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OBJECTIVES: Lipedema, a poorly understood chronic disease of adipose hyper-deposition, is often mistaken for obesity and causes
significant impairment to mobility and quality-of-life. To identify molecular mechanisms underpinning lipedema, we employed
comprehensive omics-based comparative analyses of whole tissue, adipocyte precursors (adipose-derived stem cells (ADSCs)), and
adipocytes from patients with or without lipedema.

METHODS: We compared whole-tissues, ADSCs, and adipocytes from body mass index-matched lipedema (n = 14) and unaffected
(n = 10) patients using comprehensive global lipidomic and metabolomic analyses, transcriptional profiling, and functional assays.
RESULTS: Transcriptional profiling revealed >4400 significant differences in lipedema tissue, with altered levels of mRNAs involved
in critical signaling and cell function-regulating pathways (e.g., lipid metabolism and cell-cycle/proliferation). Functional assays
showed accelerated ADSC proliferation and differentiation in lipedema. Profiling lipedema adipocytes revealed >900 changes in
lipid composition and >600 differentially altered metabolites. Transcriptional profiling of lipedema ADSCs and non-lipedema ADSCs
revealed significant differential expression of >3400 genes including some involved in extracellular matrix and cell-cycle/
proliferation signaling pathways. One upregulated gene in lipedema ADSCs, Bub1, encodes a cell-cycle regulator, central to the
kinetochore complex, which regulates several histone proteins involved in cell proliferation. Downstream signaling analysis of
lipedema ADSCs demonstrated enhanced activation of histone H2A, a key cell proliferation driver and Bub1 target. Critically,
hyperproliferation exhibited by lipedema ADSCs was inhibited by the small molecule Bub1 inhibitor 20H-BNPP1 and by CRISPR/

Cas9-mediated Bubl gene depletion.

CONCLUSION: We found significant differences in gene expression, and lipid and metabolite profiles, in tissue, ADSCs, and
adipocytes from lipedema patients compared to non-affected controls. Functional assays demonstrated that dysregulated

Bub1 signaling drives increased proliferation of lipedema ADSCs, suggesting a potential mechanism for enhanced adipogenesis in
lipedema. Importantly, our characterization of signaling networks driving lipedema identifies potential molecular targets, including

Bub1, for novel lipedema therapeutics.
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INTRODUCTION

Lipedema is a poorly understood, chronic disease characterized
by bilaterally symmetrical deposition of abnormal adipose tissue,
predominantly in the legs and variably in the arms [1, 2]. The
classification of lipedema is based on the distribution of adipose
tissue and on the severity of the disease (Stages |, Il, lll, and IV) [3]
(Supplementary Fig. 1a). Most metabolic disorders relating to
adipose tissue are associated with white adipose tissue
(WAT), and dysfunction of its endocrine activities [4]. Excessive
accumulation of WAT in abdominal organs (visceral adipose
tissue) and subcutaneous regions disrupts metabolic homeostasis
and likely drives metabolic disorders [4, 5. In lipedema, patients

accumulate excessive amounts of subcutaneous WAT, predomi-
nately in the legs [2].

Lipedema mostly affects women, typically starting during stages
of hormonal change such as puberty, pregnancy, in vitro
fertilization, or menopause. Symptoms include extreme leg
sensitivity, hyperadiposity, swelling, pain, bruising, and joint
complications (hyper-flexibility and later arthritis), resulting in
impaired mobility and body image. Lipedema is often confused
with obesity, lymphedema, lipodystrophies, and other fat dis-
orders [1] and currently is diagnosed clinically. Palpation and
intraoperative examination of lipedema fat reveals a nodular
structure and consistency, in contrast to normal fat that is smooth
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and soft [6-8]. There is no cure for lipedema, and treatments are
limited to invasive liposuction or excisional surgery to control
symptoms and enhance mobility and esthetics. The etiology of
lipedema is unknown, although clinical observations suggest
genetic inheritance, hormonal influences, dilated blood vessels
and lymphatics, and inflammation [3]. Despite a relatively high
incidence of lipedema [6-8], molecular or genetic data to explain
the pathogenesis of the disease are lacking [9-12]. To date,
elucidation of the molecular mechanisms underlying lipedema has
been hampered by the lack of lipedema animal models.

In adipose disorders, fat typically expands by increasing either
the size or number of adipocytes [13]. While adipocytes are unable
to divide, they can increase in size to accommodate greater
amounts of lipid volume [13]. Adipocytes form via de novo
differentiation from adipose-derived stem cells (ADSCs) upon
adipogenic induction [13]. Increased ADSC numbers, therefore,
can lead to increased differentiation into adipocytes and
enhanced adipose deposition in pathologic fat disorders. It has
been proposed that adipocytes increase in both size and number
in lipedema; however, the molecular mechanisms by which ADSCs
undergo proliferation or differentiation to adipocytes, resulting in
excessive accumulation of lipedema adipose tissue, are poorly
understood [13-16].

Here, we report on comprehensive comparative multi-omics
analyses of adipose tissue, ADSCs, and adipocytes from lipedema
and non-lipedema patients, which emphasize the profoundly
distinct nature of lipedema and non-lipedema adipose tissue.
Importantly, our omics analyses led us to identify signaling events
central to enhanced ADSC proliferation in lipedema, from which
we validate a gene candidate and derive a proof-of-principle
therapeutic intervention. Our findings substantially improve
understanding of the molecular mechanisms underpinning
lipedema and will be useful for identifying disease biomarkers
and targets for future therapeutics with which to combat this
devastating disease.

RESULTS

Lipedema adipose tissues show distinct gene signatures and
ADSC densities to normal fat

Recently, it was demonstrated that lipedema adipose tissue has
larger adipocytes, increased macrophage density and increased
dermal blood and lymphatic vessels compared to normal fat [17].
Whether the large amounts of adipose tissue accumulated in
lipedema (Supplementary Fig. 1a) differ from non-lipedema fat at
the cellular and molecular levels, however, remains to be
elucidated. To address this, adipose tissues surgically excised by
the same surgeon (RS) from equivalent anatomical sites in
lipedema patients and gender-, health-, age-, and BMI-matched
(Supplementary Table 1) non-lipedema patients undergoing
elective debulking surgery were compared. Macroscopic examina-
tion showed lipedema fat to be harder and more fibrotic and
nodular than smooth, softer normal fat (Fig. 1a).

To understand the molecular mechanisms underlying these
macroscopic changes, we undertook transcriptome profiling to
characterize and quantify the transcriptomes of lipedema and
non-lipedema adipose tissue. Principle component analysis (PCA)
indicated separation of lipedema from non-lipedema samples and
showed clear differences between their transcriptomic profiles
(Supplementary Fig. 1b), and differential gene expression analysis
showed 4391 genes to be significantly differentially expressed
(Fig. 1b and Supplementary Table 2). Hierarchical clustering of
the top genes showed distinct subsets of lipedema and non-
lipedema genes (Fig. 1¢), with gene ontology (GO) annotation and
pathway enrichment analysis highlighting cell proliferation, lipid
metabolism, cell adhesion, inflammation, and immunity pathways
(Supplementary Fig. 1c—e). Highly differential gene expression that
biologically favored enhanced proliferation in lipedema involved
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the cell-cycle regulation- and proliferation-related genes ZICI,
UGT1A7, GREM1, TRIM67, Bub1, and HOTAIR. Overall, global gene
expression data and pathway enrichment analyses showed
significant alterations in the molecular signature of lipedema
tissue, with a gene expression profile favoring adipose hyperpro-
liferation, fibrosis, and inflammation, which are consistent with key
clinical features of lipedema.

To evaluate potential cells within lipedema fat that may
contribute to the hypertrophy detected by our tissue transcrip-
tomics, we focused on ADSCs—critical effector cells in fat. ADSCs
play diverse roles in immune-modulation, angiogenesis, apoptosis,
and differentiation [18] and are precursors of adipocytes, the
major cell constituent of adipose tissue. Of described ADSC
markers [19], CD29 and CD34 cell surface markers were chosen to
define ADSCs [20, 21]. To visualize the ADSCs within the
perivascular niche, we performed multiplex immunostaining with
the adipocyte marker perilipin, the endothelial cell marker CD31
and CD34 and CD29. We identified perilipin™ adipocytes in tissue
colocalizing with CD31" endothelial cells and CD29"/CD34°
ADSCs (Fig. 1d, e). Next, we quantified the numbers of CD29"/
CD34" cells in tissue specimens and found that lipedema adipose
tissue showed greater numbers of CD29"/CD34" ADSCs com-
pared to control tissue (Fig. 1f, g), suggesting a greater propensity
to generate fat when stimulated. Together, these results indicate
that the adipose tissue microenvironment in lipedema differs
significantly from that in non-lipedema patients, both in terms of
its abundance of ADSCs and gene expression profiles.

ADSCs and adipocytes in lipedema tissue are functionally
distinct from those in obese fat

Having demonstrated key differences in lipedema tissues, includ-
ing higher numbers of CD29"/CD34% ADSCs, we next focused on
the role of these ADSCs, as stem cells play key roles in many
diseases, and ADSCs are precursors to adipocytes that may
underpin the pathogenesis of lipedema. We employed a method
of ADSC enrichment from adipose tissues, enabling us to study
these cells in cell-based assays (Fig. 2a). Single-cell suspensions
were prepared from lipedema and control tissues and the ADSC-
enriched stromal vascular fraction assessed by flow cytometry. We
validated that ADSCs from both patient groups displayed
characteristic spindle morphology and expression of ADSC
markers [22] (Supplementary Fig. 2a—c).

To assess the adipogenic properties of the ADSC populations,
we performed differentiation studies of ADSCs to adipocytes.
When stimulated to differentiate to adipocytes in vitro, ADSCs
functionally resemble adipocytes in several key aspects, such as
lipid accumulation [20, 21, 23], allowing differentiated ADSCs to be
used as a surrogate in vitro adipogenesis model for physiological
and functional investigations. Adipocyte differentiation of our
enriched ADSCs was verified by staining for lipid droplets
(consisting mainly of neutral lipids, triglyceride, and cholesterol
esters [24]). BODIPY-lipid staining revealed that the number of fat
droplets, percentage of fat-positive cells, and number of fat
droplets/cell were significantly increased in lipedema adipocytes
compared to controls (Fig. 2b-f). These findings suggest that
lipedema ADSC populations differ from non-lipedema ADSCs in
terms of growth and differentiation capacity, which may play a
critical role in the pathogenesis of lipedema.

Global lipidomic analysis showed altered lipid composition in
lipedema adipocytes

After showing that the lipid storage architecture within adipocytes
differed in differentiated lipodema adipocytes, we next wanted to
assess their lipid composition. Adipocyte lipid composition has
been shown to contribute to several clinical disorders including
obesity and cancer [25-27]. Therefore, to characterize the lipid
profiles of adipocytes in lipedema, we used a non-targeted
lipidomics approach, focusing on the profile of low molecular
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Fig. 1 Transcriptional profiling of adipose tissue from lipedema (LED) and non-lipedema (non-LED) patients. a Lipedema and non-
lipedema adipose tissue after surgery. b Volcano plot of significantly differentially expressed genes (adj. p < 0.05). ¢ Heatmap of hierarchical
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indicates upregulation and blue indicates downregulation (lipedema n = 8; non-lipedema n =4). d CD29, CD34, CD31, and perilipin staining
of adipocytes from lipedema tissue. e Perilipin-stained adipocyte (purple) from lipedema adipose tissue with two small blood vessels
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(n =3, 6 random fields were quantified).
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weight (m/z 300-3000) ionizable lipid molecules, and multivariate
statistics to compare the lipid molecules in lipedema adipocytes
against controls. Liquid chromatography mass spectrometry
(LCMS) data acquisition identified 928 putative lipid species based
on accurate mass [26, 27]. PCA analysis revealed distinct clusters
for each of the adipocyte groups, suggesting a unique lipedema
adipocyte lipidomic signature (Fig. 3a and Supplementary Fig. 3a).
Next, the variable importance in projection (VIP) scores from a
PLS-DA analysis were used to rank the most significant lipid
differences. The leading significantly increased lipids in lipedema
included glycerophospholipids (GPLs) LPE(24:1), PC(28:2), PC(26:0),
PE(42:2), PE(42:1), LysoPC(24:1), and PC(42:3) (Supplementary Fig.
3b). To further characterize the lipid profiles of lipedema
adipocytes, hierarchical clustering analysis was performed, which
identified the altered lipids in lipedema (Fig. 3b). This analysis
showed separation of the lipidomic signatures of lipedema from
non-lipedema profiles, and after global characterization, we
further filtered the 928 original lipid species detected to
112 significantly differing species between the groups. The lipid
species of greatest differences between the groups included
sphingolipids and GPLs and to a lesser extent, gangliosides, fatty
acyls, and glycerolipids (Supplementary Fig. 3c and Supplemen-
tary Table 3). Utilizing a volcano plot to elucidate the lipid
metabolites that are present at different levels in lipedema versus
non-lipedema adipocytes showed a global effect (Fig. 3c). Lipids
across all major lipid classes seem to be affected in lipedema
adipocytes as can be seen from a heatmap of lipid classes
(Supplementary Fig. 3d). These experiments demonstrated that,
globally, lipids were significantly altered in adipocytes differen-
tiated from the ADSCs of lipedema patients compared to non-
lipedema patients.

Global metabolic profiles are significantly altered in patients
with lipedema

Previous studies showed that patients with adipose disorders but
relatively normal metabolic status have lower mortality rates than
patients with abnormal metabolic status [28]; however, the reason
for this is unknown. Therefore, having demonstrated abnormal-
ities in the lipidomic profile of lipedema adipocytes, we undertook
a metabolomics analysis to profile the small endogenous
molecules or metabolites in lipedema. A metabolic comparison
of adipocytes was undertaken, and PCA showed separation
between lipedema and non-lipedema groups (four biological
replicates) (Supplementary Fig. 4a). Of the 640 distinct metabolites
putatively identified in lipedema adipocytes, the most highly
represented metabolite classes related to amino acid and
carbohydrate metabolism (Supplementary Fig. 4b-d). VIP scores
from a PLS-DA analysis were used to rank the most significant
metabolite differences (Supplementary Fig. 4e). Pathway analysis
suggested that perturbations in lipedema included pathways
relating to amino acid metabolism (lysine biosynthesis and
glutamate metabolism), peptides, and GLPs (Supplementary Table
4). It has been shown previously that metabolome imbalances
result in adipocyte hypertrophy and/or hyperplasia that lead to fat
disorders [29]. Taken together, our results indicate that the
metabolites most deranged in lipedema may therefore critically
contribute to disease pathogenesis.

ADSCs from lipedema adipose tissue display an enhanced
proliferative state compared to those from BMI-matched
patients

Having shown a gene expression profile in lipedema tissue that
favors hyperproliferation, we evaluated the proliferative potential
of lipedema ADSCs using proliferation assays to monitor their
growth rates. Time-lapse microscopy showed that ADSCs from
lipedema patients proliferated faster than control ADSCs (Fig. 4a).
It is well documented that an accumulation of cells in S phase
indicates cellular hyperproliferation and activation of the intra S

SPRINGER NATURE

phase checkpoint [30, 31]. In order to study cell division and
elucidate the mechanisms by which lipedema ADSCs become
hyperproliferative, cell-cycle analysis was performed. After syn-
chronizing the ADSC groups by growth factor starvation to drive
cells into the same phase (G0), complete medium was added to
stimulate the cells to initiate proliferation. Results showed that
72h after the addition of complete growth media, a higher
percentage of lipedema ADSCs was in S phase (26.7%) compared
to non-lipedema ADSCs (13.6%) (Fig. 4b, c). Finally, a colony
formation unit (CFU) assay demonstrated an enhanced colony
formation capacity of the hyperproliferative lipedema ADSCs
(Fig. 4d, e). Together, these findings underscored the enhanced
self-renewal and proliferative potential of lipedema ADSCs that
may combine to drive adipose proliferation in lipedema.

Altered cell-cycle pathways drive adipogenesis and
proliferation in lipedema ADSCs

We demonstrated transcriptomic differences in whole lipedema
tissue and a hyperproliferative profile and functional behavior of
lipedema ADSCs. To understand potential mechanism, we next
explored the transcriptome of lipedema ADSCs themselves. RNA-
seq followed by MDS and PCA analyses revealed clear separation,
indicating different gene signatures, between lipedema and
control ADSC transcriptomes (Supplementary Fig. 5a). In keeping
with whole tissue profiles, differential expression analysis showed
3429 genes to be significantly differentially expressed between
lipedema and control ADSCs (Fig. 5a, b and Supplementary Table
5). These data were further analyzed using the signaling pathway
and GO terms cell-cycle, cell proliferation, cell division, and mitotic
cell-cycle processes (Supplementary Fig. 5b). Cell-cycle mitotic
pathways were among those most significantly differentially
expressed (>50 genes) including cell-cycle genes that regulate
and maintain the mitotic spindle checkpoint (Supplementary Fig.
5¢, d). Significantly expressed genes were selected from the RNA-
seq data set for validation by qRT-PCR. Among these genes, eight
differentially expressed genes (Bub1, Bub1B, CDC20, CENPF, ASPM,
BIRC5, KIF2C, and KIF14) were validated (Fig. 5c). These findings
suggested that cell-cycle genes involved in regulating cell growth
and proliferation are dysregulated in lipedema ADSCs and may
contribute to the increased adipocyte number, and maldistribu-
tion and accumulation of dystrophic fat in lipedema.

Bub1 hyper-activation drives enhanced proliferation of ADSCs
from lipedema patients

Of our validated candidates, Bub1 was selected for further study
because: (1) Bub1 mRNA was significantly upregulated in both
lipedema whole tissue and ADSCs; (2) Bub1 overexpression is
associated with hyperproliferation and dysregulation of key
processes in several cancers [32-37]; and (3) Bub1 is a mitotic
checkpoint protein identified as a potential therapeutic target in
cancer stem cells [32, 36, 38-43]. From a mechanistic perspective,
Bub1 plays a role in transcriptional activation during G1/S
transition by phosphorylating histone H2A [44], and knockdown
of Bubl by siRNA can arrest cells in the G1/S phase [45].
Conversely, overexpression of Bub1 results in increased cell
proliferation and chromosomal instability via hyper-activation of
histone H2A [44].

Our finding that Bubl mRNA is overexpressed in lipedema
ADSCs suggested to us that Bubl may play a similar role in
lipedema as it does in cancer (i.e, driving excessive cell
proliferation), and could therefore be a potential therapeutic
target. Consequently, we sought to analyze Bub1 transcript levels
in ADSCs from lipedema and non-lipedema patients by qRT-PCR,
which demonstrated that Bub1 mRNA was significantly upregu-
lated in lipedema ADSC populations, compared to controls
(Fig. 5d). Bub1 protein was also significantly upregulated in
lipedema ADSCs as assessed by Western blotting (Fig. 5e, f).
Having established upregulation of Bubl gene expression by
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numerous methods, we analyzed phosphorylation of histone H2A,
a downstream signaling target of Bub1 integral to Bub1-driven cell
proliferation. Western blotting revealed a greater level of
phosphorylated histone H2A in ADSCs from lipedema patients
compared to controls (Fig. 5g), suggesting that ADSCs are
“primed” to proliferate in lipedema.

To ascertain the effects of restricting Bub1 in lipedema ADSCs,
we employed a CRISPR/Cas9-mediated lentiviral system to knock-
down Bub1 and a small molecule Bub1 inhibitor. Using qRT-PCR
analysis, we observed an approximately 80% reduction of Bub1

SPRINGER NATURE

mMRNA levels in Bubl-depleted ADSCs compared to negative
controls (Fig. 6a). Furthermore, Western blot confirmed decreased
Bub1 protein in Bub1-knockdown ADSCs (Fig. 6b). As expected,
knockdown of Bub1 gene decreased proliferation of both lipedema
and non-lipedema ADSCs; however, the reduction in proliferation
was significantly more pronounced in lipedema ADSCs (Fig. 6c).
To explore a pharmacological approach for inhibiting Bub1 in
lipedema ADSCs, we next employed the small molecule 20H-
BNPP1, which specifically inhibits the Serine/Threonine kinase
activity of Bub1 [46]. We found that 20H-BNPP1 significantly and
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profoundly restricted proliferation of lipedema ADSCs by approxi-
mately 77%, after 3 days of treatment, whereas inhibition of non-
lipedema ADSC proliferation was more modest at approximately
40% (Fig. 6d). We also tested the effect of 20H-BNPP on the
cell cycle in lipedema and non-lipedema ADSCs. As expected,
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cell-cycle analysis showed that ADSC treatment with 20H-BNPP
resulted in more cells arrested at G1/S phase for both lipedema
and non-lipedema ADSCs, with lipedema ADSCs showing a more
significantly pronounced effect (Supplementary Fig. 6a, b),
suggesting that the hyperproliferative state of lipodema ADSCs
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Fig. 5 Cell-cycle genes that are differentially expressed in lipedema enhance proliferative capacity of ADSCs. a RNA-seq analyses of
lipedema (LED) ADSCs from seven patients (LED21, 23, 25, 27, 28, 32, 34) and of non-lipedema (non-LED) ADSCs from three patients (non-
LED10, 12, 14) indicate differences between lipedema ADSC and non-lipedema ADSC transcript signatures. Volcano plot analysis of
significantly differentially expressed genes (adj. p < 0.05) showed that 1617 genes were downregulated and 1812 genes were upregulated in
lipedema ADSCs compared to non-lipedema ADSCs. b Heatmap of hierarchical clustering showing representative gene expression patterns.
Top 50 differentially expressed genes (ranked by topTreat from limma) in lipedema ADSCs compared to non-lipedema ADSCs. Z-score fold-
change value: red indicates upregulation and blue indicates downregulation. c Differentially expressed genes involved in mitotic spindle
checkpoint pathways of cell cycle were validated by quantitative qRT-PCR (n =3, mean + SEM of two independent experiments, *p < 0.05,
Student’s t test). d Bub1 mRNA was quantified by qRT-PCR in lipedema ADSCs isolated from seven patients and non-lipedema ADSCs from
three patients (*p < 0.05, Student’s t test). e Bub1 protein from lipedema ADSCs (LED21, 23, 27, 32, 34) and non-lipedema ADSCs (non-LED10,
12) was analyzed by western blotting. f Graph represents relative expression levels of Bub1 protein, as assessed by western blotting,
normalized to GAPDH levels (mean + SEM of two independent experiments, *p < 0.05, Student’s t test). g Levels of Histone H2A (H2A) (lower), a
target of Bub1, and of phosphorylated H2A (upper), were analyzed in lipedema ADSCs (LED21, 27, 34) and non-lipedema ADSCs (non-LED10,

;2, 14) by Western blotting.

makes them more sensitive to cell-cycle inhibitor agents than the
non-lipedema controls.

As it has been shown that Bub1 enhances cell proliferation by
phosphorylating threonine 120 (T120) of histone H2A [33, 46-48],
we finally tested the effect of 20H-BNPP1 on the activation of
histone H2A, which is downstream of Bub1. Treatment of both
ADSC groups with 20H-BNPP1 revealed marked reduction of
histone H2A phosphorylation at T120 (Fig. 6e, f), a novel and
important finding that suggested that the effect of Bub1 in
lipedema is mediated by its capacity to phosphorylate down-
stream targets such as histone H2A.

DISCUSSION

Despite increasing clinical recognition of lipedema, mechanisms
underlying this problematic disease remain unknown. To explore
these mechanisms, we undertook multi-faceted analyses of whole
lipedema tissue, ADSCs, and adipocytes, using omics platforms.
Our integrated approach uncovered deranged metabolic and lipid
profiles, and dysregulated signaling pathways driving key
biological processes, such as adipogenesis, cell cycle, lipid
metabolism, and cell proliferation and differentiation. The global
molecular profiles we characterized in lipedema uniquely
distinguish lipedema from normal fat and define it as a distinct
disease tissue. Importantly, the findings of our multimodal study
were coherent across distinct biological platforms and provide
new insights that will both help to address the deficit in
lipoedema animal models and provide vital clues into potential
novel therapeutic approaches.

Lipids play important roles in physiological processes such as
energy homeostasis, bioenergetics, apoptosis, signal transduction,
and cell recognition. Defective lipid catabolic pathways are
involved in the pathogenesis of several metabolic diseases [49].
Neutral lipids, such as triglycerides, are less likely to promote
metabolic disorders compared to other lipids classes such as
sphingolipids and GPLs [50, 51], which have been documented to
be involved in several metabolic diseases [52]. An example of the
distinct nature of lipedema adipose tissue is illustrated by our
discovery of metabolic differences in lipedema relating to levels of
fatty acids and their conjugates that included GPLs (more highly
abundant in lipedema adipocytes than non-lipedema adipocytes)
that are metabolites known to regulate cell-cycle events in cell
growth, and to enhance cell size and proliferation [53, 54]; notably,
GPL inhibition can reduce cell proliferation [55, 56]. Sphingolipids
were the second most different class of lipid metabolites, in terms
of metabolite levels, between lipedema and non-lipedema adipose
tissues. Sphingolipids are among the lipid classes implicated in
lipotoxicity, and can modulate signaling pathways involved in
fibrosis, apoptosis, triglyceride synthesis, and glucose metabolism
[57-59]. Recent studies have shown a role for sphingolipids in the
development of metabolic disorders such as atherosclerosis,
hepatic-steosis, cardiomyopathy, diabetes, and insulin resistance
[60, 61]. Our finding that the adipocyte lipidomics profile is
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significantly altered in lipedema, particularly in relation to
sphingolipid metabolites, suggests that a disrupted lipid profile
in adipocytes could contribute to metabolic dysfunction and
pathogenesis in lipedema.

The gene expression profiles defined in lipedema whole
tissue and ADSCs highlighted potential molecular drivers of
lipedema. We identified over 7820 significantly differentially
expressed genes in RNA-seq data from lipedema adipose tissue
and ADSCs (4391 in adipose tissue and 3429 in ADSCs). The top-
ranking signaling pathways and GO-molecular functions identi-
fied related to cell cycle and mitotic spindle checkpoints.
Detailed pathway analysis further implicated the involvement
of genes from mitotic spindle checkpoint pathways. Validation
of the eight most promising genes involved in mitotic spindle
checkpoint regulation by gRT-PCR identified Bub1 as a potential
key mediator of mitotic spindle checkpoint pathways in
lipedema tissue and ADSCs. Of the candidates, Bub1 was
chosen for further study due to the role it plays in proliferation
in other diseases, as aberrant Bub1 expression has been shown
to promote cell proliferation in several cancers [33, 43, 62], and
higher Bub1 expression in lipedema tissue and ADSCs could
disrupt G1/S checkpoint inhibition resulting in increased cell
proliferation. Furthermore, cell-cycle analysis identified differ-
ences between the cell-cycle phases of ADSCs in lipedema (high
proportion in S phase) and normal ADSCs (low proportion in S
phase). The higher Bub1 expression in lipedema tissue and
ADSCs may act to disrupt G1/S checkpoint inhibition resulting
in increased cell proliferation. Mitosis also plays a role in
balancing stem cells between the states of self-renewal and
differentiation from progenitor to mature cells by regulating
symmetric and asymmetric division [43, 63]; hence, Bubl
upregulation in lipedema may contribute to abrogation of
stem cell homeostasis. Importantly, the Bub1 downstream
target histone H2A, phosphorylation of which is considered
important for cell proliferation, was more highly phosphory-
lated in lipedema ADSCs.

We therefore conducted further investigation of the role of
Bub1, studying the effects of Bub1 inhibition on ADSC prolifera-
tion using 20H-BNPP1 [64]. Excitingly, either 20H-BNPP1 treat-
ment or CRISPR/Cas9-mediated Bubl gene depletion can
dramatically reduced lipedema ADSC proliferation. Treatment of
lipedema ADSCs with 20H-BNPP1 also profoundly inhibited
histone H2A phosphorylation, further supporting a key role for
Bub1 in enhanced ADSC proliferation and pathological adipogen-
esis in lipedema.

Taken together, our data—derived from multi-platform Omics
interrogations across whole adipose tissue, adipocytes, and
ADSCs derived from lipedema and control unaffected patients—
have provided valuable insights into the mechanisms under-
lying lipedema. Using gene expression analysis and cell-based
bioassays, we identified Bub1 as a novel therapeutic target in
lipedema for which a small molecule inhibitor has been
successfully tested in pre-clinical cancer models [65]. Our data

International Journal of Obesity (2022) 46:502 - 514



M. Ishaq et al.

(a) (b)

o 121 BLED @non-LED
;_ 1.0 , Bub1-KO Control
5 ;
(=] A
cg 00 Bub1
£ g %87 LED
o € 04 X . GAPDH
S - 0.2 rﬂ *
L 0.0 —_ = = D —_ = I'I]
g 2 2 2|8 £ ¢ Bub1
55 5 5|8 5 & LED
Q © 0o 5|9 o & non-
cC O 9 m = o T
5 B 8 S5 2 GAPDH
Bub1 HPRT

(C)w (d)
= - O Bub1-inhib
S 160000 nlED o 2 Cont-DMSO
® 140000{ _ . S _
€ 120000 - r [y SeLER =9 128
& 100000 - S € 100
® 80000 - » 8 g
£ 60000 - § S
€ 40000 * e® 07
20000 - o S 40
c 0 oc
o > O O O g3 27
= § Q $ W € o
& & & 9 52 o
L P q,o" £ LED non-LED
N ‘\09 <zo"" o
(e) (f)
LED non-LED .
o —
Bub1' Bub1' q‘; :' 6000 — [ Bub1-inhib
inhib Cont inhib Cont TS 5000 > {:Cont-DMSO
c 1
Bub1 DI 4000 - g
(2] 1
o Jc.i 3000 ; *
H2A © » 1000 .
E2 0 : : :
& & LED non-LED

Fig. 6 Bub1 drives enhanced proliferation of lipedema ADSCs. a CRISPR/Cas9 lentiviral vectors that express gRNA for Bub1 gene (Bub1-KD),
gRNA for the HPRT gene as positive control (pos-control), and scrambled gRNA as negative control (neg-control) were used in combination with
lentiviral Cas9 to infect lipedema ADSCs and non-lipedema ADSCs with or without any treatment of viral vectors (untreated control; un-
control). After 7 days of infection, ADSCs were used to extract RNA, and gRT-PCR analysis was performed to quantify Bub1 and HPRT transcripts.
b Western blotting to quantify Bub1 protein in lipedema ADSCs and non-lipedema ADSCs after gene removal with CRISPR/Cas9 lentiviral vector
expressing gRNA for the BubT gene. GAPDH was used as loading control. ¢ Proliferation of ADSCs was measured following gene depletion of
Bub1 (mean + SEM of three independent experiments, *p < 0.05, Student’s t test). d Lipedema ADSCs and non-lipedema ADSCs were cultured in
growth medium with or without Bub1 inhibitor (20H-BNPP1, 25 pM) or DMSO. Cell proliferation was measured by DAPI staining after 3 days.
Relative levels of proliferation for treated and control cells are shown (mean + SEM of three independent experiments, *p < 0.05, Student’s
t test). e Treatment of ADSCs with 20H-BNPP1 inhibited phosphorylation of Histone H2A. Western blotting was performed to quantify
phosphorylated H2A in lipedema ADSCs and non-lipedema ADSCs after treatment with or without 20H-BNPP1. f Quantification of
phosphorylated H2A normalized with levels of total H2A protein (mean + SEM of two independent experiments, *p < 0.05, Student’s t test).

indicate that Bub1 overexpression promotes ADSC hyperproli- The findings of this study present, for the first time, a useful
feration in lipedema and may therefore play a key role in platform for pinpointing diagnostic biomarkers that may be
lipedema disease onset and progression. predictive of lipedema disease progression. They may also help
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identify potential therapeutic targets for combating this chronic,
incurable, and under-appreciated disease.

MATERIALS AND METHODS

Collection of human tissue and isolation of ADSCs

Adipose tissues were obtained by excision from the lower limbs of 24 non-
obese female patients (14 with stage II-lll lipedema (clinical criteria per
Wold et al. [66]) and 10 non-lipedema healthy controls) who consented for
inclusion in this study. Protocols were approved by the Human Research
Ethics Committee, St Vincent's Hospital, Melbourne (HREC-A 067/16 and
HREC/16/SVHM/38) in accordance with the Declaration of Helsinki. ADSCs
were isolated from adipose tissue from lipedema and non-lipedema control
patients, using methods described by Zuk et al. [67] and as described in
detail in Supplementary Methods.

RNA-seq analyses

Adipose tissue and ADSC samples from LED and non-LED patients were
used for global gene expression analyses by RNA-sequencing. An
average of 78 million 100-base long reads from each adipose tissue and
ADSC sample were mapped to the human reference genome (b37
decoy), and raw gene counts were obtained for each sample using STAR
(v2.7.2¢) as described in detail in Supplementary Methods. Downstream
differential gene expression and gene-set analyses were then conducted
in R (v3.3.0) using packages mainly including edgeR (v3.16.5) [68] and
limma (v3.30.12) [69].

Lipidomics and metabolomics analyses

ADSCs were cultured on 6-well culture dishes (n = 4) at 40,000 cells/cm?
in differentiation medium for 14 days. After 14 days, differentiated cells
(adipocytes) were used for lipdomics and metabolomics analyses as
described in detail in Supplementary Methods. Resulting lipidomic and
metabolic profiling comparisons and PCA were undertaken using LCMS,
and resulting untargeted data analyzed using IDEOM software [70]. Refer
to Supplementary Methods for additional information.

Time-lapse microscopy

Live imaging was performed over 72h at 37°C with 5% CO, on an
Operetta high-content screening system (PerkinElmer) using a 10x
objective. Detail has been described in Supplementary Methods.

Colony forming unit (CFU) assay

The CFU assay was used to assess ADSC self-renewal capacity. Individual
colonies of >50 cells were counted using a microscope, dissolved
with 0.5% SDS and absorbance measured at 539 nm (POLARstar Optima
plate reader (BMG Labtek)). Detail has been described in Supplementary
Methods.

Cell-cycle assay

ADSC cell-cycle phase changes were monitored with FxCycle Cell Cycle
Assay Kits Cat#F10348 (Invitrogen) as described in detail in Supplemen-
tary Methods. After 48-96 h incubation, cells were fixed with 4% PFA and
stained with FxCycle Far Red stain (30 min). Samples were analyzed by
flow cytometry (BD FACS ARIA Flow cytometer) using FlowJo software
(Tree Star, Oregon, USA).

Protein analysis by immunoblotting

ADSCs were cultured overnight (density 5000-8000 cells/cm?), lysed in
RIPA buffer (Thermo Fisher Scientific, USA) and total cellular protein
quantified (Pierce BCA Protein Assay kit (Thermo Fisher Scientific, USA)).
Membranes were blocked (Nupage Blocking buffer, cat#927-40000,
Li-COR, USA) and incubated with primary antibodies (Supplementary
Table 6) as described in detail in Supplementary Methods.

qPCR and gene expression analysis

Total RNA was extracted from ADSCs (RNeasy mini kit (Qiagen)), and 1 pg
was transcribed to cDNA (gDNA Clear cDNA Synthesis Kit (Biorad)) and
gene-specific primers (Supplementary Table 7) were used to perform PCR
using the QuantStudio 6 (Applied Biosystem, Life Technologies). Detail has
been described in Supplementary Methods.
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Flow cytometry

ADSCs were trypsinized, resuspended, and washed with FACS wash
buffer. Cells were stained using antibodies against CD44 (1:20), CD105
(1:20), CD73 (1:20), or CD90 (1:20), or appropriate isotype controls (all
antibodies from BD Pharmingen, Supplementary Table 6) according to
the protocol as described in detail in Supplementary Methods. FACS
analysis was performed on BD FACS ARIA Flow cytometer and FlowJo
software (Tree Star, Oregon, USA).

Cell proliferation assay

ADSCs were seeded in 96-well plates (3000 cells/well) with fresh culture
media supplied 48 hourly. After 3 days in culture, cells were fixed (4% PFA),
DAPI-nuclear stained and cell quantification performed using the Operetta
high-content screening system (PerkinElmer, objectives x10 magnification)
as described in Supplementary Methods.

Adipogenic differentiation assay and lipid droplet
quantification

ADSCs were cultured on 96-, 48-, or 6-well culture dishes at 40,000 cells/cm?
in differentiation medium for 14 days. After 14 days, differentiated cells
were fixed with 4% PFA (1 h), washed (PBS), and stained for lipid droplets
with Bodipy (2 pg/mL in 150 mM NaCl) [71], before quantification was
performed (Operetta High-Content Screening System, PerkinElmer, x10
objective) as described in detail in Supplementary Methods.

CRISPR/Cas9 to generate Bub1-knockdown ADSCs

We used lentiviral CRISPR/Cas9 particles (Invitrogen LentiArray CRISPR,
Thermo Fisher Scientific, USA) to knock down Bub1 in ADSCs as
described in detail in Supplementary Methods. Lentivector permanently
expressing cas9 with a blasticidin-resistance gene, and lentivector
expressing gRNA for the Bub1 gene with a puromycin resistance gene,
were used to infect ADSCs. Bubl gene knockdown was confirmed by
gRT-PCR and western blotting.

Immunohistochemistry of human tissue

Human tissue samples were fixed in neutral-buffered formalin and
processed to paraffin wax. Five-millimeter sections were cut and mounted
on Polysine slides and allowed to dry. Opal multiplex staining was
performed according to the manufacturer’s (PerkinElmer) instructions, with
minor modifications as described in detail in Supplementary Methods.

Statistical analyses

Assays were performed in triplicate, each with ADSCs from at least three
lipedema and non-lipedema patients. Data were reported as mean + SEM.
Statistical comparisons used unpaired two-tailed Student’s t test. Analyses
were performed using GraphPad Prism 7.1 software. Comparison with p
values < 0.05 were considered significantly different.
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