Skip to main content
. 2022 Jan 20;12(2):248. doi: 10.3390/diagnostics12020248

Table 2.

Architecture of the MobileNet with transfer learning.

Layer Layer Type Stride Kernel Size Input Size N°Parameters
MobileNet Base Model 1 Conv. 2D s2 3×3×3×16 128×128×3 496
2 Conv. dw s1 3×3×16 64×64×16 208
3 Conv. pw s1 1×1×16×32 64×64×16 640
4 Conv. dw s2 3×3×32 64×64×32 416
5 Conv. pw s1 1×1×32×64 32×32×32 2304
6 Conv. dw s1 3×3×64 32×32×64 832
7 Conv. pw s1 1×1×64×64 32×32×64 4352
8 Conv. dw s2 3×3×64 32×32×64 832
9 Conv. pw s1 1×1×64×128 16×16×64 8704
10 Conv. dw s1 3×3×128 16×16×128 1664
11 Conv. pw s1 1×1×128×128 16×16×128 16,896
12 Conv. dw s2 3×3×128 16×16×128 1664
13 Conv. pw s1 1×1×128×256 8×8×128 33,792
14–23 5× Conv. dw s1 3×3×256 8×8×256 5×3328
Conv. pw s1 1×1×256×256 8×8×256 5×66,560
24 Conv. dw s2 3×3×256 8×8×256 3328
25 Conv. pw s1 1×1×256×512 4×4×256 133,120
26 Conv. dw s1 3×3×512 4×4×512 6656
27 Conv. pw s1 1×1×512×512 4×4×512 264,192
Dense Global Avg. Pool s1 Pool 4×4 4×4×512 -
28 FC 512 262,656
Softmax Output 2 1026
Total Parameters: 1,093,218
Trainable Parameters: 263,682