Skip to main content
. 2022 Feb 14;10(2):371. doi: 10.3390/healthcare10020371

Table 1.

Summary of related work.

Sr. No. Author Year Machine Learning Algorithms and Accuracy (%)
1. A. J. Aljaaf et al. [1] 2018 Naïve Bayes: 83.4%, J48: 86.23%
2. N. Borisagar, D. Barad, and P. Raval [5] 2017 ANN: 99.5
3. B. Boukenze, A. Haqiq, and H. Mousannif [6] 2018 SVM: 63.5%, LR: 64.0, C4.5: 63%, KNN: 55.15%
4. H. Polat, H. D. Mehr and A. Cetin [7] 2019 SVM: 97.5%
5. P. Panwong and N. Iam-On [8] 2016 KNN: 86.32%, naïve Bayes: 60.46%, ANN: 83.24%, RF: 86.60%, J48: 79.52%
6. Makino et al. [11] 2019 KNN, Naïve Bayes + LDA + random subspace + Tree-based decision: 94%
7. Ren et al. [12] 2019 SVM + ReliefF: 92.7%
8. Ma F. et al. [13] 2019 Fisher discriminatory analysis and SVM: 96.7%
9. Almansour and colleagues [14] 2020 KNN and SVM: 99%
10. J. Qin and colleagues [15] 2019 SVM, KNN, and naïve Bayes decision tree: 99.7%
11. Z. Segal and colleagues [16] 2019 SVM, KNN, and decision tree: 99.1%
12. Khamparia et al. [17] 2020 Logistic regression, KNN, SVM, random forest, naive Bayes, and ANN: 99.7%
13. Ebiaredoh-Mienye Sarah A. et al. [18] 2017 SVM 98.5%
14. Zhiyong Pang et al. [19] 2020 Softmax regression 98%
15. Tabassum, Mamatha et al. [23] 2017 DT: 85%, RF: 85%
16. K. R. A. Padmanaban and G. Parthiban [24] 2016 DT: 91%, naïve Bayes: 86%
17. Sahil Sharma, Vinod Sharma, and Atul Sharma [25] 2018 ANN: 80.4%, RF: 78.6%
18. Pratibha Devishri [26] 2019 ANN: 86.40%, SVM: 77.12%
19. Sujata Drall, G. Singh Drall, S. Singh, Bharat Naib [27] 2018 Naïve Bayes: 94.8%, KNN: 93.75%, SVM: 96.55%

LR: Logistic Regression; KNN: k-Nearest Neighbors; SVM: Support Vector Machines; CART: Classification and Regression Trees; ANN: Artificial Neural Networks; LDA: Linear Discriminant Analysis; DT: Decision Tree; RF: Random Forest.