Table 3:
Model parameters, evaluation results, and WAIC metrics for 6 variance models (Table 1) on Zhou and Ren’s steering law dataset. As shown, the quadratic-variance model outperformed other models in both straight and circular tasks, after taking into account the complexity of the model (i.e., the number of parameters).
Conditions | Variance Models | c | d | e | R 2 | RMSE [SD] | AIC | WAIC |
---|---|---|---|---|---|---|---|---|
Straight | σ2 = c | 0.228 [0.1, 0.353] | N/A | N/A | 0 | 128.54 [107.87] | 246.37 | 245.2 |
σ2 = (c · ID)2 | 0.017 [0.012, 0.021] | N/A | N/A | 0.382 | 100.38 [63.56] | 242.34 | 239.66 | |
σ2 = c + d · ID | 0.03 [−0.1, 1.7] | 0.01 [0.004, 0.016] | N/A | 0.735 | 95.37 [67.32] | 238.11 | 234.96 | |
σ2 = c + d · ID2 | 0.121 [0.034, 0.208] | 0.0002 [0.0001, 0.0003] | N/A | 0.785 | 83.08 [48.10] | 236.20 | 232.72 | |
σ2 = (c + d · ID)2 | 0.23 [0.2, 0.4] | 0.01 [0.009, 0.02] | N/A | 0.752 | 98.28 [77.12] | 237.43 | 234.38 | |
σ2 = c + d · ID + e · ID2 | 0.156 [−0.149, 0.47] | −0.0038 [−0.037, 0.027] | 0.0003 [−0.0003, 0.0009] | 0.788 | 117.10 [100.84] | 240.17 | 235.96 | |
Circular | σ2 = c | 0.593 [0.368, 0.802] | N/A | N/A | 0 | 225.82 [174.39] | 255.92 | 254.12 |
σ2 = (c · ID)2 | 0.025 [0.016, 0.032] | N/A | N/A | 0 | 318.13 [146.48] | 260.79 | 257.9 | |
σ2 = c + d · ID | 0.241 [0.013, 0.445] | 0.018 [0.009, 0.028] | N/A | 0.808 | 130.88 [80.87] | 244.92 | 241.24 | |
σ 2 = c + d · ID 2 | 0.4 [0.273, 0.522] | 0.0003 [0.0002, 0.0005] | N/A | 0.844 | 105.70 [60.04] | 242.87 | 239.08 | |
σ2 = (c + d · ID)2 | 0.54 [0.39, 0.66] | 0.01 [0.006, 0.02] | N/A | 0.827 | 126.21 [76.33] | 243.95 | 240.26 | |
σ2 = c + d · ID + e · ID2 | 0.393 [−0.176, 0.889] | 0.0009 [−0.051, 0.058] | 0.0003 [−0.0008, 0.0014] | 0.844 | 136.62 [84.80] | 247.48 | 243.04 |