Skip to main content
. 2022 Feb 19;12(2):534. doi: 10.3390/diagnostics12020534

Table 2.

Detection and segmentation results of scar by using Mask region-based convolutional neural network (R-CNN) with feature proposal network (FPN) and various backbones (ResNet50, ResNet10, ResNeSt50, and ResNeSt101): mean average precision (mAP) and mean average recall (mAR).

Backbone mAPbbox mARbbox mAPmask mARmask Time (s)
ResNet 50 0.598 0.666 0.619 0.672 0.05
ResNet 101 0.620 0.680 0.631 0.677 0.07
ResNeSt 50 0.564 0.641 0.613 0.659 0.07
ResNest 101 0.597 0.672 0.587 0.645 0.09