1 |
Kuwahara 2019 |
retrospective |
benign IPMN vs malignant IPMN |
50 |
3970 |
no separate testing data |
27 benign IPMN/23 malignant IPMN |
B-mode images |
deep learning-based CAD |
CNN |
2 |
Das 2008 |
retrospective |
normal pancreas vs. chronic pancreatitis (CP) vs PDAC |
56 |
319 |
50% of all data |
2 normal pancreas/12 CP/22 PDAC |
Texture features from B-mode image |
conventional CAD |
ANN |
3 |
Marya 2020 |
retrospective |
autoimmune pancreatitis vs. normal pancreas vs. CP vs. PDAC |
583 |
1,174,461 |
123 patients |
146 AIP/292 PDAC/72 CP/73NP |
B-mode images |
conventional CAD |
CNN |
4 |
Norton 2001 |
retrospective |
CP vs PDAC |
35 |
N/A |
N/A |
14 CP/21 PDAC |
Grey-scale pixels from B-mode image |
conventional CAD |
Basic Neuronal Network/Machine Learning |
5 |
Ozkan 2015 |
retrospective |
PDAC vs. normal pancreas |
172 |
332 |
72 (42 PDAC, 30 normal pancreas) |
202 PDAC/130 normal pancreas (images) |
Digital features from B-mode image |
conventional CAD |
ANN |
6 |
Saftoiu 2015 |
Prospective |
CP vs. PDAC |
167 |
|
15% of pts |
112 PDAC/55 CP |
TIC parameters from contrast-enhanced EUS |
conventional CAD |
ANN |
7 |
Tonozuka 2021 |
Prospective |
normal pancreas vs. CP vs. PDAC |
139 |
1390 |
47 pts, 470 images (25 PDAC, 12 CP, 10 NP) |
76 PDAC/34 CP/29 normal pancreas |
B-mode images |
deep learning-based CAD |
CNN |
8 |
Udristoiu 2021 |
Retrospective |
CP vs. PDAC vs. NET |
65 |
3360 |
672 images from 65 pts |
30 PDAC 20 CP/15 NET |
Multi parametric (B-mode, contrast, elastography) |
deep learning-based CAD |
CNN |
9 |
Zhang 2010 |
Retrospective |
CP vs. PDAC vs. normal pancreas |
216 |
|
50% of all data |
153 PDAC/20 normal pancreas/43 CP |
Texture features from B-mode image |
conventional CAD |
SVM |
10 |
Zhu 2013 |
Retrospective |
CP vs. PDAC |
388 |
|
50% of all data (194; 131 PDAC, 63 CP) |
262 PDAC/126 CP |
Texture features from B-mode image |
conventional CAD |
SVM |