Skip to main content
. Author manuscript; available in PMC: 2022 Feb 24.
Published in final edited form as: Proc ACM Symp User Interface Softw Tech. 2021 Oct 12;2021:1122–1143. doi: 10.1145/3472749.3474811

Table 3:

Model parameters, evaluation results, and WAIC metrics for 6 variance models (Table 1) on Zhou and Ren’s steering law dataset. As shown, the quadratic-variance model outperformed other models in both straight and circular tasks, after taking into account the complexity of the model (i.e., the number of parameters).

Conditions Variance Models c d e R 2 RMSE [SD] AIC WAIC
Straight σ2 = c 0.228 [0.1, 0.353] N/A N/A 0 128.54 [107.87] 246.37 245.2
σ2 = (c · ID)2 0.017 [0.012, 0.021] N/A N/A 0.382 100.38 [63.56] 242.34 239.66
σ2 = c + d · ID 0.03 [−0.1, 1.7] 0.01 [0.004, 0.016] N/A 0.735 95.37 [67.32] 238.11 234.96
σ2 = c + d · ID2 0.121 [0.034, 0.208] 0.0002 [0.0001, 0.0003] N/A 0.785 83.08 [48.10] 236.20 232.72
σ2 = (c + d · ID)2 0.23 [0.2, 0.4] 0.01 [0.009, 0.02] N/A 0.752 98.28 [77.12] 237.43 234.38
σ2 = c + d · ID + e · ID2 0.156 [−0.149, 0.47] −0.0038 [−0.037, 0.027] 0.0003 [−0.0003, 0.0009] 0.788 117.10 [100.84] 240.17 235.96
Circular σ2 = c 0.593 [0.368, 0.802] N/A N/A 0 225.82 [174.39] 255.92 254.12
σ2 = (c · ID)2 0.025 [0.016, 0.032] N/A N/A 0 318.13 [146.48] 260.79 257.9
σ2 = c + d · ID 0.241 [0.013, 0.445] 0.018 [0.009, 0.028] N/A 0.808 130.88 [80.87] 244.92 241.24
σ 2 = c + d · ID 2 0.4 [0.273, 0.522] 0.0003 [0.0002, 0.0005] N/A 0.844 105.70 [60.04] 242.87 239.08
σ2 = (c + d · ID)2 0.54 [0.39, 0.66] 0.01 [0.006, 0.02] N/A 0.827 126.21 [76.33] 243.95 240.26
σ2 = c + d · ID + e · ID2 0.393 [−0.176, 0.889] 0.0009 [−0.051, 0.058] 0.0003 [−0.0008, 0.0014] 0.844 136.62 [84.80] 247.48 243.04