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Simple Summary: Early detection of renal cell carcinoma (RCC) significantly increases the likelihood
of curative treatment, avoiding the need of adjuvant therapies, associated side effects and comorbidi-
ties. Thus, we aimed to discover circulating microRNAs that might aid in early, minimally invasive,
RCC detection/diagnosis.

Abstract: Background: Decreased renal cell cancer-related mortality is an important societal goal,
embodied by efforts to develop effective biomarkers enabling early detection and increasing the
likelihood of curative treatment. Herein, we sought to develop a new biomarker for early and
minimally invasive detection of renal cell carcinoma (RCC) based on a microRNA panel assessed by
ddPCR. Methods: Plasma samples from patients with RCC (n = 124) or oncocytomas (n = 15), and 64
healthy donors, were selected. Hsa-miR-21-5p, hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p
levels were evaluated using a ddPCR protocol. Results: RCC patients disclosed significantly higher
circulating levels of hsa-miR-155-5p compared to healthy donors, whereas the opposite was observed
for hsa-miR-21-5p levels. Furthermore, hsa-miR-21-5p and hsa-miR-155-5p panels detected RCC
with high sensitivity (82.66%) and accuracy (71.89%). The hsa-miR-126-3p/hsa-miR-200b-3p panel
identified the most common RCC subtype (clear cell, ccRCC) with 74.78% sensitivity. Conclusion:
Variable combinations of plasma miR levels assessed by ddPCR enable accurate detection of RCC in
general, and of ccRCC. These findings, if confirmed in larger studies, provide evidence for a novel
ancillary tool which might aid in early detection of RCC.
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1. Introduction

Renal cancer remains one of the leading urologic cancers worldwide, being listed as
one of the twenty most common and deadly cancers, especially among men (1.5:1) [1,2].

Renal cell tumors (RCTs) correspond to a set of benign and malignant neoplasms, with
extensive diversity at epigenetic, molecular, and clinical levels [3,4]. Among them, about
10% correspond to benign tumors, with oncocytomas constituting the most common benign
tumor [1,4]. Concerning malignant RCTs, clear-cell renal cell carcinoma (ccRCC) is the most
common subtype (65–75% of all RCCs) [5], followed by papillary renal cell carcinomas
(pRCC, ~16%) and chromophobe renal cell carcinomas (chRCC, ~7%)[5]. RCCs derive
from nephron epithelial cells [1,6,7] and are characterized by their heterogeneity, both
morphological and molecular. Whereas localized RCC is mostly cured by surgery, locally
advanced or systemic disease constitute major therapeutic challenges, entailing the need
for development not only of biomarkers for early detection, but also novel therapies [8].

In recent years, several studies have been published concerning the use of circulating
microRNAs (miRNAs) for early and minimally invasive detection of RCC [1,9]. MiRNAs
are small non-coding RNAs involved in cell differentiation, growth, apoptosis, and prolifer-
ation, and have been implicated in suppressing gene expression after translation [10,11].
MicroRNA dysregulation has been extensively described in various cancers, including
RCC [4,10–13]. Frequently, miRNA levels differ between cancerous and normal tissues,
representing an opportunity for biomarker development, both in tissue samples and in liq-
uid biopsies [10,11]. Nonetheless, the biomarker performance of most candidate miRNAs
remains suboptimal, and concerns remain as to the most adequate methods for assessment
and normalization [14,15]. Indeed, all published studies on the assessment of miRNAs in
the liquid biopsies of RCC patients have used qRT-PCR [1,9], a technique which provides
relative quantification, thus requiring normalization of the results. Although miR-16 should
be the preferential normalizer due to its stability in RCC [15–18], many of the published
studies used RNU44, U6, or other similar RNA species instead, which are unstable in
liquid biopsies, eventually leading to biased results [14,19–27]. This problem might be
solved using a different technology, droplet digital PCR (ddPCR), as it obviates the need
for normalization and preamplification. DdPCR is a recent technology that appears to
improve miRNA detection, as it is based on sample partitioning before the PCR reaction
and on the Poisson distribution, allowing for absolute quantification, in a time-cost effective
and reliable manner [28,29]. Furthermore, the time point of data acquisition increases the
precision and robustness of the method [28,29].

Thus, in this study, taking advantage of the performance of ddPCR in liquid biopsies,
we sought to evaluate, for the first time, the ability of a microRNA panel (hsa-miR-21-5p,
hsa-miR-126-3p, hsa-miR-155-5p, and hsa-miR-200b-3p), previously assessed in tissue
samples [13,30] to detect RCC using plasma samples.

2. Materials and Methods
2.1. Samples

A total of five plasma samples were included in the technical optimization phase of the
study, in which the ddPCR methodology was tested: one oncocytoma, one stage I pRCC,
one stage I ccRCC, one stage I chRCC, and one healthy adult blood donor.

After optimizing the ddPCR pipeline, a cohort of 203 plasma samples was assessed,
comprising 139 samples collected from RCT patients at the time of diagnosis and 64 healthy
blood donors. Regarding RCT patients, 87 corresponded to ccRCC, 22 to chRCC and 15 to
pRCC, whereas oncocytoma was diagnosed in the remaining 15. All patients were treated
at IPO Porto by the same multidisciplinary team between 2015 and 2021. After peripheral
blood collection into EDTA-containing tubes, plasma was separated by centrifugation at
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2500 g for 30 min at 4 ◦C, and subsequently stored at −80 ◦C in the institutional biobank
until further use. All blood samples were processed within 4 h from the time of collection.
Relevant clinical and pathological data were analyzed from clinical charts and grouped in
an anonymized database specifically constructed for the analysis.

2.2. RNA Extraction and cDNA Synthesis

Total RNA was extracted from 100 µL plasma using a MagMAX mirVana Total RNA
Isolation kit (Thermo Fisher, Waltham, MA, USA, A27828), according to the manufacturer’s
protocol. As a technical control, a non-human synthetic spike-in, ath-miR-159a (0.2 µL per
sample of a stock solution at 0.2 nM), was added to the lysis buffer in all samples. The final
50 µL of RNA was collected to a 1.5 mL RNase-free tube. All steps were performed at room
temperature, and extracted RNA was stored at −80 ◦C until further use.

Using TaqMan microRNA reverse transcription kit (Thermo Fisher, 4366596) according
to the manufacturer’s protocol, five microliters of previously isolated RNA were reversely
transcribed in a Veriti thermal cycler (Applied BiosystemsTM, Waltham, MA, USA) for
the miRNAs of interest and the spike-in (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p,
hsa-miR-155-5p, hsa-miR-200b-3p).

2.3. Droplet Digital PCR (ddPCR): DigiMir Pipeline

DdPCR reactions were prepared according to the optimizations performed: the vol-
umes of cDNA input [2 µL (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p), 5 µL (hsa-miR-
155-5p and hsa-miR-200b-3p)], 11 µL ddPCR Supermix for the probes (Bio-Rad, Hercules,
CA, USA, #1863010), and 1 µL TaqMan hsa-miRNA Assay (20×). The volumes of bidistilled
water were 8 µL (ath-miR-159a, hsa-miR-21-5p, hsa-miR-126-3p) and 5 µL (hsa-miR-155-
5p and hsa-miR-200b-3p); assays: ath-miR-159a—000338, FAM; hsa-miR-21-5p—000397,
FAM; hsa-miR-126-3p—002228, VIC; hsa-miR-155-5p—002623, FAM; hsa-miR-200b-3p—
002251, FAM. Droplets were generated on the droplet generator QX200 (Bio-Rad, Hercules,
CA, USA). The PCR run was set as follows: 95 ◦C for 10 min, 50 cycles of 94 ◦C for 30 s, and
“Annealing Temperature optimized” for 1 min—ramp rate 2 ◦C/s—and 98 ◦C for 10 min.
The Annealing Temperature was set at 56 ◦C for ath-miR-159a and at 55 ◦C for the other
four miRNAs. After PCR reaction, plate was read on the QX200 Droplet Reader (Bio-Rad,
Hercules, CA, USA).

The limit of the blank (LOB) and the limit of detection (LOD) were calculated for each
target miRNA according to Armsbruster et al. [2]. Additionally, the limit of quantification
(LOQ) for the five miRNAs was assessed by performing a 2-fold dilution series of an
RCT sample.

2.4. Quality Control Steps

All plasma samples were inspected for hemolysis as previously reported by others [31,32].
Hence, from 238 initial samples, 35 samples that presented absorbance higher than 0.25
at 414 nm were excluded. Appropriate engineering and manual controls were used to
prevent contaminations—including a master mix made using a clean hood, clean gloves,
PCR reagents and consumables—and reactions were performed in separate dedicated labs.
RNA previously extracted from RCC cell lines (HKC8 was obtained from Expasy and
Caki-1, 769-P, Caki-2, ACHN, A-498, HEK-293, 786-O were from ATCC), and a pool of them
was used as positive control for the four candidate miRNAs. A no-template control (NTC)
and no-enzyme control (NEC) were included in all cDNA synthesis and ddPCR stages as
negative controls. For ddPCR pipeline optimization, further negative controls (“no-cDNA
control” and “no-Supermix control”) were included, as recommended [33]. All samples
were run in a single reaction for each target.
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2.5. Statistical Analysis

Non-parametric tests were performed to compare levels of each miRNA among histo-
logic subtypes and to evaluate associations with clinicopathological features. A Spearman
test was used for correlation analyses between two variables. A Mann-Whitney U test was
used for comparisons between two groups, whereas a Kruskal-Wallis test was used for mul-
tiple groups, followed by a Mann-Whitney U test with Bonferroni’s correction for pairwise
comparisons. A result was considered statistically significant when the p-value < 0.05.

For each miRNA, samples were categorized as positive or negative based on the cut-off
values established using Youden’s J index [34,35] (value combining the highest sensitivity
and specificity), through Receiver-Operating Characteristic (ROC) curve analysis. Validity
estimates (sensitivity, specificity, and accuracy) were determined to assess the detection
biomarker performance. To improve the detection performance of the selected miRNAs,
panels were constructed considering a positive result whenever at least one target miRNA
was plotted as positive in an individual analysis.

A two-tailed p-value calculation and ROC curve analyses (without resampling anal-
ysis) were performed using SPSS 27.0 software for Windows (IBM-SPSS Inc., Chicago,
IL, USA). All graphics were assembled using GraphPad Prism 8.0 software for Windows
(GraphPad Software Inc., LA Jolla, CA, USA). To increase the statistical power through
a resampling analysis, multiple ROC curves were constructed to calculate validity esti-
mates for the best miRNA panels, as previously described [36,37]. In brief, samples were
randomly divided into training (70%) and validation (30%) sets. Subsequently, the cut-off
value was estimated in the training set considering the highest sensitivity and specificity
and using this calculated cut-off, validity estimates were calculated in the validation set.
The procedure was repeated 1000 times and the mean of the parameters (sensitivity and
specificity) were calculated. These calculations were performed using R v3.4.4.

3. Results
3.1. Patients’ Cohort Characterization

The relevant clinical-pathological features of optimization and validation cohorts are
depicted in Table 1.

According to clinical-demographic factors, a significant, although weak, correla-
tion was found between age and circulating levels of each miRNA—hsa-miR-21-5p, hsa-
miR-126-3p and hsa-miR-200b-3p levels (R2 = 0.080 and p-value < 0.001, R2 = 0.030 and
p-value = 0.023, R2 = 0.020 and p-value = 0.032, respectively).

3.2. Distribution of Circulating miRNA Levels and Biomarkers Performance for Detection
of Malignancy

Initially, target miRNA levels were compared between oncocytoma (a benign tumor)
and healthy donor samples, and no significant differences between these groups were
found for any of the tested hsa-miRNAs, except for hsa-miR-155-5p (p-value = 0.037).

Due to the clinical relevance of discriminating malignant disease (RCC) from healthy
individuals, this comparison was subsequently performed. Interestingly, circulating levels
of hsa-miR-21-5p and hsa-miR-155-5p significantly differed between these two groups
(p-value < 0.001 and p-value = 0.013, respectively) (Figure 1). Circulating levels of hsa-
miR-21-5p disclosed the highest accuracy for identifying malignant tumors, although
hsa-miR-155-5p depicted the best specificity (90.63%). Remarkably, a panel comprising
hsa-miR-21-5p/hsa-miR-155-5p detected about 83% of the three major RCC subtypes, with
71.89% accuracy (Table 2). Importantly, the same two hsa-miRNAs could discriminate RCTs
from healthy individuals (Figures S1 and S2 and Table S1).
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Table 1. Clinicopathological data of the technical optimization cohort (5 samples) and LiKidMiRs
cohort (composed of 139 Renal Cell Tumors and 64 Healthy donors’ samples) used in this study.

Technical Optimization Cohort (n = 5 Samples)

Cases Description

Sample #1 66 years, Oncocytoma
Sample #2 53 years, pRCC, Stage I
Sample #3 57 years, ccRCC, Stage I
Sample #4 46 years, chRCC, stage I
Sample #5 45 years, healthy blood donor

LiKidMiRs Cohort (n = 203 samples)

Renal cell tumor samples 139
Healthy blood donors 64

Renal cell tumor patients—clinicopathological features

Age [years (median, interquartile range)] 64 (17.0)
Gender

Male 96/139 (69.1)
Female 43/139 (30.9)

Size of tumor mass [cm (median, interquartile range)] 4.50 (4.3)
Histology [n, (%)]

ccRCC 87/139 (62.6)
pRCC 15/139 (10.8)
chRCC 22/139 (15.8)
Oncocytoma 15/139 (10.8)

Stage [n, (%)]
I 59/124 (47.6)
II 8/124 (6.5)
III 45/124 (36.3)
IV 12/124 (9.7)

ISUP nuclear grade [n, (%)]
1 7/88 (8.0)
2 47/88 (53.4)
3 24/88 (27.3)
4 10/88 (11.4)

Vital status
Alive with disease 6/139 (4.3)
Alive without disease 120/139 (86.3)
Death from the disease 13/139 (9.4)

Healthy Blood Donors—clinicopathological features

Age [years (median, interquartile range)] 46 (4.75)
Gender

Male 36/64 (56.3)
Female 28/64 (43.8)
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Figure 1. Violin plots with miRNA levels in Healthy Donors (HD) and Renal Cell Carcinoma
(RCC) samples of hsa-miR-21-5p (A) and hsa-miR-155-5p (B), and respective Receiver-Operating
Characteristic Curve (without resampling analysis) (C,D). In violin plots, dashed lines indicate the
interquartile range and horizontal line the median of miR levels. In ROC curves, red line indicates
the reference line and blue line the identity line for each miRNA. Abbreviations: AUC—Area
Under the Curve; CI—Confidence Interval, HD—Healthy Donors, RCC—Renal Cell Carcinoma,
*—p-value < 0.05, ***—p-value < 0.0001.

Table 2. Performance of miRNAs as biomarkers for detection of Renal Cell Carcinoma.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 62.90 64.06 77.23 47.13 63.30
hsa-miR-155-5p 39.52 90.63 89.09 43.61 56.91

hsa-miR-21-5p/hsa-miR-155-5p 89.52 54.69 79.29 72.92 77.66
Multiple ROC Curve

(hsa-miR-21-5p/hsa-miR-155-5p) 82.66 51.13 77.22 61.76 71.89

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value;
ROC—Receiver-Operating Characteristic.
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When the analysis was restricted to early-stage disease (patients with an organ-
confined tumor) and healthy donor samples, hsa-miR-21-5p and hsa-miR-155-5p, but
not the other miRNAs, retained statistical difference (p-value < 0.01 for both miRNAs)
between these two groups (Figure 2A,B). Hence, these two miRNAs were able to detect
small RCC (tumors limited to the kidney, without regional lymph node metastasis) with
89.04% sensitivity and high negative predictive value (NPV) (77.68%) (Table 3). Remarkably,
the AUC for both miRNAs was higher than 65.00% (Figure 2C,D).
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Figure 2. Violin plots of miRNAs levels in Healthy Donor (HD) and early stages of Renal Cell
Carcinoma (Stage I and II) samples of hsa-miR-21-5p (A) and hsa-miR-155-5p (B), and respective
Receiver-Operating Characteristic Curve (without resampling analysis) (C,D). In violin plots, dashed
lines indicate the interquartile range and horizontal line the median of miR levels. In ROC curves,
red line indicates the reference line and blue line the identity line for each miRNA. Abbreviations:
AUC—Area Under the Curve; CI—Confidence Interval; HD—Healthy Donors, **—p-value < 0.001.
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Table 3. Performance of miRNAs as biomarkers for identification of early stages Renal Cell Carcinomas.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 81.82 43.75 60.00 70.00 63.08
hsa-miR-155-5p 48.48 90.63 84.21 63.04 69.23

hsa-miR-21-5p/hsa-miR-155-5p 92.42 34.38 59.22 81.48 63.85
Multiple ROC Curve

(hsa-miR-21-5p/hsa-miR-155-5p) 89.04 36.23 59.28 77.68 62.88

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value;
ROC—Receiver-Operating Characteristic.

3.3. MiRNA Levels and Clinicopathological Features

Among RCC subtypes (ccRCC, pRCC and chRCC), significant differences were found
for all four miRNAs (hsa-miR-126-3p, hsa-miR-155-5p and hsa-miR-200b-3p, p-value < 0.010;
hsa-miR-21-3p, p-value = 0.045, Figure 3).

Furthermore, all four hsa-miRs circulating levels significantly differed between the
two major RCC subtypes, ccRCC and pRCC (hsa-miR-126-3p, p-value < 0.001; hsa-miR-
155-5p and hsa-miR-200b-3p, p-value < 0.01; hsa-miR-21-5p, p-value = 0.039, Figure 3).
Nonetheless, no statistical differences were found between pRCC and chRCC or between
ccRCC and chRCC for the tested circulating miRNAs.
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interquartile range and horizontal line the median of miR levels. Abbreviations: ccRCC—Clear-Cell
Renal Cell Carcinoma; chRCC—Chromophobe Renal Cell Carcinoma; pRCC—Papillary Renal Cell
Carcinoma; n.s.—not significant, *—p-value < 0.05, **—p-value < 0.001, ***—p-value < 0.0001.

Due to the poorer outcome and higher incidence of ccRCC, comparisons in circulat-
ing hsa-miRNAs were performed between this subtype and the other two RCC subtypes
(Figure 4). Interestingly, ccRCC patients displayed significantly lower circulating lev-
els of all hsa-miRs compared to patients diagnosed with the other malignant subtypes
(p-value = 0.048 for hsa-miR-21-5p and p-value < 0.01 for hsa-miR-126-3p, hsa-miR-155-5p
and hsa-miR-200b-3p—Figure 4).
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Moreover, circulating hsa-miR-126-3p and hsa-miR-200b-3p levels discriminated
ccRCC from other RCC subtypes with 74.78% sensitivity and 52.95% specificity (Figure 5
and Table 4).
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Table 4. Performance of miRNAs as biomarkers for identification of Clear-Cell Renal Cell Carcinoma.

miRNAs SE% SP% PPV% NPV% Accuracy%

hsa-miR-21-5p 60.92 67.57 81.54 42.37 62.90
hsa-miR-126-3p 78.16 56.76 80.95 52.50 71.77
hsa-miR-155-5p 66.67 64.86 81.69 45.28 66.13

hsa-miR-200b-3p 60.92 75.68 85.48 45.16 65.32
hsa-miR-126-3p/hsa-miR-200b-3p 80.46 56.76 81.40 55.26 73.39

Multiple ROC Curve
(hsa-miR-126-3p/hsa-miR-200b-3p) 74.78 52.95 79.49 47.46 68.28

Abbreviations: SE—Sensitivity; SP—Specificity; PPV—Positive Predictive Value; NPV—Negative Predictive Value.

4. Discussion

RCC remains a leading cause of cancer-related death worldwide. Alongside prostate
and bladder cancers, RCC is one of the most common urological malignancies [38]. Early
detection of RCC (ideally at stage I or II) significantly increases the likelihood of a cure
through surgical treatment, with a 5-year survival rate of 98%, averting the need for
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subsequent therapies, which are not curative and often carry significant adverse side
effects [15]. Nonetheless, 20–30% of patients display metastatic disease at diagnosis [38,39],
and even following curative-intent nephrectomy, the standard of care for localized RCC,
metastases develop in up to 20–40% of patients [39]. Notably, the response to medical
treatment (mainly targeted therapy or immunotherapy) is rather limited, with a 5-year
survival rate lower than 10%. Among RCCs, ccRCC, pRCC, and chRCC represent more than
90% of cases, emphasizing the importance of accurately detecting these tumor subtypes
and discriminating them from benign conditions [39,40].

Circulating miRNAs are emergent cancer biomarkers which might be assessed using
minimally invasive strategies, eventually constituting promising RCC biomarkers. Nev-
ertheless, only a few studies have addressed this issue, mostly using conventional qPCR
techniques [14,15,17–25,41,42]. Owing to the diversity of the results of those studies and
the need to overcome the limitations of normalization, we assessed the clinical potential of
a circulating miRNA-based panel for RCC detection using ddPCR.

Accurate identification of patients harboring RCC and discrimination from healthy
individuals, as well as from carriers of benign renal lesions (including tumors), is pivotal
to reliably establishing therapeutic vs. monitoring strategies. Thus, after a first analysis
between oncocytomas and healthy donors, we compared healthy donors with RCC pa-
tients. Remarkably, two (hsa-miR-21-5p and hsa-miR-155-5p) out of the four candidate
miRNAs disclosed statistically significant differences in plasma levels. Although hsa-
miR-21-5p has been described to act as oncomiR, we observed lower circulating levels in
RCC patients [20,43–45]. This might be due to the distinct miRNAs levels in the different
clinical samples. Indeed, higher miRNA levels may be found in tissues compared to body
fluid samples [46]. Importantly, increased hsa-miR-21-5p levels were also found in serum
samples of RCC patients, further supporting that circulating miRNA levels in serum and
plasma may be different [20]. Moreover, differences were also reported for hsa-miR-21-5p
levels in serum and plasma among patients with Non-ST-elevation myocardial infarction,
a non-cancer-related pathology [47]. Herein, higher hsa-miR-21-5p levels were found in
serum when compared with respective control samples, whereas lower levels were ob-
served in plasma samples from the same patients [47]. Of note, plasma has been reported
to be the sample of election for translational studies [47–49], as red blood cell lysis during
the coagulation process increases discharging of RNA and platelets to the serum, increas-
ing the non-tumor derived circulating miRNAs present in each sample [48]. Importantly,
hsa-miR-21-5p is expressed in platelets [47,50] and, thus, an increase of platelets in serum
might explain the higher levels found for this miRNA. Furthermore, in breast cancer, lower
hsa-miR-30b-5p levels were found in tissue compared with plasma, unveiling the dispar-
ities between these two sample sources [51]. Moreover, inadequate normalization and
biased results may occur if the normalizer used is not the most suitable. Indeed, U6 is more
prone to degradation by serum RNases [1]. Interestingly, in a previous study we found
that hsa-miR-21-5p miRNA was significantly downregulated in tissue samples from RCT
patients, discriminating RCT patients from healthy donors [13].

Concerning hsa-miR-155-5p, upregulation of this circulating hsa-miR was found in
RCC patients, and a panel comprising hsa-miR-155-5p and hsa-miR-21-5p could identify
82.66% of RCC patients with 71.89% accuracy. Interestingly, hsa-miR-155-5p was shown to
be upregulated in tissue [13,52] and ccRCC serum samples [18], and is also associated with
cancer development [52]. Moreover, an hsa-miR-21-5p/hsa-miR-155-5p panel depicted
high sensitivity (89.04%) for identifying organ-confined carcinomas, which might allow for
reducing false-negative results and increase the likelihood of curative-intent treatment. To
the best of our knowledge, this is the first study that evaluated the biomarker performance
of plasma circulating hsa-miRs to detect early-stage RCC. Previously, Wang and colleagues
described a 5-miRNA panel (miR-193a-3p, miR-362, miR-572, miR-378, and miR-28-5p)
that was able to identify early-stage RCC, albeit in serum samples [22]. Furthermore, our
panel achieved a higher NPV than that reported by Wang et al. [22].
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We further evaluated whether circulating hsa-miRNAs might also convey relevant
information to discriminate ccRCC from the remainder RCC subtypes. Indeed, all four
miRNAs were able to differentiate this major RCC subtype from the others. The panel
constituted by hsa-miR-126-3p and hsa-miR-200b-3p disclosed the best performance, with
74.78% sensitivity and 52.95% specificity. Since ccRCC is an aggressive RCC subtype, early
detection is of major importance, and its accurate identification might improve patient
outcomes [20,53]. Although stratification by stage was not performed due to a limited num-
ber of cases with advanced stages, for early stages, hsa-miR-126-3p and hsa-miR-200b-3p
levels also differed significantly between ccRCC and the remainder RCC subtypes.

Considering that various studies have reported other strategies for RCC identification
(including imaging and epigenetic biomarkers), our results seem to offer the best sensitivity
for RCC detection [9,54]. Indeed, the methodology we developed uses a lower initial sample
volume [15,17,20,22,25,41,42], which is more cost-effective, and the procedure to obtain the
sample is better tolerated by patients. Molecular imaging such as 18F-fluorodeoxt-glucose
(FDG) positron emission tomography/computed tomography (PET/CT) was reported
to detect localized RCC, but it discloses lower sensitivity (only 22%) [54,55]. Despite the
superior specificity (85.9%) of 124I-cG250 PET for RCC detection, when compared to our
hsa-miR-21-5p/hsa-miR-155-5p panel (51.13%), this monoclonal antibody has a half-life of
several days, constituting a significant disadvantage in relation to the protocol reported
by us [56]. Moreover, diffusion magnetic resonance imaging was reported to characterize
malignant lesions with similar sensitivity (86%) to our panel but with higher specificity
(78%) [57]. Nevertheless, it should be noted that despite the better performance, these
imaging biomarkers are more costly and less well-tolerated by the patient compared to
liquid biopsies [54].

The intense exploration of circulating epigenetic markers such as DNA methylation,
miRNAs, and lncRNAs is well illustrated by the more that 60 articles published in this
field since 2003 [9]. So far, 10 DNA methylation-based studies (e.g., using VHL, RASSF1A,
P16, P14, RARB, TIMP3, GSTP1, APC) for RCC detection have been published [58–67]
and only 33.33% of these had an RCC cohort with more than 50 patients [60,63,64]. Com-
pared with those studies, our results provide higher sensitivity (6–83%). However, DNA
methylation-based markers displayed high specificity (53–100%). This was also observed
in three lncRNAs studies (e.g., GIHCG, LINC00887) [68–70], in which the diagnostic per-
formance was generally lower than in our study (67.1–87.0%), but the specificity reached
values >80% for all biomarkers. Although our biomarker panels disclosed high sensitivity,
their specificity is limited. Thus, in an envisaged routine setting, they would ideally be
used in first-line screening, requiring complementary use of more specific biomarkers in
cases deemed positive. In liquid biopsies, DNA methylation-based markers such as VHL,
RASSF1A, TIMP3, SFRP1, SFRP2, SFRP4, SFRP5, PCDH17, and TCF21 are highly specific
(100%) [58,59,61,62,65–67] and, thus, constitute good candidates as second-line tests, in
this setting.

As previously reported, most circulating miRNA studies are based on blood-based liq-
uid biopsies [1]. When compared with our protocol, only a few studies included more than
100 RCC patients, which might, at the least partially, explain the differences in results [9].
Additionally, the discrepant results might also be explained, as described above, by the
biased normalization (e.g., spike-in as normalizer miRNA, U6, RNU48) [14,19,20,23,24].
Nevertheless, the sensitivity reported for the most widely studied serum miRNAs (miR-210,
miR-1233, and miR-378) was generally lower than our plasma panel [14,17,25]. Indeed,
using this less time-consuming and more cost-effective approach, we were able to detect
RCC using a minimally invasive technique, with a lower initial quantity of plasma than
serum-based studies (although detecting other miRNAs), and obtained similar or even
better results, obviating the need for normalization and the associated bias (due to ddPCR
absolute quantification) [15,17,20,22,25,41,42]. Hence, our results from multiple ROC curve
analysis demonstrate a potential clinical application of this technology to identify RCC, and
is the first study to quantify circulating miRNAs in these patients using ddPCR (Figure 6).
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These results require validation in more extensive prospective studies. Overall, and
notwithstanding our promising results for RCC detection, it should be acknowledged that
the lack of long-term follow-up constitutes a significant limitation. Further studies using
liquid biopsies should also be considered to further subtype RCC, namely, to distinguish
oncocytomas from chRCCs, which will lead to a prioritization of treatments for patients
with malignant tumors.
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5. Conclusions

Our findings support the research question that a minimally invasive test can be
developed to detect RCC, improving patient survival through increased diagnosis at earlier
stages. This might help to reduce the morbidity and mortality associated with advanced
disease, as well as the lack of curative treatment at those stages. Furthermore, and to the
best of our knowledge, this work is the first to report a novel tool to quantify circulating
miRNAs in plasma using ddPCR in RCC patients.
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