Skip to main content
. 2022 Jan 28;11(2):209. doi: 10.3390/biology11020209

Table 3.

Performance of generated QSAR classification models built using the enriched set. Q, accuracy; Qb, balanced accuracy; Sp, specificity; Se, sensitivity; and MCC, Matthew coefficient correlation.

10-Fold Cross-Validation (Full Training Set, n = 7064)
Q Qb Sp Se MCC
CART 0.921 0.887 0.822 0.951 0.779
NN 0.890 0.826 0.707 0.947 0.684
DNN 0.941 0.917 0.962 0.873 0.836
SVM-linear 0.945 0.924 0.885 0.963 0.847
SVM-radial 0.953 0.932 0.893 0.972 0.870
SVM-sigmoid 0.939 0.916 0.873 0.959 0.831
RF 0.951 0.925 0.875 0.975 0.863
LDA 0.938 0.911 0.861 0.962 0.828
Fitting (training set, n = 7064)
Q Qb Sp Se MCC
CART 0.930 0.900 0.845 0.956 0.805
NN 0.935 0.922 0.897 0.947 0.826
DNN 0.930 0.984 0.994 0.974 0.971
SVM-linear 0.952 0.932 0.895 0.970 0.867
SVM-radial 0.981 0.970 0.951 0.990 0.946
SVM-sigmoid 0.941 0.920 0.881 0.960 0.838
RF 0.999 0.998 0.996 0.999 0.997
LDA 0.939 0.913 0.863 0.963 0.831
External validation (test set, n = 1247)
Q Qb Sp Se MCC
CART 0.929 0.904 0.858 0.951 0.804
NN 0.929 0.917 0.895 0.939 0.810
DNN 0.933 0.909 0.956 0.861 0.816
SVM-linear 0.949 0.926 0.882 0.970 0.857
SVM-radial 0.958 0.937 0.895 0.978 0.884
SVM-sigmoid 0.942 0.924 0.889 0.959 0.842
RF 0.949 0.926 0.882 0.970 0.857
LDA 0.937 0.906 0.848 0.964 0.823