Table 2.
Layer | Layer Type | Stride | Kernel Size | Input Size | N°Parameters | ||
---|---|---|---|---|---|---|---|
MobileNet Base Model | 1 | Conv. 2D | s2 | 496 | |||
2 | Conv. dw | s1 | 208 | ||||
3 | Conv. pw | s1 | 640 | ||||
4 | Conv. dw | s2 | 416 | ||||
5 | Conv. pw | s1 | 2304 | ||||
6 | Conv. dw | s1 | 832 | ||||
7 | Conv. pw | s1 | 4352 | ||||
8 | Conv. dw | s2 | 832 | ||||
9 | Conv. pw | s1 | 8704 | ||||
10 | Conv. dw | s1 | 1664 | ||||
11 | Conv. pw | s1 | 16,896 | ||||
12 | Conv. dw | s2 | 1664 | ||||
13 | Conv. pw | s1 | 33,792 | ||||
14–23 | Conv. dw | s1 | |||||
Conv. pw | s1 | ||||||
24 | Conv. dw | s2 | 3328 | ||||
25 | Conv. pw | s1 | 133,120 | ||||
26 | Conv. dw | s1 | 6656 | ||||
27 | Conv. pw | s1 | 264,192 | ||||
Dense | – | Global Avg. Pool | s1 | Pool | - | ||
28 | FC | – | – | 512 | 262,656 | ||
– | Softmax | – | Output | 2 | 1026 | ||
Total Parameters: 1,093,218 | |||||||
Trainable Parameters: 263,682 |