Skip to main content
. 2022 Jan 29;12(2):344. doi: 10.3390/diagnostics12020344

Table 2.

Methods used for segmentation of skin lesions.

Approach Study Method Preprocessing Dataset Images
Supervised [2] Deep regional CNN and FCM clustering Yes ISIC 2016 1279
[12] Deep convolutional network Yes PH2 200
ISBI 2017 2750
[26] Saliency based Yes ISIC 2017 2150
[30] FCN based Yes ISIC 2016 1279
PH2 200
[31] Recurrent, residual convolutional neural network Yes ISIC 2017 2000
[32] CNN based ensemble Yes ISIC 2018 2594
[33] Hybrid learning, particle swarm optimization Yes ISIC 2017 550
[34] Semantic segmentation based on u-Net Yes ISIC 2018 2594
[35] R2AU-Net No ISIC 2018 2594
[59] Deep convolutional encoder-decoder No PH2 200
Unsupervised [8] Statistical region merging Yes Private 90
[9] Thresholding Yes ISIC 2017 600
[10] Stochastic region merging No PH2 200
ISIC 2018 validation 100
ISIC 2018 test 1000
[17] Thresholding Yes Private dataset 85
[19] Saliency and thresholding Yes PH2 18
ISBI 2016 13
[20] K-means clustering Yes Dermatology information system andDermQuest 50
[21] K-means clustering Yes Atlas dermoscopy dataset 80
[22] Fuzzy C-Means clustering Yes UMCG 170
[23] Data clustering Yes PH2 200
ISIC (2016–2019) 5400
[24] Saliency No EDRA 566
PH2 200
ISBI 2016 900
[25] Saliency Yes PH2 200
ISBI 2016 900
[27] Saliency Yes PH2 50
ISBI 2016 70
[28] Saliency and thresholding Yes PH2 200
ISBI 2016 900
[29] Multi scale superpixel segmentation No PH2 200
ISBI 2016 900
[37] Thresholding and edge detection Yes PH2 200
[38] Saliency Yes PH2 200
[39] Region merging Yes PH2 200
ISIC 2017 900
[40] Thresholding Yes PH2 Mednode DermNet 992
[50] Thresholding and GraphCut Yes DSSA 294
[52] Partially homomorphic POB number system Yes PH2 200
ISBI 2016 1279
ISBI 2017 2600
[60] Superpixel clustering and thresholding No PH2 200
Ours Saliency-based color histogram clustering with thresholding No PH2 200
ISIC 2018 2594
HAM10000 10,015