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Abstract 

Objective:  Antibiotics (ABX) are widely used for life-threatening infections and also for routine surgical operations. 
Compelling evidence suggests that ABX-induced alterations of gut microbiota composition, termed dysbiosis, are 
linked with diverse disease states including neurological and neurodegenerative conditions. To combat the con-
sequences of dysbiosis, probiotics (PBX) are widely used. ABX-induced dysbiosis is reported to impair neurological 
function after spinal cord injury. Traumatic peripheral nerve injury (TPNI) results in profound neurologic impairment 
and permanent disability. It is unknown whether ABX treatment-induced dysbiosis has any impact on TPNI-induced 
functional recovery, and if so, what role medical-grade PBX could have on TPNI recovery.

Results:  In this study, ABX-induced dysbiosis and PBX-induced microbiota enrichment models were used to explore 
the potential role of gut microbiome in TPNI. Stool analysis with 16S ribosomal RNA (rRNA) gene sequencing con-
firmed ABX-induced dysbiosis and revealed that ABX-induced changes could be partially restored by PBX adminis-
tration with an abundance of butyrate producing bacteria. Pre-injury ABX significantly impaired, but pre-injury PBX 
significantly improved post-TPNI functional recovery. Importantly, post-injury PBX protected against pre-injury ABX-
induced functional impairment. These findings demonstrate that reestablishment of gut microbiota composition with 
butyrate producing PBX during ABX-induced dysbiosis could be a useful adjuvant therapy for TPNI.
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Introduction
The gut microbiota play an important role in normal host 
physiology and health [1–3]. Alteration of the host resi-
dent intestinal microbiome, termed dysbiosis, has been 
implicated in many disease states including gastrointesti-
nal, metabolic, autoimmune, inflammatory, neuropsychi-
atric, and neurodegenerative disorders [1–8]. To combat 
the consequences of dysbiosis, nutritional interventions, 
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consisting of probiotics (PBX), are widely used [9–13]. 
PBX create a healthy gut environment by downregulat-
ing pathogenic bacteria in favor of other more beneficial 
bacterial populations.

Multiple factors including age, genetics, environ-
mental stress, infection, diet, and antibiotics (ABX) can 
contribute to dysbiosis [11, 14]. Antibiotics are widely 
used in medicine and surgery [15–17]. Although ABX 
are essential for the prevention and treatment of bacte-
rial infections and have significantly improved treatment 
outcomes, as many as 5–30% of people who receive ABX 
suffer from adverse effects [17–20]. Besides common side 
effects, several studies have shown that ABX treatment 
results in short- or long-term changes in the intestinal 
microorganisms (microbiota) in both humans and ani-
mals [21–26].

Gut bacteria produce a wide range of biologically active 
molecules, such as metabolites, short-chain fatty acids 
(SCFAs), proteins and enzymes. SCFAs such as, acetic, 
propionic and butyric acids, are some of the most impor-
tant gut microbial products, and they are involved in 
a range of regulatory activities beneficial to the host [1, 
8, 27, 28]. For example, butyrate has both intestinal and 
systemic anti-inflammatory, pro-inflammatory, immu-
nomodulatory, and anti-oxidant effects [27–30]. ABX 
pretreatment has been shown to cause dysbiosis in mice 
with significant effects in normal health and disease con-
ditions [31–33]. A deficiency of gut microbiota in mice 
affects the distribution and maturation of microglia and 
impairs the innate immune responses in the brain [34]. 
Dysbiosis caused by ABX has been shown to impair 
corneal nerve regeneration in mice by affecting mac-
rophage distribution [32]. ABX-induced dysbiosis is also 
reported to impair the recovery of neurological func-
tion in mice after traumatic spinal cord injury, whereas 
medical-grade PBX treatment improves recovery [31]. 
Traumatic peripheral nerve injury (TPNI) causes pro-
found neurologic impairment and permanent disability 
[35], and inflammatory responses occurring after TPNI 
play a critical role in nerve regeneration and functional 
recovery [36, 37]. Although ABX are routinely used in 
traumatic neuromuscular injuries, it is unknown whether 
ABX-induced dysbiosis has similar impacts on TPNI-
induced functional recovery as reported in spinal cord 
injury. While the beneficial anti-inflammatory effects 
of SCFAs extend beyond the gut [8, 27, 28], nothing is 
known regarding the role of medical-grade PBX contain-
ing butyrate-producing bacteria in TPNI recovery where 
inflammation plays a critical role in TPNI repair and 
functional recovery.

It is not ethical and possible to do experimental nerve 
injury study in humans. Therefore, in this study, using 
both loss-of-function (ABX-induced dysbiosis) and 

gain-of-function (PBX-induced microbiota enrichment) 
microbiome models, we characterized the gut microbi-
ome in mouse stools and explored the potential role of 
the gut microbiome composition in the functional recov-
ery of TPNI.

Main text
Materials and methods
Animals
The experimental procedures were reviewed and 
approved by the Institutional Animal Care and Use Com-
mittee (IACUC) at the Pennsylvania State College of 
Medicine and the experiments were performed accord-
ing to the guidelines of IACUC. A total of 44 10-week-old 
male C57BL/6J mice (Jackson Laboratories, Bar Harbor, 
Maine, USA) weighing 20–25 g were used for the study. 
Animals were housed and routinely monitored at the ani-
mal facility according to IACUC guidelines.

Antibiotic cocktail and probiotics treatments, experimental 
groups, stool sample collection and analyses
The terms “ABX” and “ABX cocktail” are interchangeably 
used in this manuscript to denote the effects of antibiot-
ics. An ABX cocktail consisting of 2  g/L streptomycin, 
0.17 g/L gentamicin, 0.125 mg/L ciprofloxacin, and 1 g/L 
bacitracin was prepared in drinking water [31], and 
VSL#3 (Sigma-Tau Pharmaceuticals) was suspended in 
sterile saline (5 billion bacteria in 400 µL saline) [31]. The 
experimental groups, stool sample collection, stool 16S 
ribosomal RNA (rRNA) gene sequencing DNA extrac-
tion and analysis [38], bioinformatics analysis [39–43], 
overall community composition analysis [44], alpha 
diversity analysis [45–47], beta diversity analysis [48, 49], 
and biomarker analysis [50] are described in details in 
Additional file 1: Methods and materials and Additional 
file 2: Fig. S1.

Mouse model of severe sciatic nerve crush injury 
and functional analysis
An established severe sciatic nerve crush injury model 
was utilized [51, 52] and functional analysis was per-
formed before and after different treatments [51, 53, 54] 
as described in Additional file 1.

Data analysis
All results are presented as means ± SEM. Functional 
data were analyzed by a mixed model 2-way ANOVA 
for multiple comparisons with Tukey’s correction 
using the GraphPad PRISM 8 (GraphPad Software, San 
Diego, CA, USA). Significant differences for microbiome 
alpha diversity between the groups were assessed using 
Kruskal–Wallis tests through QIIME2. Likewise, beta 
diversity differences were assessed using PERMANOVA 
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tests through QIIME2. Wilcoxon Rank Sum tests within 
R were used to test for significant differences among the 
most abundant phyla. A P value of < 0.05 was considered 
a statistically significant value.

Results
Effects of ABX and PBX on gut microbiota composition
Figure  1 shows the relevant abundance of the most 
prevalent genera within all groups after fecal 16S rRNA 
sequencing and analysis. Compared to other groups, only 
one of six 10-day ABX samples yielded enough sequences 
to be included in analysis, and it had a very distinct com-
positional profile, being dominated by Staphyloccocus. 
Among the other groups, additional differences are evi-
dent, such as the increased abundance of Streptococcus 
in the 10-day-ABX-PBX group. These differences clearly 
demonstrate the impact of various treatment protocols 
on gut bacterial communities.

Additional file  3: Table  S1 shows the top six char-
acteristic bacteria at the phylum level of each group 
before and after treatments using 16S rRNA sequenc-
ing. The gut microbiota was absent in most fecal sam-
ples after ABX treatment and only one fecal sample 
in 10-day-ABX group yielded enough sequences to 
be characterized. At the phylum level, the ABX treat-
ment resulted in a significant increase in Firmicutes 
and a sharp decline in Bacteroidetes compared with the 

Pre-ABX group. Furthermore, ABX treatment also led 
to an increase in Proteobacteria and Actinobacteria. 
While bacterial taxa in PBX group samples remained 
stable compared to Pre-PBX group, PBX treatment 
blunted the effect of ABX in ABX-PBX group with an 
increase in Firmicutes and Actinobacteria strains and a 
decrease in Bacteroidetes strain compared to Pre-ABX-
PBX group.

Alpha‑diversity and beta‑diversity analyses of gut microbiota
Bacterial richness within each fecal sample was deter-
mined using three different alpha diversity meth-
ods: Faith’s phylogenetic diversity, observed amplicon 
sequence variants (ASVs), and Pielou’s evenness. 
The observed alpha-diversity values in 10-day-ABX-
PBX group were significantly lower compared with 
other groups as shown in Fig. 2 as Fig. 2A (**P < 0.01), 
Fig.  2B (**P < 0.01), and Fig.  2C (*P < 0.05, **P < 0.01), 
respectively.

Beta diversity of the fecal samples was calculated 
using the weighted UniFrac distances (Fig.  2D). The 
principal coordinates analysis (PCoA) demonstrated 
that Pre-PBX and 10-day-PBX samples (dots) cluster 
closely together on the plot and were not significantly 
different. In contrast, the 10-day-ABX-PBX samples 
clustered differently and away from all groups.

Fig. 1  Microbiota dynamics at the genus level. The relative abundance of the most prevalent taxa in control (Pre-) and respective 10-day-vehicle 
(MS, maple syrup in drinking water), ABX, PBX, and ABX-PBX stool samples of mice. Bar plot is made with the ggplot2 package in R. Genera are 
shown in different colors. Number at the bottom denotes the ID number of each sample
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Microbiota biomarkers and taxonomic plots analyses
The linear discriminant analysis effect size (LEfSe) test 
and cladogram plot from LEfSe analysis were used to 
identify the taxa that had significantly different abun-
dances within the same treatment group or different 
treatment groups. As shown in Additional file  4: Fig. 
S2, a significant abundance of Akkermansia (Additional 
file  4: Fig. S2B) in 10-day-PBX samples compared to 
Pre-PBX samples (P < 0.05), a significant abundance of 
Bifidobacteriales (Additional file 4: Fig. S2D) in 10-day-
ABX-PBX samples compared to Pre-ABX-PBX samples 
(P < 0.05), and a greater abundance of Lactobacillales 
(Additional file  4: Fig. S2F) in 10-day-ABX-PBX sam-
ples compared to 10-day-PBX samples (P = 0.051) were 
observed.

Effect of ABX and PBX‑treatments on the functional recovery 
after TPNI
Sciatic function index (SFI) is the primary functional 
outcome measure after TPNI. We observed that that pre-
injury ABX treatment significantly impaired SFI recovery 
after crush injury compared the vehicle group (Fig. 3A). 
To determine whether SFI recovery is dependent on 
dysbiosis timing, a post-injury ABX group was tested. 
Similar to the Pre-ABX group, the Post-ABX group also 
demonstrated significantly impaired functional recovery 
compared to vehicle (Fig. 3B). In contrast, mice receiving 
daily PBX (VSL#3) demonstrated significantly improved 
SFI recovery (Fig. 3C). To further investigate whether or 
not PBX could rescue the post-injury functional deficits 
observed following pre-injury ABX administration, a 

Fig. 2  Alpha diversity and beta diversity of Pre-PBX, 10-day-PBX, Pre-ABX-PBX, and 10-day-ABX-PBX stool samples of mice (n = 5–6/group). All 
diversity analyses were performed in QIIME2. Within-sample diversities were measured by Faith’s phylogenic diversity (A), **P < 0.01, 10-day-ABX-PBX 
vs. Pre ABX-PBX, Pre-PBX, and 10-day-PBX groups; observed amplicon sequence variants (ASVs) (B), **P < 0.01, 10-day-ABX-PBX vs. Pre ABX-PBX, 
Pre-PBX, and 10-day-PBX groups; and Pielou’s evenness (C), **P < 0.01, 10-day-ABX-PBX vs. Pre ABX-PBX and 10-day-PBX groups, *P < 0.05, 
10-day-ABX-PBX vs. Pre-PBX group. Between-sample dissimilarities were measured by Principal Coordinates Analysis (PCoA) based on weighted 
UniFrac distances (D), and the clustering of 10-day-ABX-PBX group was significantly different (**P < 0.01) from Pre ABX-PBX, 10-day-PBX and Pre-PBX 
groups



Page 5 of 8Rodenhouse et al. BMC Research Notes           (2022) 15:80 	

pre-injury ABX plus post-injury PBX group was inves-
tigated. Figure  3D shows that PBX prevented any sub-
stantial functional deficits in the treatment group when 
compared to vehicle group.

Discussion
The main findings of this study in loss-of-function (ABX 
treatment) and gain-of-function (PBX treatment) models 
of gut microbiota are: ABX impair the functional recov-
ery after peripheral nerve injury, and PBX improve or 
rescue post-injury functional recovery in the absence or 
presence of ABX, respectively. These findings, coupled 
with the observation of ABX-induced drastic depletion 
of the gut microbiota community with lower diversity 
and PBX-induced restoration of gut microbiota commu-
nity with an increased abundance of butyrate producing 
bacteria after ABX-induced depletion of host microbiota, 
suggest an important role of the gut microbiome modu-
lation in the functional recovery of TPNI.

ABX are often used in many clinical scenarios, includ-
ing infection prevention for trauma and surgical patients 
[55–57]. ABX act not only at their intended sites, but also 
in other distant tissues. PBX are defined as live micro-
organisms conferring a health benefit on the host when 
administered in adequate amounts [58], and VSL#3 is a 
medical grade probiotic mixture that contains 8 different 
strains of “good” bacteria within the orders Lactobacil-
lales or Bifidobacteriales [9, 59, 60]. In this study, 16S 
rRNA sequencing identified significant compositional 
changes that occur in the gut microbiome secondary to 
ABX or PBX administration and these findings are con-
sistent with previously published findings in mice with 
ABX or PBX [33]. A markedly separated distribution 
(beta diversity) of microbiota confirmed that the various 
treatments created unique bacterial communities within 
each group as evidenced by the distinct clustering pat-
terns visualized on the PCoA plot. While 10-day-ABX 
mice failed to retain enough microbiome for analysis, 
10-day-ABX-PBX mice were able to reestablish a modest 

Fig. 3  Functional recovery as sciatic function index (SFI) from baseline in vehicle, Pre-ABX, Post-ABX, Pre-PBX, and ABX-PBX groups. ABX-induced 
dysbiosis impairs SFI (A, B), whereas PBX accelerates SFI recovery (C) and protects against ABX-induced SFI deterioration (D). Data are expressed as 
the mean ± SEM, *p < 0.05, **P < 0.01, ***P < 0.001, vehicle vs. respective Pre-ABX, Post-ABX, and Pre-PBX group, n = 5–7/group
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amount of the intestinal microbiome. The taxa enriched 
in the 10-day-ABX-PBX group fell within the orders Lac-
tobacillales and Bifidobacteriales. Taken together, these 
findings confirm the gut microbiota reestablishing effect 
of VSL#3 against ABX-induced dysbiosis.

Importantly, the accelerated and rescued functional 
recovery with VSL#3 after TPNI provides direct evi-
dence for a functional link between the gut microbi-
ome and TPNI recovery. VSL#3 is reported to prevent 
the host from stable pathologic colonization in differ-
ent experimental models [9, 59, 60]. In a mouse model 
of spinal cord injury, VSL#3 conferred neuroprotection 
with improved locomotor recovery [31]. Supplementa-
tion with VSL#3 is also reported to rescue hippocampal 
neurogenesis and brain function in ABX-treated mice 
[61]. Recently, ABX-induced dysbiosis was shown to 
impair corneal nerve regeneration in mice, an effect that 
was largely reversed by VSL#3 treatment [32]. We found 
an increased abundance of butyrate-producing bacteria 
Ruminococcaceae in the 10-day-PBX group and Bifido-
bacterium in the 10-day-ABX-PBX group. In addition, 
Akkermansia was significantly abundant in 10-day-PBX 
group, and it is reported to produce butyrate, propionate 
and acetate [29]. Since the beneficial anti-inflammatory 
effects of SCFAs extend beyond the gut and macrophages 
are critical for the inflammatory response after TPNI, it is 
thus possible that anti-inflammatory and immunomodu-
latory effects of SCFAs-producing gut microbiota after 
VSL# 3 treatment could be involved in our proof-of-con-
cept study.

In conclusion, our study provides direct evidence for an 
important role of the gut microbiome in the functional 
recovery after sciatic nerve crush injury. We demon-
strate that ABX-induced dysbiosis impairs TPNI-induced 
functional recovery, pre-injury PBX treatment promotes 
functional recovery, and most interestingly, PBX can 
effectively “rescue” ABX-treated mice from the func-
tional consequences of ABX-induced dysbiosis.

Limitations
Our study has some limitations: First, we performed 
analysis on fecal microbiota abundance, diversity and 
biomarkers, but not on the enriched microbial-derived 
metabolites or neurochemicals. Second, we did not inves-
tigate the time-dependent molecular and cellular changes 
in the injured nerve with or without ABX, PBX, and ABX 
plus PBX treatments. Third, it is unknown if ABX or PBX 
treatments would have any effect on nerve myelination 
and conduction velocity.
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