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Abstract

Selecting a model in predictive toxicology often involves a trade-off between prediction 

performance and explainability: should we sacrifice the model performance to gain explainability, 

or vice versa? Here we present a comprehensive study to assess algorithm and feature influences 

on model performance in chemical toxicity research. We conducted over 5000 models for a 

Tox21 bioassay dataset of 65 assays and ~7600 compounds. Seven molecular representations 

as features and twelve modeling approaches varying in complexity and explainability were 

employed to systematically investigate the impact of various factors on model performance and 

explainability. We demonstrated that endpoints dictated a model’s performance, regardless of the 

chosen modeling approach including deep learning and chemical features. Overall, more complex 

models such as (LS-)SVM and Random Forest performed marginally better than simpler models 

such as linear regression and KNN in the presented Tox21 data analysis. Since a simpler model 

with acceptable performance often also is easy to interpret for the Tox21 dataset, it clearly was the 

preferred choice due to its better explainability. Given that each dataset had its own error structure 

both for dependent and independent variables, we strongly recommend that it is important to 

conduct a systematic study with a broad range of model complexity and feature explainability to 

identify model balancing its predictivity and explainability.
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Background

Artificial Intelligence (AI) has been playing an increasingly vital role in a broad range of 

scientific research and applications, including clinical diagnosis/prognosis, natural language 

processing, speech and face recognition, and machine translation. Recent development 

of neural networks, commonly known as Deep Learning (DL), have further speeded up 

development of AI by taking advantage of Big Data and increased computational power. 

Highlighted as one trigger event in 2012, the award-winning DL model (AlexNet) held 

a top-5 error rate of 15.3% in the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC), demonstrating a significant improvement over the second-best model’s top-5 

error rate of 26.2%1. Since then, complex modeling algorithms such as DL have gained wide 

acceptance, leading to better model performance, especially in Big Data analysis.

In predictive toxicology, AI and Machine Learning (ML) also has been widely investigated 

for chemical risk assessment and drug safety evaluation. In the past decades, our group 

developed numerous predictive toxicology approaches and tools in this area, particularly 

for drug-induced liver injury (DILI)2–6 and toxicogenomics7–9. The combination of high 

throughput screening and ML has also become an important direction in predictive 

toxicology10–12. For instance, the Tox21 project has screened over 10000 chemical 

compounds via robotic automated high-throughput in vitro assays to measure corresponding 

bioactivities, an unprecedented achievement which provided millions of chemical bioactivity 

profiles and data points.10, 13
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One of the key ML applications in predictive toxicology is to predict chemical bioactivities, 

including toxicity with molecule structure. Traditionally known as QSARs (quantitative 

structure activity relationships), this field has seen significant advancements with modern 

machine learning approaches, such as Support Vector Machine (SVM), Random Forest, 

and recently DL9, 14, 15. For instance, several DL approaches have been developed recently 

with QSAR studies16–19, most of which reported improved prediction accuracy for different 

tasks. Along with improved performance, another advantage of some DL approaches is their 

innate ability to work with molecular representation as SMILES, chemical graphs or images 

and thus bypassing the manual feature selection process.20, 21 While on one side this may 

remove a bias of a researcher to one or another type of descriptors it may also result in DL 

models which are more opaque since the reasoning for the model decisions is buried amid 

millions of neural network weights.

The problem of model interpretations is actively pursued in chemoinfomatics22 where 

it is going beyond the traditional QSAR and is highly relevant in other fields of 

science23. A prerequisite for a trustworthy model is that its performance can be explained. 

Explainability can be defined as an AI behavior that can be understood and accepted by 

humans, which involves many concepts and aspects such as transparency, interpretability, 

causality, transferability, accessibility, etc.24 This is a topic of active research in explainable 

Artificial Intelligence and some promising development in this area were recently reported 

elsewhere23, 25. Still some methods, such as a linear regression, k-nearest neighbors (kNN) 

or decision trees, which are used by researches since many years, are considered as 

more interpretable since, e.g., the weight of features in regression could be interpreted 

as its importance to the decision making. In predictive toxicology, the driving features are 

descriptors of a substance’s biological and chemical properties. Since human experts could 

explain influence of physiochemical descriptors, a predictive model developed with them 

generally could be more easily interpretable than the one using more complex features 

such as hashed fingerprints, graphical/geometric depictions and/or ML-derived molecular 

representations. With that said, the selection of chemical features and the complexity of 

modeling algorithm are currently the key factors to determine the explainability in predictive 

toxicological research.

The choice of modeling algorithm frequently involves a perceived trade-off between 

predictivity and explainability. In other words, increasing predictivity sometimes could 

lead to lower explainability; the reverse also could be true. The challenge is how we can 

balance predictivity and explainability to achieve a trustworthy model. To achieve that, we 

first need to understand how much the selection of model algorithms, as well as chemical 

features, would impact predictivity. In this study, we report a case study using the Tox21 

bioassay activity dataset.26, 27 We mostly focus on the transparency and interpretability 

versus prediction performance of analyzed methods for Tox21 endpoints, which is attributed 

to the types of the modeling algorithms and the descriptors. We provide a broad view of ML 

applications in predictive toxicology by systematically investigating the influence of assay 

endpoints (68 assays), modeling algorithms (twelve ML and deep learning algorithms), and 

features (seven chemical representations).
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Methods and Materials

Tox21 Dataset

Tox21 bioassay activity data (the Tox21 Dataset13) were collected for 68 bioassay 

endpoints27 and 8948 compounds, of which each was tested in at least one assay. Chemical 

bioactivity data was preprocessed and categorized into four major classes: active agonist, 

active antagonist, inactive and inconclusive28. In this study, both active agonists and active 

antagonists were considered positive compounds, and inactives were considered negative. 

Only one active category was considered in each assay; i.e., if one assay contained more 

active agonists than active antagonists, we used the active agonists as positive in the 

analysis. Inconclusive compounds were excluded from all assays/endpoints. Chemicals were 

further deduplicated based on their InChI keys. The final number of positive and negative 

samples in each assay was summarized in Supplementary Table S1 and all processed data 

are available as Supplementary Table S2.

In addition, the chemical similarity of a Tox21 assay endpoint was calculated using a within-

group chemical similarity (S) score. S represented the chemical diversity in accordance 

with the endpoint, which was measured according to formula (1). In the formula, m and n 
represent the number of compounds in positive and negative classes, respectively. Jaccardij 

indicates the Jaccard similarity coefficient (index) between compounds i and j, which 

was calculated based on RDkit fingerprints. As formulated, higher S value corresponds 

to endpoint with compounds that are more similar within the class of actives.

S = Mean( ∑
i = 1

m
∑
j = 1

m
Jaccardij) − Mean( ∑

i = 1

m
∑

k = 1

n
Jaccardik) (1)

Predictive modeling algorithms

In total, 12 modeling algorithms were included in this study; These modeling algorithms 

can be categorized into four classes: (1) neural networks; (2) decision trees ensemble 

methods; (3) SVMs; and (4) simple algorithms. For neural networks, we deployed a 3-Layer 

neural-network (MLP-3), 7-Layer neural-network (DNN19), Associative Neural Network 

(ASNN-MTL)29, and a Multi-task Learning version of the 7-Layer Neural-network (DNN-

MTL)19. Algorithm ending with MTL were performed with multi-task learning framework. 

Four decision trees ensemble methods, XGBoost30, AdaBoost, GradientBoosting, and 

Random Forest, were used. For SVMs, we applied rbf SVM (SVM)31, 32 and Least-Squares 

SVM (LS-SVM)33 optimized for GPU-based computing. Lastly, Linear Regression and 

KNN were used as for simple algorithms32. These modeling algorithms provided broad 

coverage of modeling complexity while representing popular modeling algorithms in the 

field. Linear regression and KNN are simple methods that are easier to understand, while 

SVMs and neural networks are relatively more complicated and difficult to interpret. The 

use of ensembles for decision trees despite it added more complexity was also shown to 

significantly improve their performances30, 34. Deep neural-networks are one of the recent 

popular modeling algorithms and often have good predictivity compared to other algorithms 

especially in studies dealing with large data14, 21, 35.
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Among the 12 studied algorithms, XGBOOST, LS-SVM, DNN, ASNN-MTL and DNN-

MTL were performed in OCHEM platform (http://ochem.eu), which has LS-SVM and 

DNN(-MTL) implemented using GPU.36 The other seven modeling algorithms were 

performed on local computing cluster at FDA. As designed, the training and testing 

compounds for two experiment sites were exactly the same, but we applied slightly different 

data-preprocessing strategy on each site. For example, correlation filters (>0.95) was used 

in OCHEM platform for feature reduction during data pre-processing. We checked the 

influence of the preprocessing on the performance of the Random Forest, which was 

calculated with the same setting of hyperparameters in OCHEM and FDA sites but did 

not observe any systematic bias. The parameters used in these modeling algorithms, if not 

specified, were set to defaults, which were optimized in multiple studies performed by their 

authors. The details of modeling algorithms used in this study are summarized in Table 1.

Chemical Features

We evaluated seven different types of chemical features to represent the chemical structures, 

five chemical fingerprints (i.e., RDKit37, ECFP4, FCFP4, Extended Functional Groups 

(EFG)38 and ToxPrint39) and two QSAR descriptors (i.e., MordRed40 and Mold241). 

RDKit fingerprint was developed by RDKit37 and was calculated with default parameters 

(nbits=2048). Extended-Connectivity Fingerprints (ECFP4 and FCFP4) are atom-based 

and feature-based chemical fingerprints, both of which were calculated by using Morgan 

fingerprints generated by the RDKit, with radius=2 and bit length 1024. ToxPrints are 

based on the publicly available ToxPrint chemotypes (v2.0_r711, https://toxprint.org/) 

generated within the associated ChemoTyper application (https://chemotyper.org/). EFG is 

an extension of a functional group set previously implemented by the CheckMol42 that also 

covers heterocyclic compound classes and periodic table groups38. ToxPrint chemotypes 

consist of 729 uniquely defined chemical features coded in XML based Chemical Subgraphs 

and Reactions Markup Language (CSRML). The numbers of features generated for each 

type of descriptors are listed in Table 2.

Results

Study workflow

The overall study design is depicted in Figure 1a. We used all publicly available assays 

from the Tox21 dataset13 to take advantage of the diversity in assayed endpoints (i.e., 

68 bioactivity endpoints). In total, 8948 compounds were profiled by at least one assay. 

After data pre-processing to remove chemical duplicates, 7660 compounds were retained 

for the analyses. These compounds were split on training and test set comprising 7000 

and 660 compounds, respectively (see Supplementary Table S2). We conducted binary 

classification and for each assay only active and inactive compounds were considered. 

The active compounds could either be active agonists or active antagonists, depending on 

the majority group of the assay (see Materials and Methods for details). For duplicated 

compounds, only compound with consistent bioactivities in the same assay were considered: 

others were labeled as inconclusive and discarded. Finally, we removed three assays that 

did not have enough active compounds (<=20), therefore 65 Tox21 assays remained for 
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modeling analysis. The final processed-ready dataset is available for download from http://

ochem.eu and is also included as Supplementary Table S2.

For each endpoint, we developed 84 models with exhaustive combination of seven types 

of molecular features in conjunction with 12 modeling algorithms. Specifically, we used 

RDkit, ECFP4, FCFP4, EFG, ToxPrint, Mold2 and MordRed to measure/represent different 

types of compound fingerprints or QSAR descriptors. Four major categories of 12 modeling 

algorithms were used to represent the varying degrees of complexity in modeling algorithms.

Figure 1b shows the general modeling pipeline with a single experiment (i.e., one feature 

set and one modeling algorithm applied to data from a single assay), in which a model 

pairing a modeling method with chemical features was evaluated by 5-fold cross-validation. 

During the cross-validation, we split the training dataset into 5 folds, where 4 folds were 

used for training and the other fold was used for validation. Next, the models were tested on 

the hold-out samples from the test set, which contains 660 unseen compounds. Final model 

performance thereafter was measured by the average AUC of the training set as well as the 

AUC of testing set.

Model predictive performance

Overall results on the testing data are shown in Figure 2a. As shown, each cell in this 

hierarchical clustering map (HCA) is the average testing AUC from the nested cross 

validation results in one model. The x-axis contains 65 Tox21 assays. The HCA map 

contains 84 rows, which represented all combinations of seven feature sets and 12 modeling 

algorithms.

First, we found that these 65 Tox21 assay endpoints showed very different performance 

patterns. Some endpoints always had a high AUC regardless of the type of feature or 

modeling algorithm used. Contrary to that some endpoints showed a consistently low AUC 

across all feature-algorithm combinations. With respect of their performance similarity 

models using the same chemical features tended to cluster together.

The overall predicting performance for each Tox21 assay was summarized in the 

box-plot representation (Figure 2b). Each bar represented a collapsed result of one 

particular modeling algorithm, by combining all features and endpoints. Training (i.e., 

Cross-validation) and testing (i.e., hold-out) results were presented in blue and orange 

boxes, respectively. As shown, there was no significant performance gap between Training 

and Testing results, indicating that the developed models were robust. Detailed model 

performances (AUC) for each Tox21 assay were summarized in Table S1.

Overall performance of model algorithms and features

Further analysis was applied to inspect the overall influence of chemical features and 

modeling algorithms, by averaging the results across all 65 Tox21 endpoints. The 5-fold CV 

and the hold-out testing results were summarized in Table 3.

Regarding to the feature types, the best feature type was Mold2 (AUC-CV=0.82; AUC-

test=0.84). The weakest feature type was ToxPrint (AUC-CV=0.76; AUC-test=0.78). In 
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general, QSAR descriptors (i.e., Mold2 and MordRed) performed better than chemical 

fingerprints. We also observed that EFG outperformed ToxPrint, both of which were kinds 

of structural alerts or functional groups.

On the other hand of modeling algorithms, we found GBoost, RF and SVMs showed 

better predicting performance than other categories of algorithms, and the best modeling 

algorithms among 12 we tested was RF (AUC-CV=0.84; AUC-test=0.84); the relatively 

weakest modeling algorithm was KNN (AUC-CV=0.73; AUC-test=0.75). In addition, we 

did not observe better performance of more complicated models such as the neural networks, 

compared to simple models of Linear Regression, which provided similar results on average. 

In addition, XGBOOST did not improve the model predictivity compared to GBoost. We 

also observed that Multi-task learning framework may improve the modeling predictivity 

since DNN-MTL outperformed DNN thus confirming results of other studies.

For the single pair of model-feature combination, LS-SVM with MordRed held the best 

performance in average 65 Tox21 endpoints prediction (AUC-CV=0.87; AUC-test=0.88). 

Note that the predictivity differences among top combinations were marginal; such as 

LS-SVM-Mold2, LS-SVM-MordRed, RF-Mold2 and RF-MordRed, all of which held AUC 

around 0.88 in hold-out testing result.

Parameter influence on predictivity of SVM and RF

Based on the overall prediction results, SVM and Random Forest (RF) showed a good 

predictivity among all feature types and endpoints we tested. Both RF and SVM have 

hyper-parameters, which may have significant impacts on the model performance. In aims to 

understand how much the hyper-parameter tuning could affect the predictivity of both SVM 

and RF, we performed a grid search analysis to fine-tune “cost parameter” (C) and gamma 

(g) for SVM (with default RBF kernel) and “number of trees” (n) and “minimal number of 

samples in leaf node” (L) for RF, respectively.

As shown in Figure 3a, the hyper-parameters showed a large impact on SVM models. As 

a “proper” set of hyper-parameters (e.g., C=10 and g = “scale”)43 would achieve over 0.8 

AUC across all types of features and endpoints where an “improper” set of hyper-parameters 

(e.g., C=0.1 and g=1) would fail completely (Averaged AUC<0.5). On the other hand, we 

found that the influence of hyper-parameters on RF models was much smaller in comparison 

to SVM models (Figure 3b), as the “worst” set of hyper-parameters (e.g., n=10; L=20) still 

could get an averaged AUC around 0.75. Taken together, our findings demonstrated that 

hyper-parameter selection can have a larger impact on some modeling algorithms such as 

SVM, while less affects other modeling algorithms such as RF.

Influence of sample size and chemical similarity on endpoint predictability

Figure 4 shows an assessment of the other two important innate properties of a dataset that 

affect model performance, sample size and chemical similarity. Due to data availability, 

sample size varied from endpoint to endpoint, and the positive sample size (i.e., number of 

active agonist or antagonist in the dataset) was usually much smaller than negative sample 

size. A smaller positive sample leads to more imbalanced dataset, which could affect the 

model performance. We therefore analyzed the correlation between model performance and 
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positive sample ratio for the analyzed endpoint (Figure 4, light gray bars). As shown, we 

found that the positive sample size had little effect on the averaged model performance. 

However the sample size influenced the variation of the performance and we observed 

wider boxes and quantiles in assays with smaller positive sample sizes. In addition, lower 

performed assays also tended to have larger variations of performance, which indicated the 

modeling algorithm and feature selection could more affect these low-performed and less 

sample size endpoints.

With respect to the chemical similarity of endpoints, the S scores were negative for most of 

the Tox21 assays, indicating that for most assays, compounds within the respective positive/

active class shared low structural similarity (Figure 4, Red/Green/Black bars). Meanwhile, 

we found that the S scores for eight of ten endpoints with high predictability were positive, 

implying that higher structural similarity within the positive/active compound class may 

contribute to the higher predictive performance of the models for these assays. However, 

endpoints with negative S score did not necessarily result in poor performance; for example, 

although assays of tox21-ahr-p1 and tox21-pr-bla-antagonist (green bars in Figure 4) had 

negative S score −0.018 and −0.037 respectively, they still had high AUC (>0.85) in both 

training and testing results.

Discussion

We conducted a systematic investigation on the choice of modeling approaches (12 

ML/DL algorithms used) and chemical features (seven molecular representations) in 

predictive toxicology, with a specific focus on comparative analysis of model performance 

and explainability and the trade-off between them. Results demonstrated that the assay 

or endpoint itself was the largest determining factor for model performance; a good 

performance was reached for a predictable endpoint (high predictability) regardless of the 

choice of modeling algorithm or feature type used44. As implied in Figure 4, assays with 

lower performance tended to have larger variations. The influence of modeling algorithm 

and features was more pronounced for such endpoints as well as for those with more 

imbalanced dataset (i.e., smaller positive sample sizes). For such endpoints it could be 

important to conduct a systematic analysis by using a broad range of approaches of various 

model complexity and feature explainability. For the Tox21 datasets studied here, we found 

that using simple modeling approaches such as Linear Regression in a number of cases 

provided models with similar performance to those of more complex approaches, such as 

neural networks. Such models could be more preferable in the context of the computational 

toxicology due to better balancing of their predictivity and interpretability. Of course, the 

reported in this study results could be influenced by type of the data and used descriptors, 

but the use of simple baseline models should not be ignored.

Not all datasets have the same complexity, which further emphasizes the need for evaluating 

a broad range of modeling approaches and molecular representations. Three innate data 

properties are of special importance: endpoint predictability, data imbalance, and size. With 

respect to endpoint predictability, we only examined the chemical structure similarity within 

and across class labels without considering the quality of the endpoints measurements 

Wu et al. Page 8

Chem Res Toxicol. Author manuscript; available in PMC 2022 February 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



themselves. The results implied that a high chemical structure-driven predictability likely 

resulted in a good performance, but the reverse was not entirely apparent.

An algorithm with a simple architecture, such as linear regression may not be the most 

powerful, but it will be easily explainable when using interpretable descriptors. Algorithms 

with more complicated architectures, such as (LS-)SVM or (deep) neural networks, may 

have better statistical performance but can be more difficult to interpret. In this study, we did 

observe that some more complex modeling algorithms had overall better prediction accuracy 

as compared to simple algorithms such as linear regression and KNN. However, the 

influence of a modeling algorithm was not as significant as the nature of the endpoint itself 

and in a number of cases simpler and easier to interpret models with similar performances 

were obtained. Selecting a complex but less explainable model could hinder its use due to 

possible concerns with interpretation of its predictions for new data.

Therefore, when considering both predictivity and explainability in the context of chemical 

feature based Tox21 data analysis, we recommend do not overlook using simple models: 

they provide higher explainability while still can have similar performance as some more 

complicated approaches. Another strategy is to increase the explainability of complex 

models via model-agnostic approaches45. With more such approaches being developed46–48 

and with their wider availability, complex models such as DL networks may hold great 

potential for improved explainability. In their absence an interpreting a complex model 

is much more difficult than interpreting a simple model such as linear regression. Given 

that each dataset has its own error structure both for dependent and independent variables, 

we strongly recommend that it is important to conduct a systematic study with a broad 

range of method complexity and feature explainability to select a model, which balance its 

predictivity and explainability

Note that in this study we only considered chemical feature-based models, while recently 

we observed many deep learning models now directly analyse chemical structure such as 

SMILE string, InChI key, 3D image as the model input49, 50. Directly using chemical 

structure instead of features may be a game changer to the predictive toxicology, just 

like the current image analysis nowadays will directly use the raw image rather than 

human-engineered features. The investigation and comparison between feature-based and 

feature-free models also need to be comprehensively performed. In addition, consensus 

modeling could also be an effective way to improve model predictivity51. Evaluation 

the explainability of consensus model is also a challenge and the objective of future 

studies. While we plan to perform such studies ourselves we also encourage the other 

researchers to analyze the data of this study, which contain nearly 440k measurements for 

65 properties (Supplementary table S2) in order to propose and benchmark approaches 

balancing predictivity and explainability of models.

Future directions can also include evaluating metrics to qualitatively or quantitatively 

measure the interpretability on demand, in order to investigate how much interpretability 

could be gained by using different approaches and whether they contribute the same 

interpretations. In addition, multi-task learning was proved to be an efficient way to 

improve the model performance by sharing the modeling architectures among different 
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predictive endpoints14, 17, 19. We also observed the same tendency in this study but a more 

comprehensive investigation on the effects of multi-task learning compared to single-task 

learning would be critical to better elucidate impact of these methods on the predictive 

toxicology.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The overview of the workflow used to analyze the data. (a) Overall study design. (b) 

Construct and evaluate predictive model with selected predictor, modeling algorithm and 

endpoint.
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Figure 2. 
(a) Heatmap of all Tox21 assays across different modeling algorithms and features. (b) 

Overall, collapsed performance for all Tox21 assays. The validation and testing results are 

consistent across all endpoints.
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Figure 3. 
Hyper-Parameter tuning result for (a) SVM and (b) Random Forest.
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Figure 4. 
Influences of positive sample ratio (light-gray bars) and sample within-group similarity 

(green/red/black bars) on endpoint performance (blue box plot). Green and red bars are the 

top ten highest performed assays with positive and negative S score, respectively.
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Table 1.

Brief summary of modeling algorithms used in this study.

SYNONYM MODELING ALGORITHM CATEGORY PARAMETERS

LINEAR Linear regression Simple Model

KNN K-Nearest Neighbors Simple Model K=5 (default)

RF Random Forest Ensemble Model n=100 (default)

ABOOST Adaptive Boosting Ensemble Model n=50 (default)

GBOOST Gradient Boosting Ensemble Model n=100 (default)

XGBOOST Extreme Gradient Boosting Ensemble Model

SVM Support Vector Machine SVMs Kernel=rbf; C=100; gamma=’scale’

LS-SVM Least-Squares SVM SVMs

MLP3 3 layers Multi-layer Perceptron Neural Networks nodes=[32, 64, 32];

DNN 7 layers Neuro Networks Neural Networks nodes=[512:256:128:64:32:16]

DNN-MTL Multi-Task Learning of DNN Neural Networks Same as above

ASNN-MTL Associative neural network Neural Networks Ensemble of 64 models with one hidden layer containing 3 neurons
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Table 2.

Brief summary of feature generation tools used in this study.

SYNONYM #FEATURES CATEGORY REFERENCE

RDKIT 2048 Chemical fingerprints https://www.rdkit.org

ECFP4 1024 Chemical fingerprints https://www.rdkit.org

FCFP4 1024 Chemical fingerprints https://www.rdkit.org

EFG 583 Chemical fingerprints Citation38

TOXPRINT 729 Chemical fingerprints https://toxprint.org, 39

MORDRED 1825 QSAR descriptors Citation40

MOLD2 777 QSAR descriptors Citation41

Chem Res Toxicol. Author manuscript; available in PMC 2022 February 24.

https://www.rdkit.org
https://www.rdkit.org
https://www.rdkit.org
https://toxprint.org


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wu et al. Page 19

Table 3.

Averaged performance of seven feature types and twelve modeling algorithms.

Model/
Feature

RDKIT ECFP4 FCFP4 EFG TOXPRINT MOLD2 MORDRED Average

5-
fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test
5-

fold 
CV

Test

DNN-MTL 0.79 0.83 0.79 0.80 0.79 0.76 0.86 0.81 0.72 0.77 0.82 0.84 0.81 0.84 0.8 0.81

DNN 0.78 0.81 0.77 0.79 0.78 0.79 0.82 0.77 0.71 0.70 0.78 0.81 0.77 0.81 0.77 0.78

ASNN-
MTL

0.77 0.76 0.80 0.84 0.79 0.84 0.84 0.81 0.73 0.79 0.80 0.81 0.66 0.67 0.77 0.79

MLP3 0.76 0.80 0.75 0.78 0.75 0.77 0.77 0.75 0.76 0.80 0.83 0.83 0.83 0.85 0.78 0.8

XGBOOST 0.79 0.81 0.76 0.77 0.75 0.77 0.80 0.78 0.67 0.69 0.81 0.85 0.81 0.85 0.77 0.79

GBOOST 0.83 0.85 0.81 0.83 0.80 0.81 0.83 0.83 0.81 0.83 0.85 0.87 0.84 0.87 0.83 0.84

ABOOST 0.77 0.79 0.76 0.78 0.77 0.78 0.80 0.79 0.78 0.81 0.82 0.83 0.89 0.84 0.79 0.8

RF 0.84 0.84 0.83 0.83 0.82 0.81 0.86 0.83 0.82 0.81 0.86 0.88 0.86 0.88 0.84* 0.84*

LS-SVM 0.84 0.86 0.82 0.83 0.81 0.84 0.84 0.82 0.73 0.74 0.86 0.88 0.87* 0.88* 0.83 0.83

SVM 0.84 0.85 0.83 0.84 0.81 0.82 0.81 0.80 0.81 0.81 0.85 0.87 0.85 0.88 0.83 0.84

KNN 0.73 0.77 0.73 0.74 0.72 0.73 0.71 0.70 0.72 0.75 0.76 0.79 0.77 0.80 0.73 0.75

Linear 0.79 0.81 0.81 0.82 0.81 0.82 0.81 0.78 0.81 0.83 0.82 0.83 0.82 0.85 0.81 0.82

Average 0.79 0.81 0.79 0.80 0.78 0.80 0.81 0.79 0.76 0.78 0.82* 0.84* 0.81 0.84

*
Stars indicate the best performing descriptor sets and algorithms.
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