.1 | 22948.8
D 0377] | ©0.08] | -0.042] | 0.127]
0447 | 0074 | 0.136 0.081
Lognormal | [0.333, | [0.064, | [-0.141, | [0.052, N/A N/IA | 22957.3 | 22953.1
0.568] | 0.084] | 0.461] 0.111]
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Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mapon
riteria
Variance | Distribution
Model Type a b [ d e k AlC WAIC
0394 | 0075 | -0.06 0.063
Gamma | [0.310, | [0.068, | [-0.16, | [0.052, N/A N/A | 22869.4 | 228648
0.478] | 0.083] | 0.043 | 0.075]
Extreme 0405 | 0073 | -0.064 | o058
e [0.325, | [0.066, | [-0.141, | [0.048, N/A NA | 220493 | 22939.3
0.486] | 008 | 002 0.068]
0365 | 0078 | 0.158 0.003
Gaussian | [0.282, | [0.07, | [0.109, | [0.003, N/A NA | 23179.9 | 23176.1
0.450] | 0.086] | 0.209] | 0.004]
0257 | 0066 | 026 0.005
ggﬂg;fg [0.08, | 0.048 | [0.156, | [0.003, N/A NIA | 229556 | 22951.2
0422] | 0.082] | 0.395] | 0.006]
0454 | 0074 | 0565 0.003
Lognormal | [0.338, | [0.064, | [0.354, | [0.002, N/A N/A | 22056.1 | 229517
#4. o = 0.575] | 0.085] | 0.789] | 0.005]
c+d-
I 0378 | 0077 | 0226 0.003
Gamma | [0.289, | [0.068, | [0.157, | [0.002, N/A N/A | 22866.0 | 228612
0471 | 0.086] | 0302] | 0.004]
Extreme 0372 | 0077 | o019 0.003
e [0.281, | [0.068, | [0.134, | [0.002, N/A NA | 220483 | 229436
0.457] | 0.085] | 0.249] | 0.003]
0223 | 0092 | 0055 0.005 0.01
exGaussian [0.153, [0.084, [0.037, [0.005, N/A [0.01, | 22943.5 | 22937.3
0208] | 011 | 0075 | 0.006] 0.01]
0364 | 0078 | 0237 0.046
Gaussian | [0.283, | [0.07, | [0.18, [0.04, N/A NA | 231770 | 231732
0.449] | 0.086] | 03] 0.052]
0247 | 0066 | 0317 0.055
ggﬂg;fg [0.071, | (0.051, | [0.207, | [0.044, N/A NIA | 22952.4 | 22948.2
0403] | 0.081] | 0.438] | 0.066]
#5. 02 = 0421 | 0077 | 0527 0.042
(c+d- | Lognormal | [0.278, | [0.064, | [0.331, | [0.025, N/A N/A | 220556 | 22951.7
1D)? 0.565] | 009 | 074 0.06]
0373 | 0078 | 0.309 0.042
Gamma | [0.286, | [0.069, | [0.224, | [0.033, N/A N/A | 228636 | 22859.0
0.462] | 0.086] | 0.397] 0.05]
Extreme 0377 | 0076 | 0.285 0.041
e [0.295 | [0.068, | [0.215, | [0.034, N/A NA | 220443 | 22939.8
046] | 0.084] | 0354] | 0.047]
0365 | 0078 | 0.034 0.027
Gaussian | [0.285, | [0.07, | [-0.116, | [-0.009, 0'00538;?1005' NA | 231709 | 231752
0.444] | 0.086] | 0208 | 0.08] :
0262 | 0065 | -0.017 | 0.058
g:ﬂscgfr? [0.095, | [0.049, | [-0.255, | [~0.0004, 0'005(58'5(}002' N/A | 22054.1 | 22948.7
0.418] | 0079] | 0275 | "0.105] :
#.0= 0437 | 0076 | 0341 | o038 0.002
i+, | Lognomal | [0323, | [0065, | [0.05 | [0002 | oogedto, | NA | 220575 | 220515
s 0.554] | 0.086] | o.666] | 0.081] 0001.,0.
0373 | 0077 | o0.106 0.024
Gamma | [0.285, | [0.069, | [-0.054, | [-0.011, o.oog(gg.?%oos, N/A | 22866.6 | 228605
0.464] | 0.086] | 0.288) | 0.05] '
0378 | 0076 | 0.061 0.028
Bxtteme | [0.294, | [0.068, | [-0.074, | [-0.0005, 0'003(58'33002' NA | 22047.2 | 22939.7
046] | 0.084] | 0206] | 0.055] '
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Fitting results for 31 circular tunnel dataset. As explained in Section 4, we use Steering law
(Equation 1) to predict the mean (or location) parameter, and one of the six variance models
(Table 1) to predict the variance (or scale) parameter, as explained in Table 2. gand bare
parameters of Steering law, and ¢, dand e are parameters of variance models. Parameter
estimations are shown in mean and 95% credible interval of posterior distributions. Fitness
results are reported in AIC and WAIC metrics. As shown, the quadratic variance model
(Model #4 in Table 1) and the quadratic variance model without constant term (Model #2 in
Table 1) has the best (or second-best) fitting results across all distribution types, measured

by AIC, and WAIC.
Model Model Parameters (Mean and 95% Credible Interval) Ing)rrit[r;zg;on
Variance | Distribution
Model Type a b c d e k AlC WAIC
-0.336 | 0.301
Gaussian | [-0.487, | [0.292, 1'8%%'27]56' N/A NA | NA | 249014 | 249009
—0.171] | 031 :
-0.717 | 0318
ggﬂg;fg [-0.917, | [0:306, 2'1;‘533[)‘11197' N/A NA | NA | 247888 | 247884
—0.518] | 0.329] :
- 0756 | 024
#l. gz = | Lognormal | [0.619, | [0.231, 2.4236[923]212’ N/A NA | NA | 246347 | 246330
0.891] | 0.249] :
0587 | 0.251
Gamma | [0.444, | [0.241, 2'05525%192' N/A NA | NA | 247680 | 247669
0.736] | 026 :
0961 | 0.215
Extieme [0.83, | [0.207, 2~152235112'j°’96' NA | NA | NA | 248220 | 248215
1089] | 0.223] :
-0.0005 | 0.276
Gaussian | [-0.007, | [0.267, 0'0(?%2%2108' N/A NA | NA | 242513 | 242485
0.102] | 0.286] :
-0.003 | 0.276
g:ﬂscgfr? [-0.103, | [0.267, 0'083%8[%08' N/A NA | NA | 242501 | 242472
0.102] | 0.286] :
_ -0.0106 | 0278
?02; ‘/’;)‘2 Lognormal | [-0.105, | [0.268, 0'08(?88'1083' N/A NA | NA | 241745 | 241714
0.086] | 0.287] :
-0.007 | 0.277
Gamma [-0.1, | [0.268, o.og%égjos, N/A NA | NA | 241633 | 241600
0.087] | 0.286] :
-0.006 | 0.278
Bxeme | [-0.007, | [0.269, o.og(ggf]a?, N/A NA | NA | 241940 | 241906
0.084] | 0.287] :
-0.038 | 0281 -0.681 0.157
Gaussian | [-0.143, | [0.272, |  [-0.778, 0143, | na | NA | 242959 | 242024
0.065] | 029 ~0.577] 0.172]
#.2= | Truncaeg | 0039 | 0281 -0.686 0.158
o, puncated | 10139, | (0272, [ [-0.792, [0.144, | na | NA | 242935 | 242898
D 0.059] | 029 ~0.584] 0.174]
0029 | 0.276 -0.787 0.177
Lognormal | [-0.004, | [0.267, |  [-0.018, 0158, | NA | NA | 242026 | 241983
0.1271 | 0.285] ~0.656] 0.198]
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Model Model Parameters (Mean and 95% Credible Interval) Ing)r_mayon
riteria
Variance | Distribution
Model Type a b c d e k AIC WAIC
0012 | 0277 -0.713 0.161
Gamma | [-0.085, | [0.260, | [-0.815, o.146, | NA | NA | 241907 | 241955
0.106] | 0.286] ~0.608] 0.176]
Extreme 0065 | 0.273 -0.844 0.191
e [-0.03, | [0.264, | [-0.972, 0173, | NA | NA | 242388 | 242372
0.164] | 0.282] ~0.716] 0.21]
—0.005 | 0.277 -~ 0.007
Gaussian | [-0.11, | [0.267, °'°3§£02j026* 0006, | NA | NA | 242534 | 24249.7
0.009] | 0.286] : 0.007]
-0.013 | 0277 -~ 0.007
ggﬂg;fg [-0.122, | [0:267, 0'0%51[033'21’ 0006, | NA | NA | 242502 | 242483
0.007] | 0.287] : 0.007]
-0.008 | 0.278 0.007
Lognormal | [-0.104, | [0.268, 0'0%20[7‘%07’ 0007, | na | A | 241775 | 241729
4. 2= 0.095] | 0.287] : 0.008]
I -0.006 | 0277 ~ 0.0068
Gamma | [-0.11, | [0.267, 0'0155721043‘ 0006, | NA | NnA | 241663 | 241618
0.097] | 0.287] : 0.008]
Eqreme | 0009 | 0278 -0.006 0.008
e [-0.115, | [0.269, |  [-0.074, 0007, | NA | NA | 241970 | 241924
0.008] | 0.289] 0.067] 0.009]
-0012 | 0277 0.007 0.02
exGaussian | [-0.112, | [0.268, 0'02352'70]008* 0006, | NA | [0.02 | 242108 | 242047
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10: APPENDIX

This is the Stan code fitting the movement time data with Gamma distribution and quadratic
variance model (Model #4 in Table 1). We assumed the mean is expressed by Steering law:
M= a+ b- IDand the variance is expressed by quadratic variance model: V= c+ d- /D2

steering_law_gamma_model = """
data {
//Number of IDs
int number_of_IDs;
//Number of data points
int number_of_data;
//Index of difficulty (ID) list
vector[number_of_IDs] ID_list;
//Index of difficulty squared (ID*2) list
vector[number_of_IDs] ID_square_list;
//Movement time list for all data points
vector[number_of_data] movement_time;
//Starting index of each condition in movement time list
int starts[number_of_IDs];
//Ending index of each condition in movement time list
int ends[number_of_IDs];

}

parameters {
real a;
real<lower=e> b;
real c;
real<lower=0> d;

}

transformed parameters {
//The mean expressed by Steering law
vector[number_of _IDs] mu = a + b % ID_list;
//The standard deviation expressed by quadratic variance model
vector[number_of_IDs] sigma = sgrt(c + d * ID_square_list);
//Parameter alpha of Gamma model expressed by the mean and standard deviation
vector[number_of_IDs] alpha = (mu ./ sigma) .* (mu ./ sigma);
//Parameter beta of Gamma model expressed by the mean and standard deviation
vector[number_of_IDs] beta = mu ./ (sigma .* sigma);

}
model {
for(i in 1 : number_of_IDs){
movement_time[starts[i] + 1 : ends[i] + 1] ~ gamma(alphal[i], beta[il);
}
}

generated quantities {
vector[number_of_data] log_likelihood;
for(i in 1 : number_of_IDs){
for(j in starts[i] + 1 : ends[i] + 1){
log_likelihood[j] = gamma_lpdf (movement_time[j] | alphalil, betal[il);
}

}

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2022 February 24.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al. Page 28

REFERENCES

[1]. Accot Johnny and Zhai Shumin. 1997. Beyond Fitts’ Law: Models for Trajectory-Based HCI
Tasks. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing
Systems (Atlanta, Georgia, USA) (CHI “97). Association for Computing Machinery, New York,
NY, USA, 295-302. 10.1145/258549.258760

[2]. Accot Johnny and Zhai Shumin. 1999. Performance Evaluation of Input Devices in Trajectory-
Based Tasks: An Application of the Steering Law. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI “99). Association
for Computing Machinery, New York, N, USA, 466-472. 10.1145/302979.303133

[3]. Ahlstrom David. 2005. Modeling and Improving Selection in Cascading Pull-down Menus Using
Fitts’ Law, the Steering Law and Force Fields. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Portland, Oregon, USA) (CHI ‘05). Association for
Computing Machinery, New York, NY, USA, 61-70. 10.1145/1054972.1054982

[4]. Bateman Scott, Doucette Andre, Xiao Robert, Gutwin Carl, Mandryk Regan L, and Cockburn
Andy. 2011. Effects of view, input device, and track width on video game driving.. In Graphics
Interface, Vol. 2011. 207-214.

[5]. Carpenter Bob, Gelman Andrew, Hoffman Matthew, Lee Daniel, Goodrich Ben, Betancourt
Michael, Brubaker Marcus, Guo Jigiang, Li Peter, and Riddell Allen. 2017. Stan : A Probabilistic
Programming Language. Journal of Statistical Software 76 (01 2017). 10.18637/jss.v076.i01

[6]. Chapuis Olivier, Blanch Renaud, and Beaudouin-Lafon Michel. 2007. Fitts’ Law in the
Wild: A Field Study of Aimed Movements. Technical Report. https://hal.archives-ouvertes.fr/
hal-00612026 LRI Technical Repport Number 1480, Univ. Paris-Sud, 11 pages.

[7]. Davis Richard A, Lii Keh-Shin, and Politis Dimitris N. 2011. Remarks on some nonparametric
estimates of a density function. In Selected Works of Murray Rosenblatt. Springer, 95-100.

[8]. DRURY CG. 1971. Movements with Lateral Constraint. Ergonomics 14, 2 (1971), 293-305.
10.1080/00140137108931246arXiv:10.1080/00140137108931246. [PubMed: 5093722]

[9]. Fitts Paul M. 1954. The information capacity of the human motor system in controlling the
amplitude of movement. Journal of experimental psychology 47, 6 (1954), 381. [PubMed:
13174710]

[10]. Gelman Andrew, Hwang Jessica, and Vehtari Aki. 2014. Understanding predictive information
criteria for Bayesian models. Statistics and computing 24, 6 (2014), 997-1016.

[11]. Gori Julien. 2018. Modeling the speed-accuracy tradeoff using the tools of information theory.
Theses. Université Paris-Saclay. https://pastel.archives-ouvertes.fr/tel-02005752

[12]. Gori Julien and Rioul Olivier. 2019. Regression to a linear lower bound with outliers: An
exponentially modified Gaussian noise model. Ph.D. Dissertation. https://hal.archives-ouvertes.fr/
hal-02191051

[13]. Jaynes Edwin T. 1957. Information theory and statistical mechanics. Physical review 106, 4
(1957), 620.

[14]. Jude Alvin, Guinness Darren, and Poor G Michael. 2016. Reporting and Visualizing Fitts’s
Law: Dataset, Tools and Methodologies. In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. 2519-2525.

[15]. Sergey Kulikov I MacKenzie Scott, and Stuerzlinger Wolfgang. 2005. Measuring the Effective
Parameters of Steering Motions. In CHI “05 Extended Abstracts on Human Factors in Computing
Systems (Portland, OR, USA) (CHI EA “05). Association for Computing Machinery, New York,
NY, USA, 1569-1572. 10.1145/1056808.1056968

[16]. Scott MacKenzie | and Zhang Shawn X.. 1999. The Design and Evaluation of a High-
Performance Soft Keyboard. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI “99). Association for Computing
Machinery, New York, NY, USA, 25-31. 10.1145/302979.302983

[17]. Montazer M Ali, Drury Colin G, and Karwan Mark H. 1988. An optimization model for
self-paced tracking on circular courses. IEEE transactions on systems, man, and cybernetics 18, 6
(1988), 908-916.

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2022 February 24.


https://hal.archives-ouvertes.fr/hal-00612026
https://hal.archives-ouvertes.fr/hal-00612026
https://pastel.archives-ouvertes.fr/tel-02005752
https://hal.archives-ouvertes.fr/hal-02191051
https://hal.archives-ouvertes.fr/hal-02191051

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wang et al.

Page 29

[18]. Monteiro Pedro, Carvalho Diana, Melo Miguel, Branco Frederico, and Bessa Maximino. 2018.
Application of the steering law to virtual reality walking navigation interfaces. Computers &
Graphics 77 (2018), 80-87. 10.1016/j.cag.2018.10.003

[19]. Nancel Mathieu and Lank Edward. 2017. Modeling user performance on curved constrained
paths. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
244-254.

[20]. Nieuwenhuizen Karin and Martens Jean-Bernard. 2016. Advanced modeling of selection and
steering data: beyond Fitts’ law. International Journal of Human-Computer Studies 94 (2016),
35-52.

[21]. Pastel Robert. 2006. Measuring the Difficulty of Steering through Corners. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Montréal, Québec,
Canada) (CHI ‘06). Association for Computing Machinery, New York, NY, USA, 1087-1096.
10.1145/1124772.1124934

[22]. Rashevsky N. 1960. Further contributions to the mathematical biophysics of automobile driving.
Bulletin of Mathematical Biophysics 22 (1960), 257-262. 10.1007/BF02478348

[23]. Wagenmakers Eric-Jan and Brown Scott. 2007. On the linear relation between the mean and
the standard deviation of a response time distribution. Psychological review 114, 3 (2007), 830.
[PubMed: 17638508]

[24]. Wanderley Marcelo Mortensen and Orio Nicola. 2002. Evaluation of Input Devices for Musical
Expression: Borrowing Tools from HCI. Computer Music Journal 26, 3 (2002), 62—76. http://
WwWw.jstor.org/stable/3681979

[25]. Yamanaka Shota. 2018. Risk Effects of Surrounding Distractors Imposing Time Penalty
in Touch-Pointing Tasks. In Proceedings of the 2018 ACM International Conference on
Interactive Surfaces and Spaces (Tokyo, Japan) (ISS “18). ACM, New York, NY, USA, 129-135.
10.1145/3279778.3279781

[26]. Yamanaka Shota and Miyashita Homei. 2016. Modeling the Steering Time Difference between
Narrowing and Widening Tunnels. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI “16). Association for
Computing Machinery, New York, NY, USA, 1846-1856. 10.1145/2858036.2858037

[27]. Yamanaka Shota and Miyashita Homei. 2016. Scale Effects in the Steering Time Difference
between Narrowing and Widening Linear Tunnels. In Proceedings of the 9th Nordic Conference
on Human-Computer Interaction (Gothenburg, Sweden) (NordiCHI “16). Association for
Computing Machinery, New York, NY, USA, Article 12, 10 pages. 10.1145/2971485.2971486

[28]. Yamanaka Shota, Stuerzlinger Wolfgang, and Miyashita Homei. 2017. Steering Through
Sequential Linear Path Segments. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI “17). Association for Computing
Machinery, New York, NY, USA, 232-243. 10.1145/3025453.3025836

[29]. Yamanaka Shota, Stuerzlinger Wolfgang, and Miyashita Homei. 2018. Steering through
Successive Objects. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI “18). Association for Computing Machinery,
New York, NY, USA, 1-13. 10.1145/3173574.3174177

[30]. Zhai S, Accot J, and Woltjer R. 2004. Human Action Laws in Electronic Virtual Worlds:

An Empirical Study of Path Steering Performance in VR. Presence 13, 2 (2004), 113-127.
10.1162/1054746041382393

[31]. Zhou Xiaolei and Ren Xiangshi. 2010. An investigation of subjective operational biases in
steering tasks evaluation. Behaviour & Information Technology 29, 2 (March 2010), 125-135.
10.1080/01449290701773701

Proc ACM Symp User Interface Softw Tech. Author manuscript; available in PMC 2022 February 24.


http://www.jstor.org/stable/3681979
http://www.jstor.org/stable/3681979

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Wang et al.

Page 30

CCS CONCEPTS

» Human-centered computing — Human computer interaction (HCI); User studies.
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Figure 1:

(@) An example of MT variance vs. /D Regression using quadratic variance model (Equation
2), evaluated on the steering task data collected in our user study. (b) and (c): one example
of predicting MT distribution selected from the red circle in (a). The blue curve in (b)
represents the observed probability density function (PDF) of M7 under a particular (A,

W) condition, and the green curve is the predicted PDF using the quadratic variance

model (Equation 2) in a Gamma distribution. The blue curve in (c) represents the observed
cumulative distribution function (CDF), and the green curve is the predicted CDF.
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Figure 2:

o2 vs. IDregression for 6 variance models on the Zhou and Ren’s straight tunnel dataset.
As shown, the quadratic-variance model (Model #4 in Table 1) accounts for 78.5% of
variance in the observed variance of MT. It performs the best according to AIC, WAIC, and
leave-one-(A, W)-out cross-validation. Model #6 in Table 1 has the highest /2, but overfits
the data because it has higher RMSE in leave-one-(A, W)-out cross-validation compared
with quadratic variance model.
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Figure 3:
o2 vs. IDregression for 6 variance models on the Zhou and Ren’s circular tunnel dataset.

As shown, the quadratic-variance model (Model #4 in Table 1) accounts for 84.4% of
variance in the observed variance of MT. It performs the best according to AIC, WAIC, and
leave-one-(A, W)-out cross-validation. The A2 value of Model #6 in Table 1 is the same
with Model #4, but Model #6 overfits the data because it has higher RMSE in leave-one-(A,
W)-out cross-validation compared with quadratic variance model.
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Figure 4:
Posterior Predictive Checking on Probability Density Functions (PDF) of MTin 3

amplitude-width (A, W) conditions in each of the straight and circular tunnel tasks on the
Zhou and Ren’s steering law dataset. The blue curves are the observed PDF and the light
blue bars are observed histogram. The other colored curves are predictions made by different
models. All the predictions were drawn from 100 simulations. The narrow bands represent
the uncertainty. As shown, the Lognormal (green), Gamma (violet), Extreme value (yellow),
and exGaussian (red) looked very similar to the observed PDF (blue), and outperformed
models with Gaussian and truncated Gaussian (black and grey).
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Figure 5:
Left: a participant is doing the study. Right: a screenshot of a straight tunnel steering task.
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Figure 6:

Steering law mean prediction against observed MT in straight, narrowing and circular tunnel

tasks.
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Figure 7:

Steering law variance prediction against observed variance of M7 using quadratic variance
model (Model #4 in Table 1) in each of straight, narrowing and circular tunnel tasks.
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Figure 8:
(a): a straight tunnel. (b): a narrowing tunnel. (c): a circular tunnel.
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Figure 9:
Posterior Predictive Checking on Probability Density Functions (PDF) of MTin 3

amplitude-width (A, W) conditions for each of the three tasks. The blue curves are the
observed PDF and the light blue bars are observed histogram. The other colored curves are
predictions made by different models. All the predictions were drawn from 100 simulations.
The narrow bands represent the uncertainty. As shown, the Lognormal (green), Gamma
(violet), Extreme value (yellow), and exGaussian (red) looked very similar to the observed
PDF (blue), and outperformed models with Gaussian and truncated Gaussian (black and
grey) across all the 9 examples.
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Table 1:

Page 40

Six variance model candidates, all of which are used for predicting variance of M7 based on /D where ¢, @,

and eare empirically determined parameters. The quadratic variance model (Equations 9) is #4.

Candidate Number

Variance Model

#1 F?=c

#2 %= (¢ ID)?

#3 Fc=c+d-ID
#4 =c+d-ID?
#5 = (c+d- ID?
#6 FA=c+d-ID+e- I?
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Table 5:

Amplitude and width pairs (A, W) chosen for each of the three tasks. All the values are in mm.

Task

Amplitude and Width Pairs (A, W)

Straight tunnel

(150, 10), (150, 15), (150, 20), (150, 22.5), (250, 10), (250, 15), (250, 20), (250, 22.5), (350, 10), (350, 15), (350, 20),
(350, 22.5)

Narrowing tunnel

(150, 20), (150, 40), (150, 60), (150, 80), (250, 20), (250, 40), (250, 60), (250, 80), (350, 20), (350, 40), (350, 60), (350,
80)

Circular tunnel

(127.3,22.8), (185.7, 20), (151.3, 15), (167, 10), (206.6, 22.8), (215.1, 20), (230.7, 15), (246.3, 10), (286, 22.8), (294.5,
20), (310.1, 15), (325.7, 10)
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