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Abstract: To explore the inhibitory mechanism of heat-killed Enterococcus faecalis, EF-2001 on hepatic
lipid deposition, a diet-induced obese (DIO) animal model was established by high-fat diet (HFD).
The DIO C57BL/6 mice were divided into four groups: the normal group without HFD (ND, n = 8),
obesity group (HFD, n = 8), experimental group (HFD + EF-2001, 200 mg/kg, n = 8), and positive
control group (HFD + Orlistat, 60 mg/kg, n = 8). After 4 weeks, liver and adipose tissue were fixed
in 10% paraformaldehyde, followed by embedding in paraffin for tissue sectioning. The differences
in body mass, body fat ratio, fatty cell area, and lipid profiling of the liver (TC, LDL, and HDL)
were also determined. Moreover, Western blot was performed to analyze the expression of lipid
accumulation-related proteins, including AMPK, PPARγ, SREBP-1, ACC, and FAS. Compared with
the HFD group, the HFD + EF-2001 group exhibited decreased fat mass, liver index, adipocyte area,
TC, and LDL, and an increased level of HDL. The results of liver hematoxylin and eosin (H&E),
and oil red O staining showed that the mice in each intervention group were improved on hepatic
lipid accumulation, and the mice in the HFD + EF-2001 group were the most similar to those in the
normal group when compared with the HFD group. From the Western blot results, we proved that
EF-2001 activated the AMPK signaling pathway. EF-2001 significantly upregulated the expressions of
p-AMPK and p-ACC and downregulated PPARγ, SREBP-1, and FAS in murine liver. Taken together,
these results suggest that EF-2001 decrease lipid accumulation in the DIO model mice through the
AMPK pathway and ameliorate liver damage by HFD.

Keywords: EF-2001; Enterococcus faecalis; lipid accumulation; obese; liver damage

1. Introduction

With the increasing proportion of high-calorie diets in the dietary composition of
the population, the rate of overweight and obesity is rising [1]. A long-term high-fat diet
may cause the energy intake of the body to exceed its energy consumption, and the excess
energy will be stored as body fat, eventually leading to obesity and lipid metabolism
disorders [2]. Homeostatic regulation of lipid metabolism is fundamental to maintaining
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the basic functions of the body, and disorders of lipid metabolism play a significant role
in the development of diabetes, obesity, fatty liver, cardiovascular disease, and abnormal
cell proliferation [3–5]. As a result, the focus of modern society has shifted to explore
potential mechanism to effectively prevent and improve disorders of lipid metabolism.
Since non-alcoholic fatty liver disease (NAFLD) has been associated with obesity, chronic
oxidative stress, dyslipidemia, and inflammation, NAFLD has been viewed as a hepatic
manifestation of metabolic syndrome [6]. Clinically, there are no drugs acknowledged for
the treatment of NAFLD [7]. However, there are some hepatoprotective, enzyme-lowering,
and lipid-lowering drugs for symptomatic management [8,9]. However, most of these
drugs are associated with adverse side effects. As a result, safer and healthier non-drug
therapies have been proposed, including the use of probiotics [10,11]. Enterococcus faecalis
has been reported to promote intestinal microbiota balance, alleviate metabolic syndrome,
and modulate immunity, among other functions [12]. E. faecalis is also effective in treating
hyperlipidemia, obesity, and fatty liver disease [13].

In recent studies, it has been demonstrated that E. faecalis are not only beneficial
when they are alive but also beneficial when they are dead [14]. HFD-induced obesity
in mice can be ameliorated by heat-treated E. faecalis [15]. However, strain specificity
must be considered. Therefore, in the present study, we focused our on the possibility
of heat-inactivated E. faecalis ameliorates hepatic lipid accumulation, as administered by
EF-2001. A probiotic strain of E. faecalis EF-2001 was isolated from healthy human feces
and characterized. It has been reported that EF-2001 possesses radioprotective, antitumor,
anti-chronic enteritis, and anti-atopic dermatitis properties [15–18]. In this way, EF-2001
can be used without the risk of infection or antibiotic resistance.

EF-2001 is a widely used, safe, and well-tolerated probiotics and may be useful as
an adjuvant therapy for the treatment of hepatic lipid accumulation [19]. To date, the
type of effect that EF-2001 demonstrates on hepatic lipid metabolism and its dominant
mechanism remains unclear. In this study, we examined the effects of EF-2001 on hepatic
lipid accumulation in DIO mice and examined the effects of TG synthesis, catabolism,
and the AMPK signaling pathway to provide a new theoretical basis for the treatment of
disorders of hepatic lipid metabolism.

2. Materials and Methods
2.1. Heat-Killed Enterococcus faecalis (EF-2001)

EF-2001 (heat-killed Enterococcus faecalis, KoreaBerm, Wonju, Korea), a commercially
available probiotic, prepared in lyophilized form, was originally isolated from healthy
human feces. It contains 7.5 trillion colony-forming units of dried EF-2001 per 1 g prior
to being heat-killed. As a heat-inactivated dried powder, these are heat-treated dead cells
added to the fermented milk.

2.2. Experimental Animals, Diet, and Treatments

Four-week-old C57BL/6 male mice (NARA Biotech, Seoul, Korea) were randomly
divided into a normal control group (normal diet (ND), 10% kJ fat content, n = 10), a high-
fat model group (HFD, 60% kJ fat content, n = 30), and maintained obese mouse model
for 8 weeks after 1 week of adaptation to the experimental environment. After 8 weeks,
mice with 20% higher body weight than the control group were selected and randomly
divided into three groups (n = 8): saline-treated HFD-fed mice, EF-2001 (HFD + EF; orally
at a dose of 200 mg/kg/day), and orlistat (HFD + Orl; orally at a dose of 60 mg/kg/day).
Both EF-2001 and Orlistat were dissolved in saline, and the same daily gavage volume
was ensured for each group. All mice were fed normal water, and the HFD, HFD + EF,
and HFD + Orl groups were given high-fat chow. The ND group was given normal chow.
Gavage was continued for 4 weeks. The clinical dosage of EF-2001 is one pack at a time
for adults (1.5 g each), one time a day. After conversion, the clinical dosage for adults
is 25 mg/kg/day (the adult weight is considered 60 kg). The equivalent dose for mice
is 12.3 times that of adults [20]. Therefore, each mouse is best given 307.5 mg/kg/day
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probiotics. With reference to previous animal experiments [16–18], we reduced the dose
to 200 mg/kg/day. In the same way, the dose of orlistat in mice was calculated to be
60 mg/kg/day. Orlistat is among the few types of over-the-counter diet pills available
worldwide, and its long-term application is considered to have no toxic side effects. Ye
et al. identified that compared with placebo, orlistat caused a significant reduction in body
weight in patients with NAFLD. Thus, orlistat has been used as a positive treatment for
strength enhancement [21]. Mice were fasted overnight after 12 weeks and then executed
over anesthesia [22]. Konkuk University’s Institutional Animal Care and Use Committee
approved all experiments, and every effort was made to minimize suffering and the number
of animals used in this study (KU18090).

Blood samples were obtained by cardiac puncture under anesthesia, and serum was
separated by centrifugated at 3000 rpm (848× g) for 20 min and stored at −80 ◦C until
assayed. Adipose tissues (epididymal) were weighed, and livers were collected, frozen in
liquid nitrogen, and stored at −80 ◦C until further analysis. Pieces of epididymal adipose
and liver were fixed in 10% formaldehyde for further histological analyses.

2.3. Body Composition Analysis

Dual-energy X-ray absorptiometry (DXA) was used to measure the body fat. After
4 weeks of treatment, DXA measurements were taken using a total-body scanner (InAlyzer
dual X-ray absorptiometry, Medikors, Gyeonggi, Korea). Several DXA measurements were
taken under anesthesia, with low energy and high energy, to divide the images into gram
units of bone and tissue by separating the samples into fat and lean before analysis.

2.4. Biochemical Analysis

After collecting blood samples from the cardiac puncture, the serum was separated
by centrifugated at 3000 rpm (848× g) for 20 min and stored at −80 ◦C until further
analysis. The serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP),
and aspartate aminotransferase (AST) were tested using an automated analyzer (Abaxis
VETSVAN VS2 Chemistry Analyzer, Union City, CA, USA). The liver total cholesterol (TC),
low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL)
were measured with a rapid blood lipid analyzer (OSANG healthcare Lipid Pro, Anyang,
Korea). ELISA kits (Merck, Darmstadt, Germany) were used to measure serum leptin
and adiponectin.

2.5. Histological Analysis

Histological examination of the liver and epididymal adipose tissue was performed
by dissecting them, buffering them with 10% neutral formalin, and embedding them in
paraffin. H&E staining was applied to formalin-fixed and paraffin-embedded tissue blocks
that were cut into 4-micron-thick sections. Tissue sections were examined under an optical
microscope (Leica DMi1; Leica Microsystems, Solms, Germany) at 200× magnification,
and fat cell size was determined. The frozen liver sections were fixed for 10 min in a
10% formaldehyde solution, followed by rinsing with running water. The samples were
then soaked in an isopropyl alcohol solution for 20–30 s, stained for 15–20 min with Oil-
Red O, and rinsed with distilled water. The specimen was stained with hematoxylin for
40 s, followed by 5 min of soaking in tap water. This work was carried out as previously
described [22]. Gelatin was heated and cooled in a water bath to achieve binding and
stabilization. The slices were viewed under a microscope at a magnification of 200×, and
the size of the fat cells was measured.

2.6. mRNA Expression Analysis

A total RNA extract was obtained from mouse livers using the TRIzol method, and
the concentration and purity of RNA were determined using a nucleic acid protein con-
centration meter (PhileKorea, Korea). The experimental method described previously was
used [23]. The primer sequences for the target genes are shown in Table 1. The relative
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expression of the mRNA was calculated using the default settings: ∆Ct(test) = Ct(target
gene, test) − Ct(GAPDH, test); ∆Ct(calibrator) = Ct(target gene, calibrator) − Ct(GAPDH,
calibrator); ∆∆Ct = ∆Ct(test) − ∆Ct(calibrator); Relative gene expression ratio = 2−∆∆Ct.
GAPDH as the internal reference gene.

Table 1. RT-PCR primers used in reverse transcription.

Target Genes GenBank Accession Primer Sequence

PPAR-γ NM_001308354.1
Forward 5-GAA AGA CAA CGG ACA AAT CAC-3
Reverse 5-GAA ACT GGC ACC CTT GAA-3

HMGCR NM_001360165.1
Forward 5-AGA ATA ATG TGC TAA GTA GTG CTA A-3
Reverse 5-GCC TCT CTG AAC AAA GAC TC-3

SREBP-1C NM_001358315.1
Forward 5-CTT CTG GAG ACA TCG CAA AC-3
Reverse 5-GGT AGA CAA CAG CCG CAT C-3

FAS NM_007988.3
Forward 5-CTT GGG TGC TGA CTA CAA CC-3
Reverse 5-GCC CTC CCG TAC ACT CAC TC-3

HSL NM_010719.5
Forward 5-AAG GAC TCA CCG CTG ACT TCC-3
Reverse 5-GCC TGT CTC GTT GCG TTT GTA-3

ATGL NM_025802.3
Forward 5-GAC CTG ATG ACC ACC CTT TCC-3
Reverse 5-TGC TAC CCG TCT GCT CTT TCA-3

DGAT NM_010046.3
Forward 5-CCT CAG CCT TCT TCC ATG AG-3
Reverse 5-ACT GGG GCA TCG TAG TTG AG-3

GAPDH NM_001289726.1
Forward 5-GCA CAG TCA AGG CCG AGA AT-3
Reverse 5-GCC TTC TCC ATG GTG GTG AA-3

Peroxisome proliferator-activated receptors (PPAR-γ), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR),
sterol regulatory element-binding protein 1 (SREBP-1C), fatty acid synthase (FAS), hormone-sensitive triglyceride
lipase (HSL), adipose triglyceride lipase (ATGL), Diacylglycerolacyl transferase (DGAT), Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH).

2.7. Protein Expression Analysis

The liver tissues were mixed with protein lysate (RIPA-protein phosphatase inhibitor
99:1), and the lysate products were centrifuged at 13,000 rpm for 15 min at 4 ◦C. Protein
concentrations were determined using a bicinchoninic acid protein concentration assay kit
according to the instructions given in the kit, and protein samples were prepared at a mass
concentration of 2 µg/µL. A sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) was used to separate proteins with different molecular masses. Western
blot antibodies were diluted 1:2000 with TBST buffer. Anti-p-AMPK (#2535), anti-PPARγ
(#2435) and anti-ACC (#3676) were purchased from Cell Signaling Technology (Danvers,
MA, USA). Anti-AMPK (sc-25792), anti-SREBP-1c (sc-13551), anti-p-ACC (sc-271965), anti-
FAS (sc-55580), and anti-β-actin (sc-1616) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). In this study, protein bands were visualized through enhanced
chemiluminescence using a chemiluminescent substrate chromogenic agent. This work
was carried out as previously described [24]. Images were acquired using a gel imager, and
bands were quantified using software such as ImageJ 1.8 software (National Institutes of
Health, Bethesda, MD, USA).

2.8. Statistical Analysis

Three or more experiments are summarized in each result. Statistical evaluations are
expressed as mean ± SEM. The data were analyzed by one-way ANOVA with the Tukey’s
test using the GraphPad Prism program (Version 8.4; GraphPad Software, Inc., San Mateo,
CA, USA). p value < 0.05 was considered significant.

3. Results
3.1. Effect of EF-2001 on Growth Performance of DIO Mice

DXA was used to determine the effects of EF-2001 on fat mass. MCLW supplementa-
tion for 4 weeks significantly reduced the body mean area and fat mean area in DIO mice
(Figure 1A). After 8 weeks, the body weight of HFD-fed mice was more than 20% higher



Foods 2022, 11, 575 5 of 15

than with the ND group. In the ND group, body weight increased by 8.28 ± 0.77 g. In the
HFD-fed groups, body weight increased by 17.41 ± 1.67 g. It appears that the 8 weeks of
high-fat diet feeding resulted in a significant increase in body weight compared to that
of the ND group (p < 0.05). This indicates that the obese animal model was successfully
modeled (Figure 1B,C). As shown in Figure 2E, there was no significant difference in energy
intake between the groups during the 4-week experiment (p > 0.05). The results of the
experiment were not affected by the amount of food intake. The ND and HFD groups
continued to gain weight during the 4 weeks of the intervention, with Max values at week 4
of the experiment, 27.20 ± 1.06 g and 39.85 ± 2.99 g. The HFD + Orl group continued to
gain weight during the first 2 weeks of the experiment, with Max values at week 3 of the
experiment and a final weight of 34.41 ± 2.64 g. The HFD + EF group continued to gain
weight during week 1 of the intervention, with Max values at week 1 of the experiment
and a final weight of 34.41 ± 2.64 g. The HFD + EF group continued to grow in the first
week of the intervention and gradually decreased in the following 3 weeks, with a final
weight of 31.83 ± 1.75 g. (Figure 1D,F). On the other hand, the mean fat weight in the ND,
HFD, HFD + EF, and HFD + Orl group was 3.37 ± 1.09 g, 15.17 ± 1.38 g, 8.36 ± 0.92 g,
and 12.60 ± 0.76 g, respectively. Moreover, the EF-2001 intervention significantly reduced
the fat mass due to high fat consumption (p < 0.05) (Figure 1G). Accordingly, the EF-2001
intervention significantly reduced body weight gain and fat mass levels in the HFD group
compared with the ND group (Figure 1).

3.2. Effect of EF-2001 on Liver and Adipose Histopathology

Figure 2A (upper part) demonstrates the effect of EF-2001 on epididymal adipose
tissue. Adipose tissue was observed microscopically after H&E staining. In the HFD group,
the size of the adipocytes was significantly increased and accompanied by inflammatory
cell infiltration compared with the ND group. The size of the adipocytes was significantly
reduced by EF-2001 with orlistat intervention compared to the HFD group (Figure 2C),
and the inflammatory response virtually disappeared. The mean adipose tissue weight
of the epididymal in the ND, HFD, HFD + EF, and HFD + Orl group was 0.31 ± 0.09 g,
2.05 ± 0.14 g, 0.99 ± 0.08 g, and 1.55 ± 0.23 g, respectively (Figure 2D). EF-2001 significantly
reduced adipose tissue weight in comparison to orlistat (p < 0.05). The effects of EF-2001 on
liver pathology are illustrated in Figure 2A (lower part) and B. As a result of staining liver
tissues with H&E and oil red O, the HFD group had an increased number of lipid droplets
and balloon-like structures compared to the ND group (Figure 2A,B,E). In comparison to
the HFD group, EF-2001 and orlistat intervention significantly reduced lipid accumulation
in liver tissue and significantly alleviated hepatic steatosis. Moreover, EF-2001 treatment
significantly decreased hepatic lipid accumulation compared to that of orlistat treatment
(p < 0.05).

3.3. Effect of EF-2001 on Liver and Serum Biochemical Parameters

Figure 3A–C shows the effects of EF-2001 on liver biochemical indices. The TC level
of the HFD group increased to 124.61 ± 8.94 µg/10 mg in comparison to that of the ND
group (100.98 ± 3.41 µg/10 mg) (p < 0.05). After EF-2001 and orlistat intervention, the TC
level decreased to 115.99 µg/10 mg and 122.76 µg/10 mg, respectively. However, there
was no significant difference (p < 0.05) exhibited in the HFD + EF group and orlistat group
compared to the HFD group (Figure 3A). HDL levels were significantly lower (p < 0.05) in
the HFD group (52.31 ± 5.32 µg/10 mg) than that of the ND group (81.24 ± 3.23 µg/10 mg).
EF-2001 significantly (p < 0.05) increased HDL (71.47 µg/10 mg) (Figure 3B). LDL/VLDL
in the HFD group was 72.30 µg/10 mg, in contrast the ND group, which exhibited a
significant decrease of 19.75 µg/10 mg (p < 0.05). Similarly, EF-2001 and orlistat displayed
a significantly low (p < 0.05) LDL/VLDL value, 44.52 µg/10 mg and 42.45 µg/10 mg,
respectively. Moreover, there were no significant difference in the LDL/VLDL values of the
EF-2001 and orlistat interventions (Figure 3C).
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Figure 1. The effect of EF-2001 on growth performance of DIO mice. (A) The radiography of body 
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intake. (F) The trend of body weight change of mice in each group. (G) Fat mass. Dunnett’s multiple 
range tests revealed significant differences in a–d values with different superscripts at p < 0.05. Data 
are expressed as mean ± SEM. 

Figure 1. The effect of EF-2001 on growth performance of DIO mice. (A) The radiography of body fat.
(B) Initial body weight. (C) Eight-week body weight. (D) Final body weight. (E) Total energy intake.
(F) The trend of body weight change of mice in each group. (G) Fat mass. Dunnett’s multiple range
tests revealed significant differences in a–d values with different superscripts at p < 0.05. Data are
expressed as mean ± SEM.
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Figure 2. The effect of EF-2001 on liver and adipose histopathology. (A) Representative microscopic
observation of adipose tissue of epididymis and liver tissue by H&E staining. Arrows mark the
inflammatory cells. (B) Representative microscopic observation of liver tissue by oil red O staining.
(C) Mean adipocyte area (µm2). (D) Epididymal adipose tissue weight (g). (E) Mean Oil Red O
staining in hepatocytes area (µm2). Dunnett’s multiple range tests revealed significant differences in
a–d values with different superscripts at p < 0.05. Data are expressed as mean ± SEM.
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Figure 3. The effect of EF-2001 on liver and blood biochemical parameters. (A) Total cholesterol (TC)
content of liver tissue. (B) High-density lipoproteins (HDL) content of liver tissue. (C) Low-density
lipoproteins and very low-density lipoproteins (LDL/VLDL) content of liver tissue. (D) Serum
alanine aminotransferase (ALT). (E) Serum alkaline phosphatase (ALP). (F) Serum aspartate amino-
transferase (AST). (G) Serum adiponectin. (H) Serum leptin. Dunnett’s multiple range tests revealed
significant differences in a–d values with different superscripts at p < 0.05. Data are expressed as
mean ± SEM.

Figure 3D–H illustrates the effect of EF-2001 on blood biochemical parameters. Com-
pared with the ND group, the levels of ALT, ALP, and AST were significantly increased in
the HFD group, whereas the levels of ALT, ALP, and AST were significantly decreased after
EF-2001 and orlistat interventions (p < 0.05). Specifically, ALT and AST reached the level
of ND group after EF-2001 intervention (Figure 3D–F). In comparison to the ND group,
serum adiponectin and leptin levels were significantly increased in the HFD group. How-
ever, they were significantly decreased after EF-2001 and orlistat interventions (p < 0.05)
(Figure 3G,H).

3.4. Effect of EF-2001 on Hepatic Lipid-Related Gene Expression

Peroxisome proliferator-activated receptors (PPARγ), sterol regulatory element-binding
protein 1 (SREBP-1c), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), fatty acid
synthase (FAS), hormone-sensitive triglyceride lipase (HSL), diacylglycerolacyl trans-
ferase (DGAT), and adipose triglyceride lipase (ATGL)are key substances involved in
lipid metabolism. Based on Figure 4, liver lipid synthesis genes PPARγ, HMGCR, SREBP-
1c, FAS, HSL, and DGAT mRNA were significantly higher in the HFD group compared
with the ND group (p < 0.05), while fat oxidative catabolism genes ATGL mRNA were
decreased (p < 0.05) (Figure 4). In response to the administration of EF-2001 and orlistat,
liver liposynthesis-related genes (PPARγ, HMGCR, SREBP-1c, FAS, HSL, and DGAT) were
significantly reduced in the HFD + EF and HFD + Orl group in comparison to the HFD
group (p < 0.05) (Figure 4). In addition, the expression of ATGL mRNA, which is related
to hepatic lipid oxidative catabolism, was significantly higher in the HFD + EF group
compared to the HFD + Orl group (p < 0.05) (Figure 4). There was no significant difference
in the regulation of lipid synthesis genes between the HFD + EF and HFD + Orl group in
DIO mice. As a result, EF-2001 and orlistat can regulate the expression of genes related to
lipid synthesis and oxidative catabolism in the liver, thus controlling the disorders of lipid
metabolism caused by high-fat diets.
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Figure 4. The effect of EF-2001 on hepatic lipid-related gene expression. mRNA expression in
mouse liver as measured by real-time PCR. The charts showed expression levels with (A) PPARγ,
(B) HMGCR, (C) SREBP-1c, (D) FAS, (E) HSL, (F) ATGL, and (G) DGAT. Dunnett’s multiple range
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3.5. Effect of EF-2001 on the Expression of Hepatic Lipid-Related Proteins

The results are shown in Figure 5. The levels of phosphor-AMP-activated protein ki-
nase (p-AMPK) and phospho-Acetyl-CoA carboxylase (p-ACC) were significantly reduced
(p < 0.05), while the levels of AMP-activated protein kinase (AMPK), PPARγ, SREBP-1c,
phospho-Acetyl-CoA carboxylase (ACC), and FAS were significantly increased (p < 0.05)
in the livers of mice in the HFD group compared with the NC group. In conjunction with
Figures 1–4, this is further evidence that the significant weight gain of the organism is
associated with disturbances in lipid metabolism caused by a high-fat diet. EF-2001 and
orlistat treatment increased the expression levels of p-AMPK and p-ACC in livers of mice
and decreased the expression levels of AMPK, PPARγ, SREBP-1c, ACC, and FAS (p < 0.05)
(Figure 5). These results indicate that EF-2001 and orlistat can interfere with the high-fat
diet-induced phosphorylation of hepatic AMPK and ACC in DIO mice. In addition, these
compounds inhibited the maturation of AMPK, PPARγ, SREBP-1c, ACC, and FAS, and
decreased the disturbance of lipid metabolism in the organism.
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4. Discussion

Using EF-2001 and orlistat in high-fat diet-induced DIO mice, we found that the
intervention alleviated hepatic lipid accumulation and steatosis. EF-2001 significantly
reduced body weight, body weight gain, and fat mass, with greater efficacy than orlistat.
In comparison with orlistat, EF-2001 had a more effective lipid-lowering effect. In addition,
EF-2001 and orlistat significantly improved hepatic cholesterol levels [25]. There is an
excessive accumulation of lipids in steatosis [26]. Moreover, hepatic lipid accumulation
is the result of an imbalance between the acquisition and disposal of lipids. Orlistat
and EF-2001 reduced liver TC levels, but there was no significant difference. There is a
possibility that EF-2001 and orlistat increased HDL levels and decreased LDL/VLDL levels,
resulting in no significant difference in TC. The combination of EF-2001 and orlistat resulted
in significant reductions in serum ALT, ALP, and AST levels. Elevated serum levels of
ALT, ALP, and AST have been reported to indicate liver damage, and ALT and AST are
recognized as important markers for assessing liver injury [27–29]. In this study, EF-2001
was shown to reduce hepatic LDL levels and decrease hepatic lipid deposition in DIO mice,
suggesting that it may be effective in reducing visceral and blood lipid levels in DIO mice.
EF-2001 reduced body weight gain, fat weight, and lipid levels in the same manner as
evident by previously reported studies in relation to E. faecalis [15].

Under normal physiological conditions, FFA is esterified to TG in the endoplasmic
reticulum, resulting in lipid droplets that are stored in adipose tissues [30]. There is always
an imbalance between energy absorption and energy expenditure, resulting in obesity.
Excess energy is stored primarily as TGs [31]. TG can be deposited in non-adipose tissues
when there is an excess of FFA in the body [32]. The liver maintains a relative balance
between TG synthesis and catabolism [33]. To investigate the mechanism of lipid reduction
in the liver, we examined the genes associated with lipid metabolism. DGAT is the primary
rate-limiting enzyme in the TG synthesis process [34]. Studies have demonstrated that
knockdown of DGAT can significantly reduce the accumulation of TG in cells [35]. In
this experiment, EF-2001 significantly reduced the expression of DGAT in the liver of
DIO mice, suggesting that EF-2001 could effectively inhibit lipid synthesis in the liver.
Catabolism of TG plays a key role in maintaining hepatic TG homeostasis [36]. ATGL
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and HSL are the primary enzymes involved in TG catabolism, and they catalyze TG and
DG catabolism, respectively [37]. Research has shown that the knockdown of ATGL in
the liver causes a significant increase in hepatic lipid droplets and fatty liver in mice [38].
Conversely, knocking down the HSL gene resulted in a significant reduction in the TG
levels in mice [39]. This experiment demonstrated that EF-2001 significantly promoted
the expression of ATGL and inhibited the expression of HSL in the liver of DIO mice,
indicating that EF-2001 promoted lipid catabolism. The results of this experiment revealed
that EF-2001 significantly reduced lipid accumulation in the liver of DIO mice.

It is known that the accumulation of TG in hepatocytes may cause systemic disorders
of lipid metabolism [36,40]. In contrast, AMPK is a key regulator of energy metabolism
in mammalian cells and is crucial to maintaining energy homeostasis in cells [41]. There
is evidence that this enzyme can be involved in glucose transport and metabolism, lipid
metabolism, and almost all energy metabolic processes in cell growth, including protein
synthesis and conversion, autophagy, apoptosis, and various cellular processes of endo-
plasmic reticulum stress [42–44]. This is the switch that controls the activation of the
anabolic and catabolic pathways. In the process of lipid catabolism and synthesis, it can
decrease lipid synthesis and increase lipid catabolism by regulating the expression of
key genes [45–47]. AMPK-deficient mice were found to develop hepatic steatosis within
5 weeks of being fed a high-fat diet, whereas the normal group developed hepatic fat only
after 12 weeks of feeding a high-fat diet [48]. As AMPK is activated, it activates fatty acid
β-oxidation and inhibits adipogenesis [49]. ACC is AMPK’s first downstream target, as
it is involved in the synthesis of malonyl coenzyme A [50,51]. It has been shown that
AMPK inhibits ACC activity by phosphorylating it and, as a result, stimulates fatty acid
oxidation and reduces fatty acid synthesis [52–54]. These results indicate that EF-2001
significantly promoted AMPK and ACC phosphorylation in the hepatocytes of DIO mice
and alleviated the disorders of lipid metabolism caused by the high-fat diet by promoting
de novo lipid formation and fatty acid oxidation. Furthermore, EF-2001 inhibited the
expression of SREBP-1c, a lipogenic transcription factor that is abundant in mammalian
livers [55]. Upon overexpression of SREBP-1c, the entry of fatty acids into hepatocytes
triggers a new lipogenic process. SREBP-1c translocates to the nucleus and regulates the
expression of downstream targets, such as FAS and ACC [56–58]. FAS is responsible for the
final step in fatty acid biosynthesis and for liver fat metabolism [59,60]. AMPK regulates
HMG-CoA reductase, which is responsible for cholesterol synthesis [61]. The nuclear
receptor transcription factor family includes PPAR-γ, an important member of the lipid
metabolism pathway [62]. EF-2001 significantly increased the expression of p-AMPK and
p-ACC in the liver of DIO mice, while downregulating the expression of AMPK, PPAR,
HMGCR, SREBP-1c, ACC, and FAS.

As a result, these findings suggest that EF-2001 regulates the lipid metabolism by
mediating ACC phosphorylation through the AMPK pathway. Thus, EF-2001 is able to
improve lipid metabolism disorder in DIO mice by inhibiting TG synthesis, promoting TG
catabolism, and activating the AMPK signaling pathway. Figure 6 illustrates the mechanism
by which EF-2001 could exert its hypolipidemic effects.
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