Table 1. Comparison of diagnostic performance for each Convolutional Neural Network (CNN) model.
CNN model | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|
ResNet50 | 0.810 ± 0.046 | 0.764 ± 0.088 | 0.889 ± 0.046 | 0.780 ± 0.059 | 0.800 ± 0.045 |
Inception v3 | 0.821 ± 0.029 | 0.778 ± 0.087 | 0.892 ± 0.035 | 0.786 ± 0.054 | 0.778 ± 0.054 |
EfficientNet-b1 | 0.835 ± 0.054 | 0.784 ± 0.074 | 0.896 ± 0.033 | 0.809 ± 0.082 | 0.794 ± 0.067 |
EfficientNet-b2 | 0.853 ± 0.050 | 0.822 ± 0.087 | 0.912 ± 0.034 | 0.829 ± 0.089 | 0.822 ± 0.065 |
EfficientNet-b3 | 0.842 ± 0.040 | 0.787 ± 0.090 | 0.900 ± 0.036 | 0.818 ± 0.088 | 0.797 ± 0.068 |
The values are given as the mean and the standard deviation by 5-fold cross validation.