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Summary

Environmental bacteria have a great impact on fish
gut microbiota, yet little is known as to where fish
acquire their gut symbionts, and how gut microbiota
response to the disturbance from environmental bac-
teria. Through the integrative analysis by community
profiling and source tracking, we show that feed-as-
sociated bacteria can impose a strong disturbance
upon the hindgut microbiota of cultured fugu. Con-
sequently, marked alterations in the composition
and function of gut microbiota in slow growth fugu
were observed, implying a reduced stability upon
bacterial disturbance from feed. Moreover, quantita-
tive ecological analyses indicated that homogeneous
selection and dispersal limitation largely contribute
to the community stability and partial variations
among hosts in the context of lower degree of dis-
turbance. While the disturbance peaked, variable
selection leads to an augmented interaction within
gut microbiota, entailing community unstability and
shift. Our findings emphasized the intricate linkage
between feed and gut microbiota and highlighted the
importance of resolving the feed source signal
before the conclusion of comparative analysis of

microbiota can be drawn. Our results provide a dee-
per insight into aquaculture of fugu and other eco-
nomically important fishes and have further
implications for an improved understanding of host–
microbe interactions in the vertebrate gastrointestinal
tract.

Introduction

Microbiome can directly or indirectly affect the host’s
physiological functions such as metabolism, immune
defence, growth and development, as evidenced by
increasingly large body of microbiome researches (Berg
et al., 2020). Integrative conceptual frame of holobiont
had been proposed, in which animals and plants are no
longer seen as autonomous entities but rather as biologi-
cal networks comprised with both host and its associated
microbiome (Zilber-Rosenberg and Rosenberg, 2008;
Bordenstein and Theis, 2015; Theis, et al., 2016). Under-
standing the factors that underlie changes in such inter-
active network is essential and could provide further
insights into how the normal balance between host and
microbiome (eubiosis) can be maintained or intervened if
disrupted (dysbiosis) (Lozupone, et al., 2012; Xiong,
et al., 2017; Berg, et al., 2020). Systematically surveys
of a broad range of environments and host species
using the contemporary high-throughput sequencing
technologies have unravelled the structural and func-
tional diversity of complex microbial communities and
enabled in-depth studies of microbiome-associated ecol-
ogy, physiology and molecular function (Sunagawa,
et al., 2015; Lloyd-Price, et al., 2017; Hatzenpichler,
et al., 2020).
Exploring the composition and function of gut micro-

biome on fish have evoked increased research interest,
not only for its representativeness as the most diverse
vertebrate lineage, they also have a great economic sig-
nificance, particularly in aquaculture (Perry, et al., 2020).
The development of high-potential microbiome-based
innovations offers opportunities for disease control and
health promotion in aquaculture practice (Chao, et al.;
de Bruijn, et al., 2017). Therefore, there is an urgent
need of establishing an optimized microbial management
strategy to achieve a more sustainable aquaculture
(Lieke, et al., 2020). As a prerequisite, understanding
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the ecological processes and mechanisms in controlling
the assemblage of fish-associated microbiome becomes
critical (De Schryver and Vadstein, 2014; Zhang and
Gui, 2018).
Fish gut can be considered as a dynamic ecosystem

in which spatial-temporal disturbance in the microbial
nutrient niches shape the bacterial community (Ringø,
et al., 2016; Pereira and Berry, 2017). The potential
niche space in fish gut environment can be determined
by the host in multiple ways (Wang, et al., 2018), yet it
also can be largely determined by the diet as well as it’s
associated bacteria (Parris, et al., 2019; Wilkes Walburn,
et al., 2019; Abdul Razak and Scribner, 2020). Recent
findings suggest that a limited numbers of bacterial taxa
are shared inter-individually from a given host population
and comprise a core gut microbiota (Roeselers, et al.,
2011; Wong, et al., 2013; Riiser, et al., 2018). Fish-asso-
ciated microbiota can be potentially acquired from a vari-
ety of sources with which organisms come into intimate
biological interactions (Wang, et al., 2018).
Takifugu (aka fugu), a genus of pufferfish (Tetraodonti-

dae), is better known to be able to accumulate a potent
neurotoxin, tetrodotoxin, and possess high toxicity
(Zhang, et al., 2020b). As a vertebrate, fugu displays
several peculiarities in its genome, such as shortened
intergenic and intronic sequences devoid of repetitive
elements (Brenner, et al., 1993; Aparicio, et al., 2002),
thereby makes it distinctive animal model for genome
evolution study (Van de Peer, 2004e Peer, 2004). More-
over, the artificially reared fugu becomes non-toxic and
is considered a delicacy and commercially farmed widely
across many East Asian countries including Japan,
Korea and China (Wang, et al., 2019; Gao, et al., 2020).
In 2016, China had deregulated the fugu farming indus-
try, and large-scale aquaculture of two fugu species T.
rubripes and T. obscurus were licensed. With the market
demand continues to grow, the aquaculture fugu produc-
tion is progressively increased (Wang, et al., 2019;
Zhang, et al., 2020b). Therefore, understanding how and
determining the extent to which the rearing environments
effect fugu health and production is needed.
As a demersal fish, fugu live on or near the bottom of

water, foraging food by scraping them off the surface
(Okabe, et al., 2019). Meanwhile, faeces from farmed
fugu can also play a part of bacterial enrichment in rear-
ing water and sediment as seen in other fish species
(Muziasari, et al., 2017; Goła�s, et al., 2019; Zhang,
et al., 2020a). Such dynamic reciprocal interactions
might be expected to lead to a closer association
between the gut of farmed fugu and its rearing environ-
ment to some extent, that is distinctions in the gut bacte-
rial communities mirrored the environments and vice
versa. Especially while considering the abundant bacte-
rial species in the surrounding environments as a

potential reservoir (Giatsis, et al., 2015; Eichmiller, et al.,
2016; Parris, et al., 2019). On the other hand, unlike the
pond water and sediment, the feed and gut are inher-
ently linked by the high nutrient niche, which might
impose a strong environmental selection of microbiota
with functional traits linked to copiotroph (De Schryver
and Vadstein, 2014; Troussellier et al., 2017). Despite
the evidences for the broad existence of core gut micro-
biota, accumulating studies had also showed substantial
inter-individual variation in the gut microbial communities
for both cultured (Li, et al., 2017; Perry, et al., 2020) and
wild-captured fish species (Star, et al., 2013; Egerton,
et al., 2018; Riiser, et al., 2020). Several factors can
contribute to such variability, including environmental fil-
tering either by the host, for example variations between
regions of the gastrointestinal tract, state of health and
nutrition; or by the rearing environments such as diet
(Wong, et al., 2013; Clements, et al., 2014). Such varia-
tions should be resolved before the conclusion of com-
parative analysis of microbiota can be drawn.
Environmental bacteria have a great impact on fish

gut microbiota (Eichmiller, et al., 2016; Muziasari, et al.,
2017; Lieke, et al., 2020), yet little is known as to where
fish acquire their gut symbionts, and to what extent gut
microbiota response to it. Here we used 16S rRNA
amplicon sequencing to characterize the hindgut micro-
biota from cultured obscure puffer (T. obscurus) in com-
parisons with its rearing environment. Juvenile offsprings
from a full-sib family were reared in a closed indoor
aquaculture facility with consistent pond management
and husbandry condition as well as feeding procedure.
Our findings illustrated a clear diversity–function relation-
ships in fugu gut microbiota and emphasized the intri-
cate linkage between feed and gut microbiota. These
results provide a deeper insight into aquaculture of fugu
and other economically important fishes and have further
implications for an improved understanding of host–mi-
crobe interactions in the vertebrate gastrointestinal tract.

Results

In this study, the microbiota from fugu gut and its rearing
environments were profiled using 16S rRNA gene ampli-
con sequencing. Using Illumina MiSeq, we obtained a
total of 2.6 million reads with an average length of
410 bp from 82 samples (fish = 61; feed = 3; water = 9;
sediment = 9). After quality filtering and chimeras
removal using USEARCH followed by taxonomy-based
filtering of plastids (chloroplast) sequences via RDP clas-
sifier, a total of 2,289 exact sequence variants (ESVs)
were clustered. A total of 2.2 million high-quality reads
were retained (mappable to ESVs) with average 26,712
reads per sample (ranging from 7,244 to 66,203;
Table S1). Further, data sets were rarefied at 7,000
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sequences per sample, followed by coverage estimates
by rarefaction curves to ensure a sufficient sequencing
depth and to include all samples for downstream analy-
sis (Fig. S1). The data set generated and analysed for
this study is available in the NCBI sequencing reads
archive (SRA), under BioProject accession number
PRJNA658467.

Comparative analysis of microbiota shows distinctions
between fugu gut and rearing environment

The calculated indices of Richness (Observed ESVs),
Chao1, Shannon and Simpson, congruously, indicated
that the alpha diversity of fugu gut microbiota was
markedly lower comparing to that of rearing environ-
ment including feed, water and sediment (Fig. S2). In
addition, statistical analysis of beta diversity based on
Bray–Curtis distance showed that the pond (n = 3)
does have certain effect on community dissimilarity
(R2 = 0.11; P = 0.001; MeanSqs = 0.97; Table S2),
thereby ‘pond’ was set as a strata. Further, the com-
munity composition was revealed to be significantly
differed among sample groups including fugu gut (F),
feed (Fd), sediment (S) and water (W) (PERMA-
NOVA, R2 = 0.24; P = 0.001; MeanSqs = 2.08; stra-
ta=’pond’; Fig. 1A). In addition, the permutational
analysis of multivariate dispersion (PERMDISP)
results showed that the sample groups differed in
homogeneities, and the intra-group beta dispersion
was significantly lower in feed group than any other
groups (Tukey HSD, P < 0.05, Table S2). This is in
accordance with the fact that the commercial pelleted
feed are technical replicates (n = 3) (Fig. S3). More-
over, the abundance-weighted UniFrac distances of
all intra-group pairs were significantly shorter than
that of inter-group pairs (P < 0.001; Mann–Whitney U-
test), among others the fugu gut had the greatest
within-group dispersions (F.F: range 0.069–0.996;
coefficient of variation, 0.340) suggesting a much
greater variability (Fig. 1B).
We further estimated the proportions of feed, sedi-

ment and water as a potential environmental bacteria
‘source’ for the gut microbiota (as ‘sink’) using Sour-
ceTracker. Results shown that the majority of bacte-
rial proportions in fugu gut microbiota were, in fact,
not identifiable from any given source (‘unknown’,
70.42 % � 30.87% s.d.), suggesting a higher degree
of host specificity. Yet, a notable proportion was pre-
dicted from feed (29.19% � 30.53% s.d.) (far left
facet ‘FishSink’ in Fig. 1C and Table S3). Moreover,
verifications using one each of the four sample
groups as ‘source’ had confirmed the accuracy of the
predictive measures in classifying among different
groups, despite a minor proportion from an

unidentified source (unknown) within each group (four
right-side facets in Fig. 1C).
The characteristic taxa were classified as a attribute in

distinguishing among different groups of bacterial com-
munity using Random-Forest machine-learning
approach. Results post 10-fold cross-validation showed
that at least 34 bacterial families can be used to classify
all four sample groups with 1.22% error rate (Fig. S4,
Table S4). Of these, 33 families were taxonomically cat-
egorized into eight phylums according to the NCBI Tax-
onomy (Fig. 1D). Three indicative bacterial families for
fugu gut microbiota were identified, namely Brevinemat-
aceae (Spirochaetes), Mycoplasmataceae (Tenericutes)
and Rikenellaceae (Bacteroidetes). However, greater
numbers of diverse indicative families for environmental
sample groups were determined and brought into corre-
spondence with the observed high bacterial diversity in
environmental microbiota.

Community structure in fugu gut is correlated with feed
source signal and host body mass

Fish body mass is of great value in aquaculture for it
impact in fish appetite, growth and feed utilization
(Breck, 2014). The body weight (unit: gram), fork length
(unit: centimetre), liver weight (g) and gonad weight (g)
were determined to allow analysis of variance in body
mass within the fish population. Individual fugu were
clustered based on unsupervised k-means computed
from body mass measures. Using gap statistic method,
the optimal clustering numbers was determined to be 3,
which we defined as ‘fast’ (n = 24), ‘medium’ (n = 20)
and ‘slow’ (n = 17) (Fig. 2A and Fig. S5). The quality of
representation (cos2) for body weight, liver weight, fork
length and gonad weight on the first principal component
(PC1, 88.1% of total variations) were 0.96, 0.93, 0.92
and 0.72 respectively (Table S2). The PC1 value was
used as a proxy for individual fish body mass for down-
stream analysis.
Statistical analyses of beta diversity were performed to

infer the potential factors underlying the large inter-indi-
vidual beta dispersion of gut microbiota. PERMANOVA
analysis showed that feed source signals (predicted by
SourceTracker) was the best predictor of community
composition (R2 = 0.46; P = 0.001; MeanSqs = 6.68;
strata:Pond; Fig. 2B), followed by fish body mass
(R2 = 0.07; P < 0.01; MeanSqs = 0.98; strata:’Pond’).
Importantly, negative correlation between the fish body
mass and the feed source signal was observed (Spear-
man’s Rank R = �0.38; P < 0.01, Fig. 2C). Moreover,
the feed source proportions were significantly enriched
in slow growth fish (42.2%) comparing to fast one
(19.3%) (Tukey HSD, P < 0.05). These results suggest
the varying degree of effect of feed-associated bacteria
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on gut microbiota is dependent on host growth rate.
Specifically, the gut community dissimilarity distances to
feed for slow growth fish were significantly shorter than

that for fast one, as evidenced by the comparisons of
abundance-weighted UniFrac distances (P < 0.001;
Mann–Whitney U-test, Fig. 2D).
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Fig. 1. Comparisons of different bacterial communities within the fugu rearing ecosystems.A. Two-dimensional scatter plot of all bacterial commu-
nities based on principal coordinate analysis (PCoA) on Bray–Curtis dissimilarity. Percentage of explained variance and statistical significance
were reported by PERMANOVA. A normal data ellipse for each group was drawn at confidence level of 0.68. Sample groups: ‘F’: Fugu gut; ‘Fd’:
feed; ‘S’: sediment; ‘W’: water.B. Boxplot shows the intra-/inter-groups pairwise comparisons of weighted UniFrac distances across all sample
groups. For each box, the vertical bold bar denotes medians; the width of box denotes the interquartile range (25th percentile–75th percentile); the
whiskers mark the values range within 1.5 times interquartile. Lower-cased letters denote statistical significance reported by Mann–Whitney U-test
at confidence level of 0.95.C. Source tracking of gut microbiota from rearing environments. The far left facet shows the SourceTracker-estimated
proportions of gut microbiota from its surrounding environment; the righter four facets, respectively, show the verifications using one each of the
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‘unknown’ source was showed in grey.D. Random-Forest identified bacterial families that accurately discriminated bacterial community groups.
Featured taxa were hierarchically clustered according to NCBI taxonomy and were colour-coded by phylum ranks. Heatmap showed the centred
classic importance of each indicated taxa (row) in discriminating a given bacterial community (column) from others.
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The estimated indices of alpha diversity were posi-
tively correlated with feed source signals, but negatively
correlated with fugu body mass (Fig. S6). Further,

markedly increased richness of gut microbiota from slow
growth fish was observed comparing to fast group
(P < 0.05; Mann–Whitney U-test, Fig. 2E). The
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Fig. 2. Community structure of fugu gut microbiota are correlated with feed source signal and host body mass.A. Two-dimensional scatter plot
of all fish individual based on principal component analysis (PCA) of four body mass metrics. The grey arrow points showed the correlated body
mass measures. Three optimal groups namely ‘fast’, ‘medium’ and ‘slow’ were identified by K-mean clustering followed by Gap statistic. A nor-
mal data ellipse for each group was drawn at confidence level of 0.68.B. Principal coordinate analysis of gut microbiota based on Bray–Curtis
distance. Percentage of explained variance and statistics (PERMANOVA test with 999 permutations) were shown as figure title. Each commu-
nity point was coloured by the proportion of feed source signal.C. SourceTracker-estimated proportions of feed bacteria for each gut community
grouped by host body mass. Grey line denotes the linear regression of feed proportions and fugu body mass (Spearman’s Rank), statistics was
indicated in figure title.D. Boxplot of group-paired weighted UniFrac distances showing the dissimilarities between gut and feed were reduced in
slow growth fugu (Slw-Fd) comparing to fast growth one (Fst-Fd).E. Species richness (Numbers of observed ESVs) among six groups of
bacterial community. For each box in (C–E), the bold bar denote medians; the height of box denotes the interquartile range (25th percentile–
75th percentile); the whiskers mark the values range within 1.5 times interquartile. Lower-cased letters denote statistical significance reported
by Mann–Whitney U-test at confidence level of 0.95.F. Stackbars showing the relative abundance of top-10 bacterial classes across six groups
of community. Bacterial class which has a lower relative abundance were grouped into ‘Other’. The detailed results of replicated samples were
shown in Fig. S7.
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taxonomic compositions of bacterial communities were
differed among sample groups (Fig. S7; Table S5). In
the bacterial class level (Fig. 2F), Actinobacteria, Alpha-,
Beta-, Gamma-proteobacteria and Cytophagia were
commonly found to be dominant in both water (sum
85.9%) and sediment (sum 53.0%), whereas Actinobac-
teria and Cytophagia were more present in water (33.6%
and 10.9%) than to sediment (3.5% and 3.0%). Feed-as-
sociated bacterial communities were mainly composed
of Gamma-proteobacteria (80.4%), Bacilli (12.2%) and
Clostridia (3.4%). The gut bacterial communities of the
three fish clusters were mainly composed of Gamma-
proteobacteria (avg. 49.1%), Spirochaetia (avg. 16.0%),
Bacteroidia (avg. 13.7%), Mollicutes (avg. 9.2%) and
Clostridia (avg. 4.0%). Moreover, the fish gut-specific
bacterial classes including Bacteroidia, Mollicutes and
Spirochaetia were more present in fast and medium
groups, whereas Gamma-proteobacteria was more pre-
sent in the slow group.
Initially, Random-Forest was used to classify the

characteristic taxa among these three fish groups. As
a result, the estimate of error rate was relatively high
(~60%), particularly for the medium growth group
(>90%). Alternatively, the LEfSe algorithm was used
to identify differentially abundant bacterial taxa that
are corresponding with the differences between fugu
growth rate. A total of 53 discriminant bacterial
clades separating three fish clusters with statistical
significance (Kruskal–Wallis sum-rank, P < 0.05) were
detected (Fig. S8 and Table S6). The overall charac-
teristic bacterial families were more detected in slow
group, which is in consistent with its observed high
species richness. Among others, Pseudomonadaceae
was the most pronounced bacterial family (log10-LDA
Scores > 5) that were overrepresented in slow group.

Functional shifts of fugu gut microbiota in response to
feed-borne bacteria

Understanding the phenotypes and functional capaci-
ties of the microbes within a community is critical to
determine the composition–function relationships. To
this end, we used PICRUSt and BugBase, respec-
tively, to infer the functional profiles and organism-
level phenotypes of different microbial communities
based on 16S rRNA gene. Increased ribosomal con-
tent boosts more protein translation and stronger
metabolism, thereby the number of rRNA genomic
copies is positively correlated with bacterial growth
rate (Lankiewicz, et al., 2016), and can be used as a
proxy for phenotypically distinguishing between copi-
otroph and oligotroph (Lauro, et al., 2009; Roller,
et al., 2016). Using the precalculated 16S rRNA

counts by PICRUSt, the average 16S rRNA copy
number per sample group were estimated. The
results showed that bacterial communities from fugu
gut (3.6) and feed (3.4) had greater average copy
numbers than that from water (2.0) and sediment
(1.9), indicating the bacterial communities in both gut
and feed are potentially less oligotrophic than those
observed in the water and sediment (Fig. 3A).
Further, the phenotypical characteristics including

oxygen tolerance, Gram staining and pathogenic poten-
tial of bacterial communities were predicted by Bug-
Base algorithm. Compared to the pond water, BugBase
predicted the gut microbiota (average in all fish: 97%),
feed microbiota (93%) and sediment microbiota (95%)
to have a significantly higher proportion of Gram nega-
tive (Fig. 3B). However, water microbiota was predicted
to be comprised of both Gram negative (56%) and
Gram positive (44%) bacteria (Fig. 3B and C, and
Fig. S9). Regarding oxygen tolerance traits (Fig. 3D–F),
gut was shown to be significantly dominant by anaero-
bic bacteria (51%) comparing to all the other environ-
ments (<20%), where is mostly dominant by aerobic
bacteria (59%) as for feed, or by both aerobic (56%)
and facultatively anaerobic bacteria (33%) as for water.
However, such dominance was significantly decreased
as the proportions of aerobic bacteria increased in slow
growth fugu (49%) comparing to both fast (24%) and
medium (34%) groups. Indeed, the inferred proportions
of anaerobic bacteria in gut microbiota are negatively
correlated with feed source signals (Spearman’s Rank
R = �0.79; P < 0.01), but positively correlated with
body mass (R = 0.32; P < 0.05, Fig. S10). The oppo-
site trends were observed for inferred aerobic bacterial
proportions. These results suggest the feed source sig-
nals is the most pronounced factor in contributing such
phenotypic changes in gut microbiota, and it is
depended on host body mass.
BugBase also predicted the fugu gut microbiota to

have significantly fewer bacteria that contain mobile
elements and more bacteria that are potentially patho-
genic and oxidative stress tolerant than water and sed-
iment (P < 0.05, Mann–Whitney U-test, Fig. 3G–I).
Further, bacteria that can form biofilms was not signifi-
cantly different comparing fugu gut to both water and
sediment (Fig. 3J). Within gut microbiota, the bacterial
proportions related to these four phenotypes were all
positively correlated with feed source signals (R > 0.7;
P < 0.05) but negatively correlated with body mass
(R < �0.3, P < 0.05, Fig. S10). Altogether, these
results have further emphasized that the functional
changes in fugu gut microbiota are drived largely by
feed-associated bacteria and depended on host growth
rate.
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Ecological processes underlying bacterial community
shift in fugu gut microbiota

To infer the underlying ecological mechanisms governing
the process of bacterial community assemblage in fugu

gut, the phylogenetic signals of gut bacterial communi-
ties were estimated using Mantel’s correlogram (Oden
and Sokal, 1986) and Blomberg’s K statistic (Blomberg,
et al., 2003) respectively. We found significant phyloge-
netic signal (P < 0.05) correlating to changes of feed

Fig. 3. Phenotype inference of bacterial communities from the fugu rearing ecosystems. Estimated relative abundances for each indicated bacte-
rial phenotype was compared across different sample groups.A. Averaged 16S rRNA copy numbers were compared among sample sites of bacte-
rial communities. Points denote the mean copy number calculated from a given bacterial community. The following organism-level phenotypes
were inferred by BugBase. Relative abundances of bacteria differing in Gram staining were shown in (B) for Gram negative and (C) for Gram posi-
tive. Relative abundances of bacteria differing in oxygen tolerance phenotypes were shown in (D) for Aerobic, (E) for Anaerobic and (F) for Faculta-
tively Anaerobic. Relative abundances of bacteria differing in latent pathogenicity phenotypes were shown in (G) for containing mobile elements,
(H) for potentially pathogenic, (I) for oxidative stress tolerance and (J) for biofilm formation. See Fig. S9 for the related taxa contributions of the rela-
tive abundance of bacteria possessing each phenotype. For each box, the horizontal bold bar denote medians; the height of box denotes the
interquartile range (25th percentile–75th percentile); the whiskers mark the values range within 1.5 times interquartile. Lower-cased letters denote
groups and statistical significance reported by pairwise Mann–Whitney U-tests with false discovery rate correction at confidence level of 0.95.
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source signals and fish body mass, but only across very
short phylogenetic distances (Fig. S11). On this basis,
we proceeded to quantify phylogenetic turnover among
close-related bacteria (Stegen, et al., 2012). Considering
the ecological influence on bacterial sub-community may
varied with its relative abundance (Shade and Gilbert,
2015; Langenheder and Lindstr€om, 2019; Jiao and Lu,
2020), the fugu gut microbiota (‘all’, 943 ESVs) were fur-
ther partitioned into ‘abundant’ (abundance > 0.1%, 63
ESVs) and ‘rare’ sub-community (abundance < 0.1%,
880 ESVs), respectively. We concentrated on ‘all’, ‘abun-
dant’ and ‘rare’ ESVs to extract phylogenetic distance
from a given bacterial community. The results showed
that the unweight standardized effect size of mean near-
est taxon distances (ses.MNTD) for ‘all’, ‘abundant’ and
‘rare’ sub-communities from gut microbiota were consis-
tently below zero (P < 0.01, Fig. S12), suggesting the
importance of environmental filtering in driving gut bacte-
rial communities to be more phylogenetically clustered.
In addition, the average ses.MNTD measures for abun-
dant taxa were markedly higher than that of rare taxa
(Fig. S12), suggesting its lower degreed of phylogenetic
relatedness.
Further, we estimated the phylogenetic beta diversity

(bMNTD) and in turn compared it against null model to
estimated beta nearest taxon index bNTI (Stegen, et al.,
2012; Stegen, et al., 2013). The |bNTI| values > 2 indi-
cate significantly phylogenetic turnover than expected.
The Mantel’s test showed significant positive correlations
between the inter-community bNTI values and the
changes of feed source signals, for ‘all’, ‘abundant’ and
‘rare’ sub-communities respectively (Fig. 4A–C). These
results suggest that the shift from homogeneous selec-
tion to variable selection in contributing to the gut bacte-
rial community assemblage as changes of feed source
signals increase.
To quantify the ecological processes in communities

that were not governed by selection (i.e. |bNTI| < 2), the
number of these pairwise comparisons were fractionated
considering |bNTI|<2 and |RCbc| < 0.95. The resulting
fractions showed that dispersal limitations (40.6%) con-
tribute largely in the process of community assemblage
in fugu gut while considering all the taxa, followed by
variable selection (28.9%) and homogeneous selection
(18.1%). While comparing the sub-communities varied in
taxa abundance, the relative importance of deterministic
process (homogeneous and variable selection) was lar-
ger for ‘rare’ sub-community, whereas stochastic pro-
cesses (dispersal limitation and ‘undominated’) were
dominant in ‘abundant’ sub-community (Fig. 4D). In addi-
tion, very few portions of homogenizing dispersal pro-
cess were observed for all sub-communities.
Furthermore, the neutral model explained a larger frac-
tion of variation in the rare sub-community (R2 = 0.639,

m = 0.057) than the abundant one (R2 = 0.154,
m = 0.012), as well as increased migrations rate
(Fig. S13).

Discussion

Here we used 16S rRNA gene amplicon sequencing to
explore the relations of bacterial communities between
gut of cultured juvenile obscure puffer and its rearing
environments. Our results showed that farmed fugu had
a distinct gut microbiota with markedly lower richness
(alpha diversity) and higher dissimilarity (beta dispersion)
in comparison to its rearing environment including feed,
water and sediment (Fig. 1). Furthermore, effect of vary-
ing degrees of feed-associated bacteria on both compo-
sition and function of gut microbiota were revealed, and
implications of fish growth-dependent community-level
responses and underlying relative importance of ecologi-
cal processes were found. These results (discussed
below) provide a new insight into aquaculture of fugu
and other farmed fishes that are of great economic
importance, as well as a better understanding of host–
microbe interactions in the vertebrate gastrointestinal
tract.

Distinctions of fugu gut microbiota from its rearing
environment

Herein, the fugu gut microbiota is characterized by lower
species richness, higher beta dispersion and rRNA copy
numbers in comparison to water and sediment, but far
less so to feed (Figs 1 and 3), indicating a strong niche
effect on gut microbiota along with considerable diet
influence. Indeed, SourceTracker had predicted a nota-
ble source signature from feed (~30%) in contributing to
fugu gut microbiota (Fig. 1C), although the samples were
obtained 1 day post-feeding. This could explain why the
community composition differed largely between ‘gut &
feed’ and ‘water & sediment’, as the metabolic mode of
copiotroph and oligotroph differed significantly (Fig. 3A).
Moreover, a larger proportion of ‘unknown’ source signa-
ture was also predicted, suggesting an uncharacterized
bacterial source possibly (i) derived elsewhere or (ii)
acquired before the sampling time. For the first scenario,
it is less likely that farmed fugu had much contact with
any other environmental source that had not been sam-
pled, as the indoor pond managements and husbandry
conditions both were identical within a single closed
aquaculture facility. For the second scenario, several
studies had pointed that the processes of bacterial colo-
nization in fish gut, particularly during early development,
are complex ever since the onset of spawning, and lar-
gely determined by the egg adhering microbiota and
temporal rearing environment (Giatsis, et al., 2015;
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Wong, et al., 2015; Wang, et al., 2018; Abdul Razak and
Scribner, 2020). Therefore, it can be hypothesized that
the early-life exposure (e.g. from first feeding) to different
bacterial communities as seen in other fishes (Romero
and Navarrete, 2006; Wang, et al., 2018) might also con-
tribute to the assembly of fugu gut microbiota mentioned
here.
Ringø and Birkbeck (Ringø and Birkbeck, 1999) pro-

posed five essential criteria to be considered core (au-
tochthonous) gut microbiota in fishes if they are (i)
presented in healthy individuals; (ii) persistent during the
whole lifespan of host; (iii) mutually presented in both
wild and cultured populations; (iv) anaerobic; and (v)
widely distributed in gastrointestinal tract. Our Random-
Forest analysis identified three bacterial families, namely
Brevinemataceae, Rikenellaceae and Mycoplasmat-
aceae, as the most discriminative taxa for fugu gut
(Fig. 1D). In addition, Bugbase inferred that both
Brevinemataceae and Rikenellaceae contributed to the
most proportions of anaerobic bacteria in fugu gut micro-
biota (Fig. S9). Although literature concerning the micro-
biota of wild T. obscurus is scarce, recent studies
showed that these bacterial families, particularly

Brevinemataceae with greater dominance, can be also
observed in many other wild Takifugu species, including
T. ocellatus, T. bimaculatus, T. xanthopterus (Li, et al.,
2020b) and T. niphobles (Shiina, et al., 2006) regardless
of methodological biases. It is remarkable since unlike
these wild species that are native to salt and brackish
waters, farmed T. obscurus was mainly reared in fresh
water after hatching, with the only exceptions of spawn-
ing parent fishes and eggs that were transiently accli-
mated in saline water. Once again, it demonstrates the
potential influence of early-life environments in shaping
the fugu gut microbiota. Altogether, these bacterial taxa
meet most of the criteria to be considered core gut
microbiota in fugu, yet further longitudinal experiments
concerning multiple host developmental stages are war-
ranted to completely define it.

Effects of feed-borne bacteria on gut microbiota differed
among fugu at inconsistent growth rate

We next asked which factors (either intrinsic or extrinsic)
potentially correlate with the large inter-individual beta
dispersion of gut bacterial community. Here, the gut
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Fig. 4. Influence of ecological processes in governing bacterial community assemblage in fugu gut. The correlations between phylogenetic beta
diversity bNTI and differences in feed source signals in fugu gut microbiota for (A) all ESVs, (B) abundant ESVs sub-community and (C) rare ESVs
sub-community. Red lines denote fitting of linear regressions and corresponding Spearman’s rank correlation coefficients were indicated in the
upright corner within each subpanel. Grey horizontal dashed lines denote the cut-off of bNTI significance between �2 and + 2.D. Depicts the rela-
tive importance of different ecological processes in governing community turnover for ‘all’, ‘abundant’ and ‘rare’ sub-communities respectively.

ª 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial
Biotechnology, 15, 683–702

Gut microbiota snapshot of farmed obscure puffer 691



contents were individually sampled from the hindgut of
farmed fugu that were feed with identical commercial fish
feed. In addition, the fish used here were offsprings from
a full-sib family, thereby the potential genetic variations
were kept to a minimum. Moreover, the environmental
bacterial communities for both water and sediment were
found to be consistent across different ponds (data not
shown), thereby the likelihood of such extrinsic variations
could also be ruled out. In fact, we observed a large dis-
persion of body mass among the sampled fish popula-
tion (Fig. S5), by which they can be rigorously
subdivided into three clusters, that is fast, medium and
slow (Fig. 2A). We showed that the feed source signals
explained the most variations in the compositional differ-
ence in fugu gut microbiota, and it was negatively corre-
lated with fish body mass (Fig. 2B and C). Across the
fishes clustered by body mass, both the composition
and function of gut bacterial communities were found to
be varied significantly, as evidenced by the comparative
analysis of richness (alpha diversity), dissimilarity (beta
diversity), discriminated abundant bacterial taxa (LEfSe)
and organism-level phenotypes (BugBase) (Figs 2 and
3) respectively. These results illustrated a clear diver-
sity–function relationships in gut bacterial communities,
and more importantly, it implicated a strong correlation
between gut bacterial communities and host growth rate.
Specifically, markedly increased species richness driven
by feed source proportions were observed in slow
growth fugu, where a greater level of correlation between
feed-associated bacteria and gut microbiota was implied.
Such coincidence of altered microbiota composition

and function in the gut of slow growth fish was largely
driven by a gamma-proteobacterial genus Pseudomonas
(LEfSe, log10-LDA Score > 5, P < 0.05), notably a group
of widespread aerobic bacteria found to be predominant
in fish feed herein (>50%, Fig. S7 and S9). Previous
work had showed that Pseudomonas is highly persistent
during long term storage of fish feed (Zmyslowska and
Lewandowska, 1999). Yet another study found its pres-
ence in water, contributed mostly by the fish faeces, was
positively associated with the dose of administrated com-
mercial fish feed in a recirculating aquaculture system
(Goła�s, et al., 2019). Among others, Pseudomonas is
the most frequently reported gut-associated bacteria
across many different freshwater fish species (Egerton,
et al., 2018). On the other hand, recent studies had also
raised concerns that it might represent a common con-
taminating bacterial taxa in molecular biology reagents
(Li, et al., 2020a). While considering the very rare pres-
ence of Pseudomonas in all the water and sediment
samples (Fig. S7E), along with the negative amplification
signal in our blank (no template) control experiment, it is
highly unlikely that this bacteria taxa was introduced dur-
ing libraries preparation as a contamination, rather than

a biological clue reflecting the heterogeneous sample
sources. Nevertheless, we could not explicitly estimate
the extent to which the alteration of gut microbiota was
solely due to the introduced feed-borne bacteria, since
the DNA-based amplicon sequencing, as was used here,
is unable to ascertain (transcriptionally) active bacteria.
Of note, dozens of ESVs filtered out as chloroplastid
were mostly derived from the feed (~13.7% of total
reads), but barely detected in gut (~0.1%). Such dispro-
portion indicates that the over-represent feed-borne bac-
teria in the gut of slow growth fugu were not exclusively
due to the influx of DNA from dead or dormant cells
(Parris, et al., 2019). Rather, bacteria such as Pseu-
domonas, optimized to grow at high nutrient as copi-
otroph (with 6–10 average 16S rRNA copy number)
(Llad�o and Baldrian, 2017), are known to be more com-
petitive than oligotrophy in rapid growing or efficiently uti-
lizing resource in the intestinal environment. Importantly,
we found the response of individual gut microbiota to
feed-borne bacteria varied with the fish growth rate and
became more pronounced in slow growth fugu.
Previous studies suggested that the transit rate and

residence time of diet in the gastrointestinal tract may
influence the gut microbiota and host–microbial interac-
tions (Ringø, et al., 2016). Furthermore, gastric evacua-
tion times varied substantially across fish species and
developmental stages, and many factors like tempera-
ture, fish size and diet characteristics may contribute to
such variation (Flowerdew and Grove, 1979; Kristiansen,
1998; Nikolopoulou, et al., 2011; Ortiz-Mon�ıs, et al.,
2018; Gilannejad, et al., 2019). For instance, the gastric
evacuation halftime in the gastrointestinal tract of gilt-
head seabream Sparus aurata was markedly prolonged
(~3 h) in juvenile (Nikolopoulou, et al., 2011; Gilannejad,
et al., 2019) than that (~30 min) in larvae (Ortiz-Mon�ıs,
et al., 2018). In the other study, two age-equal (half
yearlings) cohorts of rainbow trout (Oncorhynchus
mykiss) and brown trout (Salmo tutta), respectively, were
found to have prolonged residence time of feed in the
gastrointestinal tract of the smaller juvenile fishes and
then decreased with body weight (Kristiansen, 1998).
Moreover, the fish gastric evacuation can be further
enhanced by transgenetically over-expressions of host
growth hormone gene (Kim, et al., 2018). These findings
offer support for our observations that proportions of
feed source signals in gut microbiota was negatively cor-
related with fugu growth rate within an age-equal
cohorts, which could be largely due to the inconsistent
gastric evacuation rate among different sized hosts. Sev-
eral studies had suggested that the feed-associated
microbiota could play a crucial role in host health and
nutrition (Ruzauskas, et al., 2018; Parris, et al., 2019;
Wilkes Walburn, et al., 2019), yet little is known about
the functional impact and the extent to which it exerted.
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Herein, BugBase predicted the gut of slow growth fugu
(with higher feed source signal) to have significantly
more bacteria that are potentially pathogenic and bio-
films forming than other fish clusters (Fig. 3). Such phe-
notypical differences are driven mostly by the higher
proportion of both Pseudomonadaceae and Enterobacte-
riaceae (Fig. S9), of which many members are generally
considered commensals (Ruzauskas, et al., 2018). But
like other opportunistic pathogens, certain members from
both bacterial families often contain genes for virulence
factors and antibiotic resistance (Cazares, et al., 2020;
Hamza, et al., 2020). It’s interesting that, the Pseu-
domonadaceae that was considered as presumptive
feed-borne bacteria had very high relative abundance in
feed (65.9%), whereas Enterobacteriaceae is relatively
rare in feed (0.3%) in comparison to gut (3.8% in slow
growth fugu) (Fig. S7). Therefore, we hypothesized that
the observed alteration of fugu gut microbiota was deter-
mined by a combinational effects of (i) intestinal resi-
dence time allowing feed-borne bacteria to proliferate
and (ii) response outcomes from interactions between
allochthonous and autochthonous bacteria. The intuitive
expectation is that, in slow growth fugu, further reduced
gastric evacuation rate and more inadequate anaerobic
niche in intestinal lumen allowed the faster grow of aero-
biotic feed-borne bacteria (mainly Pseudomonas) and
simultaneously influenced the abundance of autochtho-
nous bacteria by either enhancing or diminishing their
growth. As an further extreme assumption, the increased
feed-borne bacteria in gut microbiota may lead to an
accumulation of negative effects (e.g. pathogenesis) for
the host, thereby stimulated intestinal stress response
and hampered metabolic and digestion in host can be
expected, which consequently could lead to a further
reduce scope for the fish growth (lower fitness). Future
studies concerning the ingested feed-borne bacteria and
its interactions with both gut bacterial symbiosis and its
host are critical for a better understanding of fish health
and metabolism.

Quantitative estimation of ecological processes
underlying the gut microbiota response to feed-borne
bacteria

We found significant phylogenetic signals related to traits
of feed source and body mass (P < 0.05, Fig. S11). In
addition, the mean within-community phylogenetic dis-
tances (ses.MNTD) in gut microbiota were all found to
be negative (t-test, P < 0.001), further confirming all the
ESVs were phylogenetically correlated more closely than
expected by chance (Fig. S12). However, all the K val-
ues were estimated to be positive but closer to zero
(Table S2), indicating a random or convergent pattern of
evolution for the phylogenetic niche conservatism

relating to aforementioned traits (Webb, et al., 2002;
Blomberg, et al., 2003). Accordantly, many other studies
had showed that robust phylogenetic signal was related
to different variables within short distances across
ecosystems of diverse types (Stegen, et al., 2012; Yan,
et al., 2016; Tripathi, et al., 2018; Jiao and Lu, 2020;
Liu, et al., 2020b). On this basis, recent advanced quan-
titative ecological models (Stegen, et al., 2012; Stegen,
et al., 2013; Dini-Andreote, et al., 2015) can be applied
to compare observed between-community diversity of
both phylogeny and taxonomy against a null model,
thereby quantify the relative importance of ecological
processes underlying the gut microbiota in response to
feed-borne bacteria.
The turnover of an ecological community (fugu gut

microbiota in our case) is drived by two forces, determi-
nacy and stochasticity (Hubbell, 2001). Determinacy indi-
cates that the presence/absence and relative
abundances of species is governed by abiotic and biotic
factors, which are associated with ecological selection
(niche effect) (Vellend, 2010). In contrast, stochasticity
indicates that the relative abundances (ecological drift)
of species are determined by probabilistic dispersal and
randomness (neutral effect), which are not caused by
environmentally determined fitness (Hubbell, 2001;
Chase and Myers, 2011). Our Mantel’s test results
showed that severe differences in feed source signals
act as a strong habitat filter and lead to significant phylo-
genetic clustering (|bNTI| >2), whereas the degree to
which community composition influenced by such filter-
ing was weakened under moderate feed source signal
(Fig. 4A). This result further emphasized that niche effect
posed a strong selection pressure in determining the
community assembly (Chase and Myers, 2011), thereby
driving bacterial communities into a phylogenetically
more closed cluster (Webb, et al., 2002). As a continual
inoculum, feeding poses a significant destabilizing force
in fish intestinal microbiota and results in a continuous
community turnover (Parris, et al., 2019; Wilkes Walburn,
et al., 2019). On this basis, community invasibility, the
successful colonization of allochthonous organisms such
as feed-borne bacteria in a given community like fish
gut, can be indicative of community stability (Litchman,
2010; Shade, et al., 2012). In supporting this notion, we
found that with the changes in feed-signals increases,
the assembly processes of gut bacterial community were
gradually shifted from homogeneous selection, to
stochasticity, then to variable selection (Fig. 4A). Of
note, such pattern was more obviously observed for rare
sub-community (Mantel R = 0.492, Fig. 4C) than to
abundant one (Mantel R = 0.275, Fig. 4B), indicating the
abundant bacterial taxa (mostly gamma-proteobacterial
copiotroph) might be more competitively dominant and
persistent in gut niche. Specifically, the variable selection
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process could be possibly explained by the increased
habitat complexities of tripartite interactions among host,
bacteria and nutrient, considering accumulated ingested
feed-borne bacteria can cause more disturbance,
thereby imposed a larger impact on rare sub-community
as was evident by the increased alpha diversity in slow
growth fugu (more prone to feed disturbance). As for the
homogeneous selection, we inferred that the determinis-
tic factors, particularly by the host and autochthonous
bacteria, became more dominant and stable (e.g. lower
alpha diversity in fast growth fugu) as the changes of
feed source signal reduced, thereby jointly exerted more
convergent force of selection.
By inferring the turnover in ESV composition (RCbc),

the relative importance of stochastic processes can be
further fractionated into homogenizing dispersal, disper-
sal limitation and the undominated fraction (Stegen,
et al., 2015). We observed a large fraction of community
shift was governed by dispersal limitation (~40%),
whereas very little (<3%) by homogenizing dispersal
(Fig. 4D). Higher level of dispersal limitation can be
viewed as a result of host effect, by which the degree to
which bacteria move among individual gut communities
was limited, even though the influence from the feed is
strong. In line with these, both the fitness of neutral
model (R2 = 0.154) and migration rate (m = 0.012) for
abundant sub-community were lower than that of rare
sub-community (R2 = 0.639; m = 0.057), further empha-
sizing the limited levels of dispersal leads to dissipation
of diversity into local gut communities, thus decreased
alpha diversity (Chase and Myers, 2011). The lower
degree of homogenizing dispersal (Cadotte, 2006) is
consistent with our observed higher degree of beta
dispersion in fugu gut microbiota. In addition, an undomi-
nated fraction was also observed for all sub-communi-
ties, particularly to a larger extent in abundant one
(49%). The inflated undominated fraction could be
viewed as the results of diminished selection and/or dis-
persal rates, that both are opposite to that of variable
selection (Stegen, et al., 2015). As such, it is tempting to
speculate that the observed undominated fraction here is
likely reflecting the inconsistent selection from either
feed-borne bacteria and host filtering (or both), which
possibly due to the varied host physiology (e.g. gastric
evacuation and growth) and/or gut nutrition (e.g. feeding
fluctuation and frequency) (Flowerdew and Grove, 1979;
Bolnick, et al., 2014; Parris, et al., 2019).
In conclusion, this snapshot study shown here charac-

terized the compositional, functional and phylogenetical
stability of gut microbiota from farmed fugu within a local
pond environment. This stability is accompanied largely
by homogeneous selection and dispersal limitation,
thereby, a reduced intraspecies competition, enabling
community stability and partial variations among hosts.

However, presumptive attaching bacteria introduced by
feed can pose a strong restructuring force upon gut bac-
terial communities. Such disturbance involved with vari-
able selection, therefore, an augmented interaction
between autochthonous and allochthonous species,
entailing community unstability and shift. Moreover, we
observed marked alterations in the composition and
function of gut microbiota in slow growth host, potentially
correlated to the different host physiological conditions,
for example gastric evacuation rate and intestinal transit
time of digesta. Nevertheless, we cannot completely rule
out the possibility that such community shift in gut micro-
biota can be due to the efflux DNA of feed-borne bacte-
ria, considering the lack of measurement of active
bacteria for both gut microbiota and feed in our experi-
ment. Future longitudinal studies concerning the
ingested feed-borne bacteria and its interactions with
both gut symbiosis and its host are needed to determine
whether the observed correlations can be maintained or
any causality can be confirmed. Altogether, our findings
emphasized the intricate linkage between feed and gut
microbiota, and highlighted the essential prerequisite to
resolve the signal from feed-associated bacteria before
the conclusions of comparative analysis of microbiota
can be drawn.

Experimental procedures

Sample collection

We collected samples from 7-month-old juvenile obscure
puffer (T. obscurus) in December 2017 from a single
commercial supplier and raised in a fishfarm located in
Yangzhong, East China. After acclimating to commercial
extruded compound feed pellet (composite of fish meal,
soybean meal, corn gluten meal, wheat flour, fish oil,
soybean phospholipid oil, calcium dihydrogen phos-
phate, vitamin premix, mineral premix produced by Mar-
ine Fish Feed 891 Series), the fish offsprings from the
full-sib family were introduced into indoor greenhouse
ponds (80m x 25m x 1.8m) with a stocking density of 25
thousands per pond since April. Each pond had a sepa-
rate water inlet and outlet. Three adjacent ponds were
selected as the objects of study. The practical pond
management is identical in terms of daily feeding rate
(twice per day, i.e. 10am and 2pm), and pond water
exchange rate (twice per month, 10–20%). Approxi-
mately 20 individual juvenile fugu (1 day post-feeding)
per pond with comparable hepatosomatic index (10–
15%) with other studies on T. obscurus growth perfor-
mance (Cheng, et al., 2018; Liu, et al., 2020a) were
randomly captured using a fishing net along the different
sites of each pond. No obvious fin damage or skin injury
were observed across the body among individuals.
Fishes were anesthetized with 0.05% MS-222 (Sigma-
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Aldrich, St. Louis, MO, USA) and immediately weighted
and fork length measured. After being surface sterilized
with 75% ethanal, the 2 cm long part of distal intestine
was dissected out to collect the gut content using steril-
ized spatula. Subsequently, other tissues including the
whole liver and gonad were also dissected and rapidly
weighted. All samples were placed in individually
labelled tubes and kept well in dry ice before shipping.
All animal experiments were performed following the pro-
tocol approved by the Ethics Committee of Experimental
Animals at Hohai University, and were in direct accor-
dance with the Animal Care Guidelines issued by the
Ministry of Science and Technology, the People’s
Republic of China.
For the environmental samples including pond water

and sediment, three longitudinal distributed sites (similar
locations among the ponds) per pond were chose respec-
tively. Approximately 2.0 L of pond water was collected
from 10 to 20 cm below surface per sites within each pond
respectively. Water sample was prefilled by 100-lm pore
sized nylon mesh, and the flowthrough was further filtered
with 0.22um MilliPore membrane with vacuum pump to
collected the water planktonic microbes. The sediment
was collected from the same site as water sample and
was packaged in airtight sterile plastic bags. All the micro-
bial samples were preserved with dry ice during the ship-
ment and stored at �80°C before use. The detailed
metadata for each sample was recorded in Table S3.

DNA isolation and bacterial 16S rRNA amplicon
sequencing

All the fugu gut contents (n = 61), feed pellet (n = 3),
water (n = 9) and sediment (n = 9) samples were sub-
jected to bacterial 16S rRNA amplicon profiling by Illu-
mina sequencing. DNA was extracted using FastDNATM

SPIN Kit for Soil (MP Biomedicals, Irvine, CA, USA)
according to manufacturer’s instructions and was verified
by 0.8% agarose gel electrophoresis. The integrity and
concentration of DNA were determined by NanoDrop ND
2000 spectrophotometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) and Quant-iT PicoGreen dsDNA
assay kit (Thermo Fisher Scientific Inc.) respectively.
The V4-V5 hypervariable region of bacterial 16S rRNA
gene were amplified using the primer pair 515F (50-
CTGCCAGCMGCCGCGGTAA-30) and 926R (50-
CCGTCAATTCMTTTRAGTTT-30), and the unique eight-
nucleotide barcode sequences were incorporated into
each sample. Each sample was tested in triplicate (to-
gether with No template controls) with the 25-ll reaction
mix consisted of 40 ng template DNA, 5 ll reaction buf-
fer (5x), 5 ll GC buffer (5x), 2 ll dNTP (2.5mM), 10 pM
of barcoded forward and reverse primers, and 0.75 U
Q5

� High-Fidelity DNA Polymerase (NEB, Ipswich, MA,

USA). The thermocycling programme consisted of one
hold at 98 °C for 2 min, followed by three-step 25 cycles
of 15 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C, and
one final fold at 72°C for 5 min.
All PCR amplicons were subjected to 2% agarose gel

electrophoresis and purified with the AMPure XP Kit
(Beckman Coulter GmbH, USA), quality checked using
Agilent High Sensitivity DNA Kit (Agilent, Santa Carla,
CA, USA) and Quant-iT PicoGreen dsDNA assay kit.
DNA libraries for purified PCR amplicons were con-
structed using an Illumina TruSeq Nano DNA LT Library
Prep Kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instruction, and 300-bp pair-ended
insertion were sequenced using MiSeq Reagent Kit V3
chemistry on Illumina MiSeq platform owned by Personal
Biotechnology Co., Ltd. (Shanghai, China).

Reads processing and bacterial 16S rRNA gene profiling

The adapters (indexers) in the paired-end raw reads were
trimmed out by the quality control tool Trim-Galore (a
wrapper tool based on Cutadapt v.1.4.2 and FastQC
v.0.10.1) for high-throughput sequence data, as set-up by
default quality threshold of Q20 (Martin, 2011). The
FastQC reports from both before- and after-trimming were
checked. Further, the 16S rRNA amplicon raw reads were
processed according to the previous literatures (Zhang,
et al., 2018; Zhang, et al., 2019) using USEARCH v.10.0
(Edgar, 2010). In brief, the paired-end reads were merged
and relabelled using ‘-fastq_mergepairs’; both barcodes
and primers were removed using ‘-fastx_truncate’; reads
with low-quality (error rates > 0.01) and redundancy were
filtered and dereplicated using ‘-fastq_filter’ and ‘-fastx_u-
niques’ respectively. The de novo biological sequences,
that is ESVs (exact sequence variants), were clustered,
and chimeras were filtered using ‘-unoise3’. Subse-
quently, the operational taxonomic units (OTUs) table was
created by ‘-otutab’. The taxonomy for each representa-
tive sequences was assigned by the SYNTAX algorithm
using the Ribosomal Database Project (RDP) classifier
(RDP training set v16) (Wang, et al., 2007; Cole, et al.,
2013), and chloroplast ESVs were removed after taxon-
omy-based filtering. Sequencing depth was normalized by
subsample using ‘otutab_norm’, yielding 7000 sequences
per sample to keep all the samples for downstream analy-
sis. Community diversity was analysed using ‘-alpha_div’,
‘-alpha_div_rare’, ‘-cluster_agg’ and ‘-beta_div’ respec-
tively.

Featured taxa identifying and source tracking across
different bacterial communities

To discriminate the compositional difference and identify
the featured taxa across different bacterial communities,
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R package RandomForest (v.4.6-14) (Liaw and Wiener,
2002) was used to classify the relative abundances of
bacterial taxa in the family level across different sample
source using parameters of ‘ntree = 1000, impor-
tance = TRUE, proximity = TRUE’, followed by cross-
validation using rfcv() function for feature selection.
Important features were clustered according to the NCBI
taxonomy and visualized by Interactive Tree of Life,
iTOL (Letunic and Bork, 2019).
To further identify the potential origins for the composi-

tional structure for each indicated sample group, Source-
Tracker (Knights, et al., 2011) was used to estimate the
proportions of source bacteria from environments in each
community. All the samples (n = 82) were first rarefied
at 1000 sequences as training set, and SourceTracker
object was trained by sourcetracker() function. Each indi-
cated sample group was used as test set and of which
the source proportions (from SourceTracker object) were
estimate by predict() function with the alpha values
tuned to 0.001.
The ESV table was further analysed to identify fea-

tured bacterial taxa that are specific to indicated group.
ESVs were filtered with abundance greater than
0.0001% across gut samples. Significant changes in rel-
ative ESV abundance were identified with threshold of
logarithmic LDA (linear discriminant analysis) score
greater than 2 combining with effect size (LEfSe) algo-
rithm (Segata, et al., 2011).

Phenotypic inferring of bacterial communities

For metagenomics inference, the ESVs table normalized
by 16S rRNA copy numbers were annotated by
PICRUSt (Langille, et al., 2013) with closed reference
picking (Greengenes v.13_5) (DeSantis, et al., 2006).
Abundance of bacterial communities with two trophic
modes of bacterial life namely copiotroph and oligotroph
were calculated by computing the mean number of ribo-
somal operon copies in the genome across all bacterial
ESVs presented in each sample as previously described
(Nemergut, et al., 2016; Prest, et al., 2018). Firstly, rRNA
copy number per ESVs (predicted by PICRUSt) within a
given sample was multiplied by the corresponding rela-
tive abundance and summed for the total copy number
per sample. Secondly, mean community copy number
was averaged per indicated sample group (fish gut and
environments) and were subjected to group-wised multi-
ple comparisons using indicated statistical approach as
will be described below. Biologically interpretable pheno-
types such as oxygen tolerance, Gram staining and
pathogenic potential, within each indicated community
were predicted based on the Greengenes OTU table
using BugBase (Ward, et al., 2017). Taxonomic level
was set as bacterial family.

Quantifying relative importance of ecological processes
in gut bacterial community assemblage

The existence and degree of phylogenetic relatedness
in species traits were assessed through the calculation
of the phylogenetic signal of a given trait. To this end,
both Blomberg’s K statistic (Blomberg, et al., 2003) and
Mantel’s Correlogram (Oden and Sokal, 1986) were
used to measure phylogenetic signal using phyloSignal
() and phyloCorrelogram() implemented in R package
‘Phylosignal’ (Keck, et al., 2016). To assess the phylo-
genetic structure of gut bacterial communities, the stan-
dardized effect size of mean nearest taxon distances
(ses.MNTD) per community was calculated using
ses.mntd() function implemented in ‘Picante’ package
(Kembel, et al., 2010), supplied with options of ‘taxa.la-
bels’ as null model, unweighted and 999 randomization.
Ses.MNTD values that were significant less or greater
than 0 indicate phylogenetically close-related or unre-
lated than expected by chance respectively (Webb,
et al., 2002). Ecological null model was used to quan-
tify the relative importance of ecological processes in
driving microbial community assemblage (Stegen, et al.,
2013). Briefly, both metrics of b-nearest taxon index
(bNTI) and Bray–Curtis-based Raup-Crick (RCBC) were
used to quantify the contributions from deterministic
and stochastic processes respectively. First, the phylo-
genetic beta diversity were measured by computing
unweighted inter-community MNTD metric (bMNTD)
using the comdistnt(). Further, the bNTI, that is the
degree to which observed bMNTD deviates from the
mean of the null distribution (999 randomization) was
computed according to Stegen et al. (Stegen, et al.,
2013). The influence of deterministic community turn-
over including homogeneous selection and variable
selection (Vellend, 2010) is estimated by inferring the
fraction of pairwise community comparisons with signifi-
cance thresholds of bNTI < �2 and bNTI > 2 respec-
tively (Stegen, et al., 2013). In turn, the non-significant
fractions with |bNTI|< 2 that indicate community turn-
over governed by stochastic ecological processes were
further subdivided according to the taxonomic b-diver-
sity metrics of RCBC. Within this subset (|bNTI|< 2),
RCBC metric normalizes the deviation between
observed Bray–Curtis and the null distribution (9,999
randomization) to vary between �1 and + 1. The turn-
over of microbial community with significant RCBC val-
ues that are less than �0.95 or greater than + 0.95
were interpreted as governed by homogenizing disper-
sal and dispersal limitation respectively. The ones with
non-significant values (i.e. |RCBC|< 0.95) was regarded
as community turnover governed by undominated pro-
cesses without a profound effect by any given ecologi-
cal pressure (i.e. weak dispersal and weak selection).
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Statistical analysis

All statistical analyses were performed under R environ-
ment (v3.6.0) through RStudio (v1.1.463). Before analy-
sis, the normality and homogeneity of variances of data
sets were tested using shapiro.test() and bartlett.test()
respectively. In turn, parametric or non-parametric tests
were applied accordingly. For parametric data sets,
group means were compared by one-way ANOVA using
aov(), followed by post hoc test using TukeyHSD(). For
non-parametric data sets, rank sum were compared by
Kruskal–Wallis test using kruskal.test(), followed by Wil-
coxon rank sum test using wilcox_test(). Significance
were considered while FDR-adjusted P values were less
than 0.05, and the detailed statistical test applied in each
data set is elaborated in the figure legend.
The homogeneity of multivariate dispersion of groups

was evaluated by (PERMDISP) test with betadisper()
followed by permutation test with permutest(). Ordina-
tion (principal coordinate analyses, PCoA) were per-
formed based on Bray–Curtis dissimilarity metric using
cmdscale() followed by permutational multivariate anal-
yses of variance (PERMANOVA) test by adonis()
implemented in ‘vegen’ package (Oksanen, et al.,
2019). The clustering analysis based on individual fish
body mass were determined by eclust () using K-
means distance and clusGap() conducting gap statistic
algorithm implemented in ‘factoextra’ package (Kas-
sambara and Mundt, 2020), followed by visualization
according to principal components analysis by prcomp
(). Spearman correlations between the phylogenetic
beta diversity (bNTI matrix) and indicated traits differ-
ence (euclidean-based trait distance matrix) we
assessed using mantel() implemented in ’ecodist’ pack-
age (Goslee and Urban, 2007) with 9999 permutations.
The neutral.fit() in the ‘MicEco’ package (Russel, 2020)
was used to evaluate the fitness of neutral model
(Sloan, et al., 2006) on the gut bacterial community
and to determine the contribution of neutral processes
in community assembly.
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Supporting information

Additional supporting information may be found online in
the Supporting Information section at the end of the arti-
cle.
Fig. S1. Evalution of sequencing depth of bacterial commu-
nities across different sample groups. (A) Rarefaction
curves of detected bacterial species (numbers of observed
ESVs) within each indicated microbiota sample tend to be
‘flat’ as the numbers of sampling increase, suggesting the
sampling covers the most bacterial species (saturated). (B)
Rarefaction curves of detected bacterial species (numbers
of observed ESVs) in each indicated sample groups. Verti-
cal bars denote standard error. Samples size for each indi-
cated groups are as follows: fish (n = 61), including fast
‘Fst’ (n = 24), Medium ‘Med’ (n = 20) and Slow ‘Slw’
(n = 17); feed ‘Fd’ (n = 3); water ‘Wtr’ (n = 9); sediment
‘Sdm’ (n = 9).
Fig. S2. Calculated alpha-diversity based on indices of (A)
Chao1; (B) Shannon_e (logarithm base e); (C) Simpson
among six groups of bacterial community. For each box, the
horizontal bold bar denote medians; the height of box
denotes the interquartile range (25th percentile – 75th per-
centile); the whiskers mark the values range within 1.5 times
interquartile. Lower-cased letters denote statistical signifi-
cance reported by Mann–Whitney U Test at confidence
level of 0.95.
Fig. S3. Differences in group homogeneities was examined
by betadisper() implemented in R package ‘vegan’. (A) Prin-
cipal coordinates plot showing the Bray-Curtis dissimilarity
distances between each sample and its group centroids.
Samples groups: F: Fugu gut; FD: feed pellet; S: sediment;
W: water. (B) Boxplot of distances to the group centroid for
the four gorups of bacterial community. For each box, the
horizontal bold bar denote medians; the height of box
denotes the interquartile range (25th percentile – 75th per-
centile); the whiskers mark the values range within 1.5 times
interquartile.
Fig. S4. Bars of variable importance as measured by a
Random Forest. The y-axis represents the top-34 bacterial
families that accurately discriminated different groups of
bacterial community. Bacterial families are ranked in the
order of importance for group classification, from top to bot-
tom.
Fig. S5. K-mean clustering based on body mass metrics.
Boxplots show the differences of (A) body weight; (B) fork
length; (C) liver weight and (D) gonad weight across all fish
groups namely “fast”, “medium” and “slow”. For each box,
the vertical bold bar denote medians; the width of box
denotes the interquartile range (25th percentile – 75th per-
centile); the whiskers mark the values range within 1.5 times
interquartile. Lower-cased letters denote statistical signifi-
cance reported by Mann–Whitney U test at confidence level
of 0.95. (E) Line chart depicts the optimal numbers of clus-
ters suggested by Gap statistic method. (F) Bars depecit
the silhouette width for each sample, and red dash line
shows the average silhouette width for k-means clustering.
Bars are coloured according to the fish groups as the same
in (A–D). (G) Box plot shows the strafitication of growth per-
formance (body weight) within each pond. (H) The same
two-dimensional scatter plot of all fish individual based on

Principal Components Analysis (PCA) of four body mass
metrics as Fig. 2A but was color-coded by ‘Pond’ (P: Pond;
Digitals: Pond numbers).
Fig. S6. Heatmaps showing the correlations between each
indicated alpha-diversity indice of fugu gut microbiota and
(A) Feed source proportions (‘feed’) predected by Source-
Tracker; or (B) body mass indexes (‘Comp.1’) computed by
PCA analysis. Color scale denotes the degree of correlated-
ness, only statistical significant (P < 0.05) Spearman’s Rho
were shown in each heatmap pixel.
Fig. S7. Stackbars showing the relative abundance of top-
10 bacterial (A) phylums, (B) classes, (C) orders, (D) fami-
lies and (E) genus across all biologically replicated samples.
The bacterial taxonomic ranks which have lower relative
abundance were grouped into “Other”.
Fig. S8. Bars show the LEfSe-estimated discriminative bac-
terial families that are differential among three fugu cluters
with statistical significance reported by Kruskal- Wallis sum-
rank test (P < 0.05). Bar width denotes ranks of the log10-
transformed LDA effect size.
Fig. S9. Stackbars showing the relative abundance of
bacterial families in contributing to the proportions of bac-
terial phenotypes that are infered by BugBase. Different
sample groups of bacterial communities were shown in x-
axis.
Fig. S10. Heatmaps showing the correlations between the
relative abundance of each indicated bacterial phenotype
infered by BugBase and (A) Feed source proportions
(‘feed’) predected by SourceTracker; or (B) body mass
indexes (‘Comp.1’) computed by PCA analysis. Color scale
denotes the degree of correlatedness, only statistical signifi-
cant (P < 0.05) Spearman’s Rho were shown in each heat-
map pixel.
Fig. S11. Calculation of the phylogenetic signal of traits
including feed source proportions (‘feed’) predicted by Sour-
ceTracker and body mass indexes (‘PC1’) computed by
PCA analysis. The solid bold black line denotes Mantel’s
statistic of autocorrelation, and the dashed black lines
denote the lower and upper bounds of the confidence
envelop (0.95). The horizontal black line denotes the
expected value of Mantel’s statistic under the null hypothe-
sis of no phylogenetic autocorrelation. The colored bar show
whether the autocorrelation is significant (based on the con-
fidence interval): red for significant positive autocorrelation,
black for nonsignificant autocorrelation, and blue for signifi-
cant negative autocorrelation.
Fig. S12. Scatterplots show the LOESS smooth curve fitting
(Local Polynomial Regression) between unweighted
ses.MNTD metrics of indicated sub-community with a given
trait (feed source or body mass). Regressions of (A) feed
source and (B) body mass with ses.MNTD for all 943 ESVs.
Regressions of (C) feed source and (D) body mass with
ses.MNTD for 63 abundanct ESVs. Regressions of (E) feed
source and (F) body mass with ses.MNTD for 880 rare
ESVs.
Fig. S13. Fitness of the neutral model for (A) all 943 ESVs;
(B) 63 abundanct ESVs and (C) 880 rare ESVs. Neutral
(fit), overrepresented and underrepresented ESVs are
coloured grey, red and blue respectively. The solid black
line denotes model prediction, and the dashed black lines
denote the lower and upper bounds of the confidence

ª 2021 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd., Microbial
Biotechnology, 15, 683–702

Gut microbiota snapshot of farmed obscure puffer 701



envelop (0.95). The fitness of the neutral model (R2) and
migrition rate (m) are shown as plot title of each subpanel.
Table S1. Numbers of reads that had passed quality control
for each sample.
Table S2. Statistical results for each indicated figure.
Table S3. Metadata.

Table S4. Importance value of Random-Forest predicted
bacterial families in classfying sample groups.
Table S5. Mean relative abundance of bacterial classes
from each indicated sample group.
Table S6ss Discriminative bacterial taxa identified by
LEfSe.
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