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Abstract: Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide.
It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance,
leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast
need for understanding underlying mechanisms that contribute to drug resistance and for developing
therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination
with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in
different hepatic cell populations. This leads to an intensified demand of protein folding, which
inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic
reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in
order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell
death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to
drive chemoresistance in several tumors and could therefore form a promising therapeutic target.
This review provides an overview of how ER stress and activation of the UPR contributes to drug
resistance in HCC.

Keywords: unfolded protein response; endoplasmic reticulum stress; liver cancer; drug resistance;
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1. Introduction

Hepatocellular carcinoma (HCC) is a primary liver tumor that contributes to over
550,000 annual deaths worldwide [1,2]. It usually develops in a background of chronic liver
disease, which can be caused by alcohol-related liver diseases, chronic hepatitis infections,
non-alcoholic fatty liver disease, and genetic mutations [3-5]. Each of these risk factors is
characterized by a chronic perpetuation of liver injury that creates an inflammatory and
a pro-tumoral microenvironment that sustains cancer cell proliferation and survival [6,7].
There is accumulating evidence that endoplasmic reticulum (ER) stress plays a pivotal role
in chronic inflammation and carcinogenesis, and that in some cases, ER stress may even
contribute to the initiation of these conditions [8-10]. Components of the ER are essential
for folding proteins into their native three-dimensional (3D) conformations needed to
perform their intended reactions and functions [8,9,11]. However, as protein translation
increases in times of high cellular activity or stress, efficacy of ER components may decrease,
leading to an accumulation of misfolded and unfolded proteins in the ER lumen. These
misfolded proteins are often unable to leave the ER and may eventually trigger a signaling
cascade that initiates the unfolded protein response (UPR) through three different ER stress-
signaling branches: protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1
(IRE1x), and activating transcription factor 6 (ATF6). The UPR may also be elicited through
other forms of stress that occur in the inflammatory microenvironment, as well as within
rapidly proliferating tumor cells. Such triggers include an increased generation of reactive
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oxygen species (ROS), hypoxia, nutrient starvation, exposure to chemotherapeutic drugs
and improper calcium homeostasis [12]. The activation of the UPR will primarily attempt to
reduce the load of the ER, for instance by decelerating protein translation or by increasing
the ER’s folding capacity. However, in cases of prolonged or severe ER stress, pro-survival
and pro-apoptotic pathways will be initiated.

Hepatocellular carcinoma has several complex factors that contribute to its develop-
ment and progression, in addition to mechanisms that can directly or indirectly interfere
with treatment efficacy. One of the most alarming complications in HCC is occurrence of
multidrug resistance. This means that efficacy of chemotherapeutic drugs become severely
reduced due to cancer cells utilizing different biological tools to remove, convert, and/or
disarm drugs intended to interfere with them [13-16]. This review focuses on how HCC
cells harness ER stress to survive and adopt a drug resistant phenotype through several
complex and intertwined resistance mechanisms (Figure 1).
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Figure 1. There are five mechanisms on how tumor cells acquire drug resistance. Firstly, reduction of
drug uptake by increased efflux and decreased influx of chemotherapeutics through ABC transporters
and solute carrier proteins, respectively. Secondly, alteration of the drug targets, for instance by
decreasing protein expression of DNA topoisomerase, an important target of doxorubicin, which is
responsible for inducing DNA strand breaks during doxorubicin treatment. Thirdly, by induction of
drug-detoxifying mechanisms, such as scavenging of reactive oxygen species (ROS) or by nucleophilic
conjugation of glutathione to the active site of chemotherapeutics, which is mediated by glutathione
transferase enzymes. Fourthly, by repairing drug-induced damages, such as DNA damage, which
can be directly induced by chemotherapeutics or through oxidative stress. Lastly, by inducing
insensitivity to cell death through activation of several pathways, including NFkB, STAT3, and
Nrf2. These five molecular mechanisms are heavily intertwined, thereby often accelerating the
drug-resistant phenotype of hepatocellular carcinoma.

2. Endoplasmic Reticulum Stress in Health and Disease

Under normal conditions, the ER is an organelle that manages synthesis and folding
of proteins [8,9] while also functioning as a storage unit for calcium ions, lipid synthesis,
and fatty acid oxidation [17]. When the cell’s need for protein folding exceeds the ER’s
capacity to accurately fold proteins, an accumulation of unfolded and misfolded proteins
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will occur, thereby triggering the UPR. Activation of the mammalian UPR occurs through
three ER stress pathways that ultimately regulate transcription of genes that influence
protein folding, folding capacity, autophagy, and apoptosis [8]. Accumulation of unfolded
or misfolded proteins is sensed via three transmembrane receptors: PERK, IREl«, and
ATF6, which remain inactive when they are bound to ER chaperone GRP78/BiP (78-kDa
glucose-regulated protein) [8]. Activation of the different ER stress branches is thought to
be based on two models, namely, the direct and indirect recognition models. The direct
recognition model proposes that UPR activation arises when GRP78/BiP dissociates from
the luminal binding domains of the PERK/ATF6/IRE1« receptors [8,11]. GRP78/BiP has a
greater affinity for unfolded proteins than their ER stress receptor domain and therefore
dissociates when unfolded protein concentrations increase [17]. During low levels of
ER stress, activation of these pathways is correlated to increased translation of genes
regulating ER chaperones, amino acid metabolism, redox reactions, autophagy, protein
folding, and maturation, which is generally thought of as a pro-survival mechanism [8-11].
In comparison, high levels or prolonged ER stress have been shown to trigger apoptotic
pathways via caspase-3, BCL-2 family member, apoptosome complex activation, and
ferroptosis [17-19]. How and when different ER stress pathways exert their cytoprotective
or their pro-apoptotic functions remains largely unknown. The duration and severity
of ER stress seems to be a major contributor to the switch towards apoptosis, possibly
by inducing changes in the conformational structure of IRE1x [17,20]. A second theory
suggests that transcription factor E2F1 plays a role of a kill switch during late-stage ER
stress, where expression levels of E2F1 will determine whether the cell locks onto survival
or apoptotic pathways [17]. The threshold at which cells experience a severe and prolonged
ER stress that would induce apoptosis varies among different cell lines, depending on their
translational capacity (e.g., number of chaperones, ER size, and the amount of machinery
for protein degradation) and differences in intrinsic sources of ER stress [21,22].

The rapid proliferation of tumor cells is accompanied by an acute increase of protein
synthesis, which inevitably leads to activation of the UPR. It is therefore not surprising
that actors of the UPR are increased in nearly all cancer types and that ER stress pathways
seem to be affecting every hallmark of cancer [23,24]. Studies have shown that HCC
cells hijack ER stress pathways to keep cells in a pro-survival signaling loop, while also
interfering with components of the pro-apoptotic pathways [8,17]. Hypoxia and nutrient
deprivation can directly activate the UPR [25] and have also been implicated as strong
inducers of chemoresistance [13]. It has been further suggested that tumor cells modulate
the UPR to aid in secreting pro-survival cytokines, growth factors, and other components,
which consequently modulate cells in their immediate microenvironment to proliferate
safely while suppressing an immune response [26,27]. To sustain their own metabolic
demands and to adapt to a challenging and rapidly changing environment, cancer cells also
reprogram their secretome to further support tumor function and induce chemoresistance.
A thorough understanding of how ER stress pathways are intertwined with different
mechanisms of drug resistance will therefore enable development of new chemotherapeutic
candidates and optimize existing treatments in order to achieve better response.

3. Mechanisms of Drug Resistance

In recent decades, chemotherapy and targeted therapies have become principal modes
of treatment against most types of cancer, including HCC. However, their efficacy is limited
due to various inherent and acquired resistance mechanisms developed by cancer cells.
This is specifically relevant in HCC, as most chemotherapeutics have limited efficiency
due to the high intrinsic resistance of hepatic cancer cells [16]. Five different mechanisms
have been described on how tumor cells acquire drug resistance: (1)—reduction of drug
uptake, (2)—alteration of the drug target, (3)—induction of drug-detoxifying mechanisms,
(4)—repair of drug-induced damage, and (5)—insensitivity to drug-induced cell death [14]
(Figure 1). The three different arms of the ER stress signaling pathways are involved in the
induction of chemoresistance throughout all these different mechanisms (Figure 2) [10].
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Figure 2. The accumulation of unfolded proteins in the endoplasmic reticulum lumen induces ER
stress, leading to the dissociation of BiP from IRElx, ATF6, and PERK. This activates the three
pathways, resulting in the unfolded protein response, which in turns stimulates many underlying
pathways and mechanisms that contribute to increased chemotherapeutic resistance in HCC. IRETox
mainly leads to DNA repair and inhibition of apoptosis trough the activation of the TRAF2/JNK
pathway, but also the alteration of drug transport through XBP1 splicing and Nrf2 activation. ATF6 on
its turn activates p58 via proteolytic cleavage. Finally, PERK is mainly responsible for the mechanisms
activating autophagy through the eif2-alpha/ATF4/CHOP axis and DNA repair (eif2-alpha/ATF4
pathway). It also inhibits ferroptosis via the eif2-alpha/ATF4 pathway.
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3.1. Reduction of Drug Uptake and Enhanced Efflux

Reduction of drug uptake is a key mechanism known to cause cellular resistance
of tumor cells against chemotherapeutic agents in different solid tumors [28]. Elevated
expression of transport proteins expressed at the plasma membrane limits intracellular ac-
cumulation of anti-cancer drugs, either by pumping agents out of the tumor cells (enhanced
efflux) or by blocking their uptake (reduced influx) [14]. The majority of these proteins
belong to the mammalian adenosine triphosphate (ATP)-binding cassette (ABC) family of
transporters. There are 48 types of functionally diverse human transporters, which have
been divided into 7 distinct subfamilies (A-G) on the basis of their structural relatedness
and domain organization [29]. Thus far, 16 types of ABC transporters are directly and/or
indirectly linked to multidrug resistance in liver, kidney, pancreas, and other types of
cancer (Table 1) [30-32]. The most extensively studied ABC transporters are the ABCB1
(permeability glycoprotein/MDR1), ABCC1 (multidrug resistance-associated protein-1,
MRP1), and ABCG2 (breast cancer resistance protein (BCRP)) [32]. Their main ability is to
recognize chemotherapeutic agents after their internalization within the plasma membrane
and use the energy produced via ATP hydrolysis in order to expel drug molecules out of
the cells, thereby decreasing bioavailability and increasing drug resistance [29,33]. Trans-
portation of drugs across cells occurs through multiple processes, such as passive diffusion,
facilitated or active transport, or pinocytosis. A major barrier that prevents drugs from
accessing intracellular partitions in the plasma membrane is the solute carrier (SLC) family
of proteins, which encode both passive and ion coupled carriers, as well as exchangers,
which regulate 360 uptake carriers in the cell membrane [15]. Downregulation or inhibition
of transporters may cause resistance to therapy due to reduced drug uptake or early/late
impairment of endocytic pathways [14,34].

One of the most common drug resistance mechanisms in HCC is enhanced drug efflux
through induction of ABC cassette transporters, such as MDR1, MRP1, and MRP2 [22,35,36].
Previous studies have shown that activation of ER stress pathways, specifically PERK and
IRE1«, are important inducers of ABC transporter expression [23]. When it comes to PERK,
Salaroglio et al. demonstrated through gene profiling analysis that high levels of PERK
are found in human colon cancer cells resistant to chemotherapy [37]. This study further
exposes that PERK forms an axis with nuclear receptor and transcription factor Nrf2, which
was shown to directly regulate transcription of MRP1 [37]. In addition, this Nrf2/SHH
signaling cascade is known to promote drug resistance in several HCC cell lines [35,38], as
Nrf2 activity upregulates multidrug-resistant efflux pumps [35,39,40]. In addition, Nrf2
has also been identified as a transcription substrate of PERK, thus further strengthening the
interaction between Nrf2 expression and ER stress signaling [41]. The ATF4/PERK pathway
also interacts with the long non-coding RNA (IncRNA) ZFAS1 signaling pathway, which
has been shown to be important in sorafenib resistance [42]. Sorafenib itself may contribute
to ZFASI activation by activating PERK/ATF4-pathways in drug-resistant HCC cells and
inhibiting the PERK-signaling pathway, which has been suggested to re-sensitize cells
to sorafenib [42]. This suggests that specific PERK inhibitors could provide an attractive
therapeutic target to enhance efficacy of sorafenib treatment in HCC [42]. The strong link
between PERK and drug response has led to several studies using PERK inhibitors in
preclinical studies; however, careful evaluation is warranted, as there have been critical
issues with specificity of some of these inhibitors [43].
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Table 1. ATP-binding cassette ABC efflux pumps involved in enhanced drug efflux and reduced drug
uptake stratified according to their TMD folds.

TMD Fold Subfamily Gene Function Upregulation in Cancer

Drug efflux and regulator of lipids and

ABCB1 . .. Adrenocortical, breast, colorectal,
steroids homeostasis in . .
(P-gp) . leukemic, ovarian, and renal cancers
central and peripheral nervous system
. Leukemic, lung, melanoma, ovarian,
ABCB ABCB5 GSH mediator renal, and thyroidal cancers
Iron metabolism and homeostasis, Head anfi neck,
ABCBS8 . pancreatic, and
OS protection
renal cancers
Breast, endometrium, glioma, head
ABCC1 Organic anion transporter and GSH and neck, lung, lymphoma,
(MRP1) mediator melanoma, ovarian, prostate,
neuroblastoma, and thyroid cancers
ABCC2 Organic anion transporter Colorectal, gastric, hepatic, and lung
cancers
Type IV Breast, cervical, colorectal, gastric,
ABCC3 Organic anion transporter hepatic, lung, ovarian pancreatic,
renal, and thyroid cancers
Breast, endometrial, gastric, head and
ABCC4 Nucleoside transporter . neck, .
ABCC hepatic, lung, neuroblastoma, ovarian,
prostate, andrenal cancers
Breast, cervical, glioma hepatic, lung,
ABCC5 Nucleoside transporter pancreatic, renal, and urothelial
cancers
ABCC6 Putative biomineralization Liver cancer
modulator
ABCC10 E(2)17BG transporter Breast, colorectal, liver, lung, and
prostate cancers
ABCC11 Bile salts transporter Breast cancer
ABCC12 Unknown Breast, colorectal, liver, lung, and

prostate cancers

Cervical, glioma, liver, ovarian,
ABCG ABCG2 Toxin efflux, cell differentiation prostate, pulmonary, renal, and
testicular cancers

Type V . .
.. Breast, colon, leukemia, and liver
ABCA ABCA2 Lipid transporter cancers
ABCAS Lipophilic drugs transporter Ovarian cancer
- ABCF ABCF2 Inflammatory development Breast cancer

Although IRE1«’s relationship to ABC transporters has not been clearly established
in HCC, Gao et al. (2020) found that the IRE1a—XBP1 axis participates in activating
efflux pumps ABCC1 and ABCG2 in colon cancer cells resistant to 5-fluorouracil [44].
Treatment with 5-fluorouracil induces activation of IRE1a—XBP1 and increases expression
of ABC transporters. However, further research is necessary to clarify the role of IRE1ax
and its relationship to enhanced drug efflux in HCC. One important aspect of IREl«’s
endoribonuclease activity is that this is not only responsible for cleaving XBP1, but several
studies have shown that IREl« is also able to cleave and regulate miRNAs [45-47]. ER
stress has therefore been shown to contribute to the miRNA imbalance in inflammation [47]
and cancer [48]. This could be particularly interesting in the context of drug resistance,
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as Shi et al. has previously shown that upregulation of miRNAs may confer resistance to
5-fluorouracil in HCC cell lines [49]. Through a CCK-8 assay, researchers found that ectopic
expression of MiR-141 can directly induce chemoresistance in HepG2, SMMC-7721, and
Huh? cell lines [49]. Moreover, MiR-141 facilitates Nrf2 pathway activation by targeting
Kelch-like ECH-associated protein (Keap1), which under healthy conditions mediates
ubiquitination and degradation of Nrf2. Thus, Shi et al. (2015) further demonstrated that
MiR-141 deregulates Keapl protein stability, thereby inducing Nrf2, which may in turn
result in overexpression of ABC cassette transporters [49]. On the other hand, miR-122
specifically targets the membrane transporter SLC7A1, which is associated with resistance
to sorafenib. miR-122 upregulation can potentially knock down SLC7A1 expression and
re-sensitize HCC cells to sorafenib treatment [50]. On the basis of previous results, ER stress
seems to act as a regulator of miRNAs, which could potentially influence drug response
through different mechanisms that involve either drug efflux (such as miR-131) or drug
uptake (such as miR-122). However, further research is necessary to identify the exact
pathways that could be relevant in HCC and underlying mechanisms that regulate these
miRNAs, as well as their target genes.

The PERK/ATF4 branch of the ER stress pathways has also been implicated in drug
uptake. Gao et al. uncovered that YAP/TAZ transcription factors play a crucial role in
sorafenib resistance in HCC by inducing SLC7A11 expression, which is a core carrier
that sustains intracellular glutathione homeostasis [51]. This allows HCC cells to over-
turn sorafenib-induced ferroptosis. Simultaneously, protein stability, nuclear localization,
and transcriptional activity of ATF4 is upheld by YAP/TAZ activation. In turn, ATF4
also collaborates with YAP/TAZ to activate SLC7A11 expression, thus further enhancing
drug transport over the cellular membrane. Hence, YAP /TAZ represses ferroptosis and
consequently contributes to sorafenib resistance in HCC in an ATF4-dependent manner.
This further underlines the potential value of rewiring approaches that rely on ATF4 and
YAP/TAZ activation as a means to counter chemotherapeutic resistance in HCC [51].

3.2. Alteration of the Drug Targets

Many anti-cancer drugs must undergo metabolic activation to exert their cytotoxic
effects. Cancer cells can therefore develop resistance by altering expression of specific
enzymes involved in drug metabolism. One such example is DNA topoisomerase, which is
a family of nuclear enzymes that regulate DNA topology and is recognized as the primary
targets of chemotherapeutic drugs, including anthracyclines (e.g., doxorubicin) [52]. Ac-
tivation of the UPR has been shown to reduce topoisomerase Il protein levels [53] and
thereby decrease sensitivity to topoisomerase-targeted drugs, such as doxorubicin [54].
In addition, exposure of cells to etoposide, a topoisomerase II inhibitor, triggers mild
IRE1o phosphorylation, without triggering other pathways of ER stress [55], which further
suggests an interaction between ER stress signaling pathways and potential alteration of
drug targets. However, other studies have argued that activation of the PERK branch
of the UPR is the major contributor to UPR-induced etoposide resistance, regardless of
changes in topoisomerase Il protein expression [56]. Therefore, more research is necessary
to confirm whether the UPR-induced decrease in topoisomerase Ilx is responsible for
increased resistance to chemotherapeutics in HCC, or whether this is a result of another ER
stress-dependent drug resistance mechanism.

3.3. Induction of Drug-Detoxifying Mechanisms

Drug inactivation can play a major role in the development of resistance to chemother-
apeutic drugs. This can be achieved, for example, through conjugation of chemotherapeutic
drugs to glutathione by glutathione S-transferases [56]. Studies have shown that au-
tophagy can increase expression of glutathione transferases, thereby directly contributing
to chemoresistance [57]. Autophagy is an intracellular lysosome-mediated degradation
pathway used for recycling and eliminating proteins and protein aggregates, an essential
protective mechanism that is activated during ER stress [58]. Both ER stress and autophagy
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systems are dynamically interconnected, with ER stress pathways both stimulating or
inhibiting autophagy. Autophagy protects cancer cells from chemotherapy by repressing
apoptotic signals, as well as by triggering activation of glutathione transferases. These
enzymes are involved in catalyzing nucleophilic addition of glutathione to chemicals with
an electrophilic functional group (including products of oxidative stress, as well as directly
binding to chemotherapeutic agents) [59]. Autophagy in HCC can thereby contribute to
tolerance of chemotherapeutic drugs, such as oxaliplatin, via regulation of ROS levels
or by direct glutathione conjugation. One study specifically showed that knockdown
of glutathione transferase mu-1 in MHCC97-H and Huh-7 cells increases resistance to
oxaliplatin and sorafenib, as well as the fact that oxaliplatin-induced autophagy can be
downregulated by silencing this enzyme [57]. Furthermore, Shi et al. demonstrated that
sorafenib exposure in HCC cells upregulates IRE1o pathway signaling, thereby inducing
autophagy [60]. This study also revealed that when autophagy was suppressed, HCC cells
were re-sensitized to ER stress-induced cell death, both in in vitro as well as in in vivo
studies [60]. These findings underline the role of sorafenib-related ER stress in triggering
autophagy, which could be directly or indirectly related to the activation of glutathione
transferases [60]. There have also been studies showing a potential direct link between ER
stress pathways and glutathione transferases, which could contribute to drug-detoxifying
mechanisms in drug resistant tumors. For instance, glutathione S-transferase P-mediated
S-glutathionylation has been indicated to regulate activities of a number of redox-active
ER proteins, including ER stress chaperone BiP [61]. The S-glutathionylation of BiP has
then been proposed to contribute to bortezomib resistance in multiple myeloma cells [61];
however, more research is necessary to confirm this in HCC.

As mentioned previously, a recent study by Gao et al. showed that ATF4 induces acti-
vation of solute carrier SLC7A11, a cystine importer that plays a central role in the synthesis
of glutathione [51]. Glutathione synthesis participates in suppression of ferroptosis and
apoptosis in HCC cell lines in order to achieve cellular homeostasis. Moreover, nuclear
import of ATF4 was found to be regulated and stabilized by YAP and TAZ transcription
factors. In fact, YAP/TAZ and ATF4 proteins jointly trigger genes associated with antioxi-
dant mechanisms, including SLC7A11 [51]. Antioxidant mechanisms may hamper efficacy
of chemotherapy by scavenging ROS and free radicals, which are known to directly con-
tribute to cytotoxic effects of many chemotherapeutics, including doxorubicin [62]. Recent
studies have suggested a link between activation of the IRE1« pathway and generation of
ROS, thus further suggesting that drug-detoxifying mechanisms could contribute to an ER
stress-dependent effect on drug resistance [22].

3.4. Repair Mechanisms

The majority of chemotherapeutics contain DNA-damaging reagents, which means
tumor cells are able to develop resistance against chemotherapy by repairing DNA dam-
age [63]. DNA damage response (DDR) is a complex signal transduction pathway that
is able to repair various endogenous and exogenous DNA lesions that accumulate in
cells [64,65]. Phosphorylation, ubiquitination, and sumoylation are part of the critical
post-translational alterations that occur on DNA damage response genes, the latter be-
ing necessary for proper repair [66]. Although DNA repair protein impairment usually
leads to apoptosis, cells may also experience genomic degradation according to the degree
of damage [65]. Several genes have been reported to regulate DNA damage and repair
in HCC, such as mitogen-activated protein kinase—extracellular signal-regulated kinase
(MAPK-ERK), BRCA, p53, c-MYC, and interleukin-6 (IL-6), thus leading to intensive recov-
ery from chemotherapy-induced DNA damage and thereby conferring resistance to tumor
cells [63,67,68].

Oshi et al. found that activation of BRCA1 and BRCA2 was correlated with a high
DNA repair score in HCC, which was also related to poor survival, increased cell prolifera-
tion, high intra-tumoral heterogeneity, and mutational burden [63]. RuvB-like2, which is
involved in DNA damage detection and repair, enhances cell proliferation and is overex-
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pressed in HCC, leading to a poor prognosis [63]. This gene was also shown to be closely
related to the ER stress degradation (ERAD) mechanism by negatively mediating ER stress
response proteins [69].

P53 is a tumor suppressor gene that plays an essential role in regulating cell cycle
arrest, DN A-repair, and apoptosis as a result of DNA damage. It facilitates DNA repair by
pausing the cell cycle, thereby allowing time for repair machineries to restore stability [70].
In addition, p53 takes on diverse roles that directly impact activity of various DNA repair
systems [71]. Activation of p53 is tightly regulated by a complex web of pathways that
control its post-translational modification, sub-cellular localization, and degradation [64,71].
Although the UPR has been suggested as an essential player in regulating p53 [72], the
exact mechanism is not fully understood, since ER stress can both activate [73] or destabi-
lize p53 [74,75]. Activation of p53 during ER stress was mainly associated with increased
apoptotic cell death acting through NF-«B signaling pathways [73]. However, other studies
have shown that p53 adopts a mostly cytoplasmic distribution during ER stress, suggesting
an inhibition of its function [74]. The UPR regulates glycogen synthase kinase 33, which is
essential for regulating p53 and cyclin D1 degradation in the event of early ER stress [74].
Further studies have suggested that ER stress induces destabilization of p53 and therefore
prevents cells from p53-dependent apoptosis, which could form an important mechanism
of resistance to chemotherapy [75]. This is mediated, at least in part, through increased
cytoplasmic localization of p53 as a result of phosphorylation at serines 315 and 376 by
increased activity of glycogen synthase-3 3. Although molecular mechanisms remain
largely unknown, BiP’s mRNA is also known to interact with p53. This interaction results
in inhibition of BiP protein synthesis and leads to a decreased interaction between BiP and
Bcl-2-interacting killer protein, a pro-apoptotic member of the Bcl-2 family [76]. The down-
stream target of p53, namely, p21, has further been shown to be regulated by PERK [77] and
CHOP [78]. In addition, p21 induction is thought to play an important role in the response
to ER stress, as p21 is a pro-survival effector of ATF4 [79]. The above-mentioned results on
the role of p53 during ER stress focus on the full-length p53 protein without addressing
the expression of its isoforms. These isoforms exist to facilitate the protein’s response to
different stimuli, as they can modulate activity of the full-length protein or affect different
pathways [80]. One of these p53 isoforms is p47, whose expression is specifically induced
by PERK during ER stress [81]. Overall, these different studies suggest a tight link between
p53, ER stress, and DNA repair mechanisms that needs to be further elucidated to truly
understand its role in mediating drug resistance in HCC.

The MAPK signaling pathway has also been reported to contribute to DNA repair in
HCC [63]. MAPK signaling pathways are activated in response to extracellular signals,
such as growth factors, cytokines, and ER stress [4]. The UPR promotes ASK1-MKK4/7-
JNK expression and also induces ERK1/2 activity. Nonetheless, MEKK4-MKK3/4/6-p38
signaling also regulates UPR through CHOP and ATF6 p38-related phosphorylation. IRE1c
has been shown to induce JNK and ERK1/2 and modulate the oligomerisation of TRAF2,
which in turn can trigger the ASK1-MKK4/7-JNK-pathway [82], thereby suggesting an
important role of ER stress in inducing MAPK-dependent DNA repair mechanism, which
could then contribute to drug resistance.

3.5. Insensitivity to Drug-Induced Cell Death

Another important mechanism that contributes to drug resistance is inhibition of
cell death. Expression of prognostic ER stress proteins such as GADD34, elF2o, CHOP,
and ATF4, being regulated by PERK, were shown to be involved in apoptosis, as well
as in chemo-responsiveness [37,83]. Meanwhile regarding ferroptosis, another type of
cell death [84], recent studies have shown there is a cross-talk between ER stress and the
lipidome that mediates chemoresistance when responding to anthracyclines, such as dox-
orubicin and idarubicin [18]. The lipid membrane composition was established to be the
main factor affecting drug fluidity and membrane permeability. In addition, lipid mem-
brane structure also shapes activation of drug transporter-regulated efflux mechanisms



Cells 2022, 11, 632

10 of 19

related to multidrug resistance [85]. Therefore, the study suggests that in the intercon-
nection between ER stress pathways and the lipidome, there is an overall shift in the
balance among various lipid types, which is associated with ER stress [18]. For example,
the imbalance of PUFA-containing lipids in comparison to saturated lipids and cholesterol
contributes to ER stress, which can result in the repression of apoptosis and ferroptosis [18].

Furthermore, ER stress receptor of activated protein kinase (RACK1) was found to
be critical in inducing IRE1« signaling response to sorafenib in HCC cells [86]. Although
IRElx activation was shown to favorize ER stress-induced apoptosis via JNK, RACK1
dysregulation was found to be responsible for IREl«’s high phosphorylation, thereby
promoting XBP1 splicing and preventing sorafenib-induced cell death [23]. Indeed, over-
expressed RACK1 was shown to prevent apoptotic action of sorafenib in HCC cells by
upregulating XBP1, which consequently decreased when RACK1 was depleted [86]. Both
RACKI1 and IRE1 were found to be intercellularly interacting and were co-located in the cy-
toplasm. Silencing of RACKT1 strongly inhibited IRE1 phosphorylation following treatment
with either tunicamycin or sorafenib, which resulted in UPR suppression. According to
the findings of Zhou et al., there is a crosstalk between RACK1 and IRE], suggesting that
they cooperate to regulate IRE1 signaling activity in response to sorafenib-dependent UPR
activation, which in turn controls ER-mediated cell death following treatment [86].

In addition, as previously mentioned, PERK is responsible for regulating Nrf2 [41],
which besides activating ABC transporter efflux pumps [39], has also been reported to
promote anti-apoptotic signals [87]. The role of Nrf2 in blocking cell death was confirmed
as inhibition of Nrf2 restored sensitivity to apoptosis and reversed chemoresistance in
Bel-7402/5-FU cell lines [88]. It was further established that miR-144 is responsible for Nrf2
mRNA degradation by directly targeting the Nrf2 3'untranslated region in chemo-sensitive
HCC cells and the fact that resistant cell lines were characterized by a dramatic loss of
miR-144 [88]. In an effort to further examine the influence of Nrf2 on cell death, another
study suggests that its elicitation might be related to mitochondrial DNA depletion in HCC
cell lines [89]. It has been previously demonstrated that there is an underlying relationship
between mtDNA and ER stress, suggesting that any disturbance in the ER could have an
impact on mtDNA and vice versa [90-92]. Investigating the crosstalk between ER stress and
mtDNA depletion could then provide precious insights to further assess chemoresistance
mechanisms in HCC in relation to cell death [92], especially as mtDNA depletion was also
found to trigger other markers such as survivin, Bax, and Bcl2, which, when imbalanced,
hinder pro-apoptotic signals [89].

Other studies suggest that IRElac and PERK can induce STAT3 and NFkB [93-95],
which are known to transcriptionally overexpress cell death-inhibiting proteins, such as
Bcl2, caspase-8 inhibitor c-FLIP, MCL1, and IAP [96,97]. Another possibility is activation
of transcription factor ATF6, which is also shown to confer chemoresistance in HCC cell
lines by impeding ER stress-induced cell death and promoting cell survival [98]. ATF6 was
observed to form an axis with protein disulfide isomerase P58 [99], thereby restricting cell
death under oncogenic transformation, by suppressing the PERK-CHOP pro-apoptotic
pathway [21]. At the same time, PERK has been shown to contribute to synthesis of elF2«,
which supports cancer cell survival. Therefore, CHOP has been identified as a promoter
of hepatocarcinogenesis [100,101], despite its well-established pro-apoptotic function in
physiological conditions [102].

Moreover, as mentioned earlier, an intrinsic link between ER stress and miRINAs has
been suggested [48]. Addressing this deregulation in depth, research found that in addition
to triggering ABC transporters, over-expression of miR-141 blocked cytotoxic and apoptotic
activity of 5-fluorouracil in several HCC cell lines [49,88]. In parallel, when miR-141
was knocked down, cells regained susceptibility to apoptosis triggered by 5-fluorouracil.
MiR-141 would therefore have the capacity to confer chemoresistance to cancer cells by
disrupting their sensitivity to 5-fluorouracil-induced cell death [49]. This further displays
the interconnection between ER stress, miRINA, and cell death that could contribute to
chemoresistance in HCC.
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4. Role of the Tumor Microenvironment

The tumor microenvironment is composed of cancer and stromal cells, surrounded
by vast amounts of extracellular matrix proteins, and characterized by an abnormal and
dysfunctional vasculature. This tumor microenvironment is not a passive bystander in the
hepatocarcinogenic process but actively fuels and regulates tumor progression, metastasis,
and drug response [6].

Tumor hypoperfusion, hyperpermeability, and leakiness of the abnormal tumoral vas-
culature, along with hypoxia, nutrient deprivation, acidic conditions, and high interstitial
pressure, can contribute to reduced response to chemotherapeutics. In addition, these
are all common triggers of the UPR (Figure 3) [6,103-105]. Hypoxia has been shown to
induce resistance to sorafenib, cisplatin, 5-fluorouracil, gemcitabine, adriamycin, and 6-
thioguanine in several HCC cell lines [106]. Furthermore, hypoxia and nutrient deprivation
are strong independent UPR inducers by upregulating GRP78/BiP expression levels [107].
It has been shown that knocking down GRP78/BiP with short hairpin RNA can improve
response to cisplatin treatment under severely hypoxic conditions [107]. These results
indicate a clear link between ER stress signaling, hypoxia, and drug response, yet more
research is necessary to confirm this in HCC.

e
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Inflammation & activation of
tumor-associated macrophages
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Fibrosis &
stellate cell activation

Hepatocellular carcinoma
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Chemoresistance

Figure 3. Tumor hypoperfusion, along with low oxygen levels, depleted nutrition, low pH (acidosis),
increased liver stiffness, and an overall increased need for protein translation by rapidly proliferating
tumor cells and recruitment of inflammatory cells, as well as activation of oncogenes, all induce the
UPR inside tumor cells and in its microenvironment. This activation of the UPR will amplify the
pro-tumoral inflammatory response and further increase activation of stellate cells, leading to fibrosis
and deposition of ECM, thus inducing a vicious circle that further fuels ER stress pathways and
contributes directly and indirectly to increased chemoresistance in HCC.
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Sustained liver damage and chronic inflammation leads to activation of hepatic stellate
cells, which increases deposition of extracellular matrix proteins, such as collagen and
fibrinogen. The abundance of extracellular matrix proteins increases liver stiffness, thereby
altering bio-mechanical properties and inducing mechanical stress in different hepatic cell
populations [108]. The increased stiffness of a cirrhotic liver also leads to hypoxia, acidosis,
nutrient deprivation, altered bio-mechanical properties, and generation of ROS, which can
all directly induce the UPR [109]. It is therefore not surprising that increased liver stiffness
has been correlated with decreased drug response of HCC cells embedded in a 3D matrix
consisting of collagen and/or fibrinogen [110,111]. However, whether this is a result of an
increased activation of the UPR still needs to be confirmed.

Cancer-associated fibroblasts (CAFs) and activated stellate cells are key players in
tumor—stroma interactions and are major mediators in carcinogenesis, tumor progression,
and chemoresistance [112,113]. Studies have shown that ER stress plays a crucial role in
activation of hepatic stellate cells [114,115] and that blocking the IRE1a—XBP1 pathway
can significantly reduce liver fibrosis and tumor burden in several animal models for
cirrhosis [47] and HCC [22]. Jia et al. sought to provide a deeper investigation regard-
ing the involvement of CAFs in epithelial-mesenchymal transition (EMT) in HCC [116],
a process that is known to contribute to drug resistance in HCC and many other solid tu-
mors [117,118]. Proteomic analyses identified that transglutaminase 2 (TG2) is substantially
overexpressed in HCC cells that have obtained an EMT phenotype. Increased TG2 activity
supported EMT in HCC cells, while TG2 depletion significantly decreased CAF-induced
EMT [116]. Moreover, TG2 activity was improved once HCC cells were triggered by IL-6
during EMT, and suppressing IL-6/STAT3 signaling lowered TG2 activity. Consequently,
H-CAFs promote EMT in HCC cells mediated by IL-6, activating the IL-6/IL6R/STAT3
pathway and thereby inducing TG2 [116]. As ER stress is an important factor in activating
CAFs and stellate cells, it could therefore be proposed that this would then contribute to an
increased drug resistance through CAF-induced EMT.

Another major component of the tumor microenvironment are tumor-associated
macrophages, which play a pivotal role HCC [119,120]. Macrophages are heterogeneous by
nature, as they actively engage in both induction and resolution of inflammation. The ability
of macrophages to be reprogrammed is an active area of research, especially in HCC, where
they have been reported to play a dual role in promoting or inhibiting tumor progression,
depending on their polarization state. Firstly, classically activated macrophages, which
develop a proinflammatory Thl immune response and exert an anti-tumoral activity.
Secondly, alternatively activated macrophages, or tumor-associated macrophages (TAM),
which display an anti-inflammatory Th2 immune response and exert a tumor-promoting
activity. The balance between these anti-tumoral and pro-tumoral macrophages has a
significant impact on determining the response to chemotherapy. For instance, studies
have shown that TAMs modulate resistance to oxaliplatin by inducing autophagy in HCC
cells [121]. In addition, actors of ER stress pathways have been shown to play an important
role in regulating the polarization state of hepatic macrophages [122]. Studies have shown
that activation of ER stress pathways is associated with an increased anti-tumoral and
pro-inflammatory phenotype, mainly through activation of PERK and CHOP [122-124].
By mediating the macrophage’s polarization state and function, the UPR could therefore
influence chemotherapeutic response in HCC. Furthermore, studies have shown that IRE1x
mediates release of inflammatory extracellular vesicles by hepatocytes in mouse models
for non-alcoholic steatohepatitis [125]. It remains to be elucidated as to whether this also
affects the inflammatory response in HCC and contributes to alterations in drug response.

However, it has become increasingly clear that UPR signaling plays an important
role in immunity and inflammation. The three different arms of the UPR pathways have
been involved in activating different inflammatory cell types, including tumor-associated
macrophages, monocytes, dendritic cells, and tumor-associated neutrophils [126]. The latter
also play an important role in orchestrating drug resistance in HCC [127]. Interestingly, a
recent study demonstrated that neutrophils can drive PERK-mediated apoptosis in cancer
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cells through secretion of arginase-1 [128]. The neutrophil’s secreted arginase will lead to
arginine deprivation in cancer cells, thereby inducing ER stress and resulting in apoptosis
of tumor cells. In addition, as different inflammatory cell populations become activated
during liver damage, they are known to generate large amounts of growth factors, which
in itself can contribute to therapeutic resistance. In resistant HCC cells, enhanced autocrine
generation of growth factors, such as interleukin (IL)-1, IL-4, IL-6, and IL-8, was observed
in comparison to tumor cells responsive to treatment [129,130]. The IRE1a—XBP1 pathway
was found to mediate IL-6 expression and subsequently support tumor cell proliferation in
HCC [131]. In human HCC tissues and cells, XBP1 splicing levels and IL-6 concentrations
were elevated and favorably correlated to one another [131]. Furthermore, secretory levels
and expression of IL-6 were lowered after pharmacological inhibition of IRE1«’s splicing
activity, thereby hindering XBP1s direct binding to IL-6 and limiting expression of this
interleukin. The enhancing effect of IRE1a—XBP1 signaling in Hep3B cell proliferation
was alleviated through inhibition of IL-6-STAT3 signaling by tocilizumab. As a result,
by mediating activation of the IL-6-STAT3 signaling pathway, the IRE1a—XBP1 axis was
shown to play a critical role in HCC carcinogenesis [131].

5. Discussion

Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers
worldwide. It is usually diagnosed in an advanced stage and is characterized by a high
intrinsic drug resistance leading to limited chemotherapeutic efficacy [13,16]. There is
therefore a vast need for understanding underlying mechanisms that contribute to drug
resistance and for developing therapeutic strategies that could overcome this process [132].
One important mechanism that contributes to drug resistance is activation of endoplasmic
reticulum (ER) stress pathways, which then leads to induction of the unfolded protein
response (UPR) [10,21,37]. The UPR is a conserved cell survival strategy and stress response,
initiated when a cell’s need for protein synthesis exceeds the ER’s capacity to ensure
accurate protein folding [12,21,92]. In such cases, accumulation of misfolded or unfolded
proteins, known as ER stress, is sensed through three ER transmembrane proteins (IRE1«x,
PERK, ATF6), which activate the UPR with the goal of re-establishing normal ER function
or inducing apoptosis. Actors of the UPR pathways are activated in the majority of
cancers [133], and their expression has been correlated with poor prognosis in HCC [22,23],
as well as decreased response to chemotherapeutics [10]. Tumor cells obtain resistance to
chemotherapeutics mainly through five different mechanisms: reduction of drug uptake,
alteration of the drug targets, induction of drug-detoxifying mechanisms, repair of drug-
induced damages, and insensitivity to drug-induced cell death [16,28,65]. In addition,
the tumor microenvironment has also been shown to play a pivotal role in determining
response to chemotherapeutics. In this review, we highlighted how the three arms of the
UPR are highly connected to the different mechanisms that contribute to chemoresistance
in HCC.
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