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Parkinson’s disease severity 
clustering based on tapping activity 
on mobile device
Decho Surangsrirat1*, Panyawut Sri‑iesaranusorn2, Attawit Chaiyaroj3, 
Peerapon Vateekul4 & Roongroj Bhidayasiri5,6

In this study, we investigated the relationship between finger tapping tasks on the smartphone and 
the MDS-UPDRS I–II and PDQ-8 using the mPower dataset. mPower is a mobile application-based 
study for monitoring key indicators of PD progression and diagnosis. Currently, it is one of the largest, 
open access, mobile Parkinson’s Disease studies. Data from seven modules with a total of 8,320 
participants who provided the data of at least one task were released to the public researcher. The 
modules comprise demographics, MDS-UPDRS I–II, PDQ-8, memory, tapping, voice, and walking. 
Finger-tapping is one of the tasks that easy to perform and has been analyzed for the quantitative 
measurement of PD. Therefore, participants who performed both the tapping activity and MDS-
UPDRS I–II rating scale were selected for our analysis. Note that the MDS-UPDRS mPower Survey 
only contains parts of the original scale and has not been clinimetrically tested for validity and 
reliability. We obtained a total of 1851 samples that contained the tapping activity and MDS-UPDRS 
I–II for the analysis. Nine features were selected to represent tapping activity. K-mean was applied 
as an unsupervised clustering algorithm in our study. For determining the number of clusters, the 
elbow method, Sihouette score, and Davies–Bouldin index, were employed as supporting evaluation 
metrics. Based on these metrics and expert opinion, we decide that three clusters were appropriate 
for our study. The statistical analysis found that the tapping features could separate participants 
into three severity groups. Each group has different characteristics and could represent different PD 
severity based on the MDS-UPDRS I–II and PDQ-8 scores. Currently, the severity assessment of a 
movement disorder is based on clinical observation. Therefore, it is highly dependant on the skills 
and experiences of the trained movement disorder specialist who performs the procedure. We believe 
that any additional methods that could potentially assist with quantitative assessment of disease 
severity, without the need for a clinical visit would be beneficial to both the healthcare professionals 
and patients.

The severity assessment of a movement disorder is based on clinical observation so is therefore highly depend-
ant on the skills and experiences of the trained movement disorder specialist who performs the procedure. Of 
the multiple clinical rating scales available for the quantification of neurological disorders, the Hoehn and Yahr 
rating scale (HY) is the most widely used scale for defining the broad categories of motor function in Parkinson’s 
disease (PD). It is simple and easy to apply, however, because of its simplicity and lack of detail, the scale is not 
comprehensive1. HY scale is also weighted heavily toward postural instability as the primary index of disease 
severity, it does not capture impairments from other motor features of PD and gives no information on non-
motor problems, thereby leaving other specific aspects unassessed2. The Movement Disorder Society’s Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) is also a widely accepted method for assessing disease states in 
Parkinson’s disease. The test consists of four parts: Part I (non-motor experiences of daily living); Part II (motor 
experiences of daily living); Part III (motor examination); and Part IV (motor complications). A study by Goetz 
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et al.3 shows that the statistical results support the validity of the MDS-UPDRS for rating PD. Martinez et al.4 
also proposed a relationship between severity level and MDS-UPDRS. Finally, the 8-question Parkinson’s Dis-
ease Questionnaire (PDQ-8) is a short version of the 39-question Parkinson’s Disease Questionnaire (PDQ-39), 
a commonly used PD health-related quality of life questionnaire. A study by Jenkinson et al.5 shows that the 
results from the single index gained from the PDQ-39 are comparable with the PDQ-8. The use of the PDQ-8 is 
recommended over the PDQ-39 where a shorter form is required and a single index measure of overall health 
status is acceptable or desirable.

Assess the severity and progression of PD are essential in both clinical practice and research. It could indi-
cate the patient’s disease status, the treatment effect, and alterations in other relevant factors. The methods 
described earlier consist of rating scales and questionnaires based on the interview and examination or patient 
self-assessment. However, these evaluations provide estimations of conceptual, non observable factors, and are 
usually scored on an ordinal scale. Therefore, over the last few years, multiple studies on objective measurements 
based on the devices capturing physical characteristics of the pathological phenomena have been introduced and 
investigated6. These instrumental evaluations aim to quantify the severity based on statistical data without the 
bias of the specialist or patient. Huo et al.7 developed a sensor system composed of a force-sensor, three inertial 
measurement units (IMUs), and four custom mechanomyography (MMG) sensors for the quantification of PD. 
This system was validated with 23 PD patients and 10 healthy participants and could predict the UPDRS scores 
for the assessment of the bradykinesia, rigidity, and tremor with the 85.4% match on average with physician 
assessment. Multiple studies have also investigated tremor analysis systems based on signals from IMUs worn 
around the wrist and finger and the possible use of spiral drawing on a tablet device as a quantitative biomarker 
of PD8–12.

Finger-tapping is one of the tasks that has been analyzed for the quantitative measurement of PD. Roalf et al.13 
investigated the use of finger-tapping using a highly sensitive light-diode finger tapper for 62 healthy older adults, 
131 Alzheimer’s disease patients, 63 PD patients, and 46 mild cognitive impairment patients. Their findings 
suggest that alterations in tapping patterns are common in their patient groups. Alongside this, Arroyo-Gallego 
et al.14 have presented an algorithm to classify PD from the typing activity on a smartphone. They proposed a set 
of tapping features based on a covariance, skewness, and kurtosis analysis of the timing information to capture 
impaired motor signs. The best performing feature achieves 81% for both sensitivity and specificity from 21 
PD patients and 23 control participants. Even though the study on finger tapping and PD has been investigated 
and reported by multiple research teams, most of the studies involve participants in a range of twenty to several 
hundred PD patients and control participants combined. Therefore, in this study, we investigated the relation-
ship between finger tapping tasks on the smartphone and the MDS-UPDRS I–II and PDQ-8 using the mPower 
dataset. We would like to explore and validate on a large scale that remote PD severity assessment via a personal 
smartphone is feasible and could be performed without using any sensitive information. The approach could 
pave the way to remote anonymous screening and diagnosis in the future.

Material and methods
Dataset and feature selection.  The mPower dataset, one of the largest, open to researcher access, mobile 
Parkinson’s Disease study was used in this study15. It is a mobile application-based study for monitoring key 
indicators of PD progression and diagnosis. As a mobile application, the study has been able to survey a large, 
longitudinal cohort of volunteers with PD and controls. Data from seven modules with a total of 8,320 partici-
pants who provided the data of at least one task were released to the public researcher. The modules comprise 
of demographics, MDS-UPDRS I–II, PDQ-8, memory, tapping, voice, and walking. Over the last few years, 
the dataset has been analyzed and investigated by many research teams. Schwab et al.16 used the combination 
of walking, voice, tapping, and memory as a digital biomarker for the classification of PD. Their experiments 
were performed on the data of 1852 participants from the mPower study. Pittman et  al.17 used the walking 
module with a total of 3101 unique participants and 35,410 samples to classify participants for the signs of PD. 
Several other studies focus on the voice module for the classification of PD due to the availability and amount of 
voice samples included in the dataset18–20. There are 5826 unique participants with 65,022 voice samples in the 
mPower dataset. The tapping module was used in the study by Prince et al.21 for the classification of PD based 
on a convolutional neural network with 949 PD and 866 control participants. Most of the studies on the mPower 
dataset have the goal of distinguishing between PD and healthy controls.

Participant clustering was performed based on the features selected from the tapping task. Figure 1 sum-
marized the process performed in this study. The tapping activity requires a participant to lay the phone on a 
flat surface and use two fingers on the same hand to alternatively tap two stationary points on the screen for 20 
seconds. For the MDS-UPDRS I–II, a participant needs to respond to the selected questions from Part I and Part 
II of the MDS-UPDRS which focusing largely on self-evaluation of the motor symptoms of PD; 1.1, 1.3, 1.4, 1.5, 
1.7, 1.8, 2.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.12, 2.13. PDQ-8 data contains a self-completed Parkinson’s Disease 
Questionnaire short form. Note that we had been informed by MDS that the MDS-UPDRS mPower Survey 
has been altered from the original scale and has not been clinimetrically tested for validity and reliability. We 
acknowledge that the MDS-UPDRS mPower Survey is not a true and actual representation of the MDS-UPDRS 
and that use of the MDS-UPDRS mPower Survey data in research is not endorsed by MDS.

Tapping activity data consists of 78,887 tasks performed by 8003 unique participants. MDS-UPDRS I–II and 
PDQ-8 data consist of 2024 and 1334 unique participants, consecutively. To analyze the relationship between 
activity and questionnaire, the participants were mapped by their participant IDs. Participants who performed 
both the tapping activity and MDS-UPDRS I–II rating scale were selected for our analysis, with the tapping 
activity that was recorded closest to the time of the recording of MDS-UPDRS I–II data paired together. Using 
these parameters, we obtain a total of 1851 samples that contained the tapping activity and MDS-UPDRS I–II 
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for the analysis. 1061 from 1851 samples also contain the PDQ-8 data. The average and standard error of demo-
graphic information for the preprocessed dataset is as follows: the age is 44.271 ± 0.436 years, the gender ratio 
is 0.685 ± 0.011 where 1 is male and 0 is female, the smoker ratio is 0.324 ± 0.011 where 1 is a smoker and 0 is a 
non-smoker. Other insights include: 52.26% have a college degree, 37.89% have a graduate degree, 82.29% are 
Caucasian, 4.62% are Latino or Hispanic.

The smartphone records the position and timestamp for every tap on the screen in the tapping activity. The 
accelerometer data from the smartphone is also recorded to detect if and how the phone was moved during the 
activity. This information is represented in the dataset in terms of time intervals between taps (TapInter), and the 
positional drifts among taps on the left and right sides (DriftLeft and DriftRight). For a sequence of timestamps T, 
TapInter is defined as the difference between two consecutive taps’ timestamps ( Tt − Tt−1 ). Positional informa-
tion is separated into two sequences: Pleft with x-coordinates less than the mean of x, and Pright greater than or 
equal to the mean. DriftLeft and DriftRight are then defined as the Euclidean distances between each consecutive 
tap positions ( d(Pt , Pt−1) =

√

(xt − xt−1)2 + (yt − yt−1)2 ) in Pleft and Pright , respectively.
The following features are extracted from all three of these values:

•	 Basic statistics (min, max, mean, median, range, interquartile range, standard deviation)

•	 Skewness ( 
∑N

i=1 (xi−µ)3/N

s3
 ; s =

√

∑N
i=1 (xi − µ)2/N).

•	 Coefficient of variation ( σ
µ
· 100).

Finally, the following features with no direct relations to the aforementioned values are included:

•	 Total number of taps (numberTaps).
•	 Pairwise Pearson correlation between x- and y-coordinates of taps (corXY).

Similar to prior works that performed data analysis on PD22–25, nine features were selected from this list to 
represent tapping activity in this study:

•	 corXY The correlation between the X- and Y-coordinates of each tap. It represents how the participants’ fingers 
move, specifically how steep of a diagonal their tapping positions make.

•	 numberTaps The total of number of taps during the tapping activity. It represents how well the participants 
perform the tapping activity; in the case that the participants’ fingers are jerky, they should be less able to tap 
properly and thus achieve a lower number of taps.

•	 skewDriftRight The skewness of DriftRight. It represents left or right skew in the distribution of positional 
drifts among taps on the right side. Positive or negative values indicate that the distribution’s tail is on the 
right or left side, respectively.

•	 skewDriftLeft The skewness of DriftLeft. It represents left or right skew in the distribution of positional drifts 
among taps on the left side. Positive or negative values indicate that the distribution’s tail is on the right or 
left side, respectively.

•	 cvTapInter The coefficient of variation of TapInter. It represents the spread of the time interval between taps. 
A lower value means more consistently timed taps from the participant. On the other hand, a higher value 
means less consistent taps.

•	 cvDriftRight The coefficient of variation of DriftRight. It represents the spread of positional drifts among taps 
on the right side. A lower value means a smaller variation in positional gaps between taps on right side.

•	 cvDriftLeft The coefficient of variation of DriftLeft. It represents the spread of positional drifts among taps 
on the left side. A lower value means a smaller variation in positional gaps between taps on left side.

•	 meanTapInter The mean of time intervals between taps. A larger value means the participant took longer 
time on average before making the next successful tap.

•	 medianTapInter The median of time intervals between taps. In the case of a skewed distribution, this value 
can be used in conjunction with the mean to measure the center of distribution.

Figure 1.   Overview of the process performed in this study.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3142  | https://doi.org/10.1038/s41598-022-06572-2

www.nature.com/scientificreports/

To remove the scale bias of the dataset while preserving the shape of dataset, Min–Max Normalization was 
applied to all nine features to map them into a range of 0–1. The scaling equation used in this study is as follows:

where xi is the original value of feature i, ximin and ximax are the minimum value and maximum value of feature 
i, respectively.

Clustering algorithm.  The K-mean clustering algorithm was applied in our study. It is a well-known unsu-
pervised learning algorithm for the uncomplicated data. Countless of prior works such as, Covid-19 analysis26,27, 
disease prediction28,29, as well as Parkinson’s disease30,31, discovered and introduced the new knowledge in such 
fields using the algorithm. The concept is to solve the problem of classifying the given data into k different clus-
ters through selected parameters and criteria.

We demonstrated the K-mean clustering algorithm and its detail in Algorithm 1. First, we feed the given set 
of data points and a specific number of cluster k as the input. Then, it randomly initializes the centroid of each 
cluster. The next step is called expectation, which is assign each data point into the closest centroid based on 
the selected distance function. In this study, we used the Euclidean distance to determine the nearest distance 
between each data object and the cluster center. After that, the algorithm performs the step named maximiza-
tion, that is to compute the new centroid of each cluster using the selected criteria such as the mean of cluster. 
The algorithm repeats both expectation and maximization steps until the centroid position of each cluster does 
not change. The objective function of the algorithm is the sum of squared error as follows:

 where k is the selected number of cluster, ni is the number of point in cluster k, xij is the j-th point in the i-th 
cluster, and ui is the centroid for the i-th cluster. As random initializing the centroid, the algorithm cannot guar-
antee that the cluster result is the best. To deal with the issue, for each selecting k, we perform 1000 randomly 
different initializing per an experiment, then select the one that satisfies the minimum objective function to 
reduce the effect of bad initializing. 

Evaluation metrics.  An elbow method and two additional evaluation metrics, Sihouette and Davies–Boul-
din index, were applied for determining the number of clusters in this study. For partitioning clustering, such 
as K-mean clustering, it is necessary to specify the number of clusters k to be generated. However, it is a fun-
damental issue that the optimal number of clusters is unclear and depends on the method and the parameters 
used for clustering32. One of the solutions we applied to overcome this difficulty is the elbow method which 
was applied in previous works33,34. We also applied the popular and efficient evaluation matrix Silhouette, and 
Davies–Bouldin index to deal with this issue. Note that, although the optimal number of clusters can be obtained 
from the evaluation metrics, it is only a guide and the final number of clusters should be considered based on 
expert interpretation and opinion.

Silhouette.  The silhouette value was introduced and applied for evaluating the cluster validity35,36. It measures 
the quality of a clustering, that is how similar an object is to its own cluster compared to other clusters. A high 
silhouette value indicates that the object is well matched to its own cluster and poorly matched to neighboring 
clusters. If most objects have a high value, then the clustering configuration is appropriate. On the other hand, 
if there are many points with a low value, then the clustering configuration may have too many or too few clus-
ters. The optimal number of clusters k is the one that maximize the average silhouette over a range of selected 
k. Assuming that all of the datapoints have been assigned into k clusters, the silhouette score (s(i)) for a single 
datapoint i is calculated by the mean intra-cluster distance (a(i)) and the mean nearest-cluster distance (b(i)) as 
follow:

(1)xiscaled =
xi − ximin

ximax − ximin

(2)E =

k
∑

i=1

ni
∑

j=1

∥

∥xij − ui
∥

∥

2
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where d(i, j) is the distance between data points i and j in the cluster Ci . We divide by |Ci| − 1 because we do not 
include the distance d(i, i) in the sum. We can interpret a(i) as a measure of how well i assigned to its cluster, 
while b(i) represents a neighboring cluster of i because it is the next best fit cluster for point i.

Davies–Bouldin index.  Another evaluation metric used in this study is Davies–Bouldin index. It was used in 
prior works for clustering evaluation37,38. This index represents the average similarity measure of each cluster 
with its most similar cluster, where similarity is the ratio of within-cluster distances ( Si ) to between-cluster dis-
tances ( Mi ). Thus, clusters which are farther apart and less dispersed will result in a better score. Davies–Bouldin 
index (DB) is defined as follow:

where Xj is an point assigned to cluster i, Ai is the centroid of cluster i, and Ti is a number of point belonging to 
cluster i. � Ai − Aj �p is distance between cluster i and cluster j. The distance of Eqs. (7) and (8) is euclidian in 
the case that p is set to be 2.

Ethics statement.  The studies involving human participants were reviewed and approved by the local 
Ethics Committees of the Western Institutional Review Board as stated by Bot et al.15. Informed consent was 
obtained from all the participant. Ethical oversight of the study was obtained from Western Institutional Review 
Board and all methods were carried out in accordance with their guidelines and regulations. Before completing 
the e-consent process, prospective participants had to pass a five-question quiz evaluating their understanding 
of the study aims, participant rights, and data sharing options. Their signed consent form was sent to the pro-
vided email addresses for verification of their enrollment in the study. There is no additional ethical approval 
independently for this study. The data contributors allows qualified researchers to analyse the data and publish 
the findings in open access publications.

Results and discussion
Participant clustering.  We selected the number of clusters based on the scores of evaluation metrics as 
shown in Fig. 2. The elbow effect of inertia score and the results of Silhouette and Davies–Bouldin index mostly 
support the selection of three clusters. While a statistically superior number of clusters could be found at a 
higher number of clusters, interpreting the clustering results would not be feasible with the number of clusters of 
9 or more. Moreover, the trend from clustering evaluation results in Fig. 3 shows that higher k might not provide 
better evaluation scores. Hence, based on the results of evaluation metrics and expert opinion, we decided that 
three clusters was appropriate for our study.

To investigate the sparseness of the clusters, Fig. 3 illustrates the low-dimensional latent space using principal 
component analysis (PCA). The figure shows that the clusters can be distinguished clearly in this two-dimensional 
space. Based on MDS-UPDRS I–II and PDQ-8, cluster one is the lowest severity while cluster three is the high-
est severity.

Figure 4 is a heatmap visualization that demonstrates the relationship between each cluster and each fea-
ture. We can see that some features can distinguish between clusters. For example, clusters two and three have 
extremely high values of corXY. However, the value of numberTaps is high for cluster two while the value is 
low for cluster three. These can imply that corXY and numberTaps play an important factor in the clustering. 
On the other hand, we cannot visually detect a clear pattern from features such as cvDriftLeft or cvDriftRight.

Statistical analysis.  Table 1 shows MDS-UPDRS I–II and PDQ-8 scores with average and standard error 
of the mean for the three clusters based on the unsupervised clustering of the tapping features. The samples are 
evenly distributed between the clusters; 594, 897, and 360, for clusters 1, 2, and 3, respectively. The samples with 

(3)a(i) =
1

| Ci | −1

∑

j∈Ci ,i �=j

d(i, j)

(4)b(i) = min
k �=i

1

| Ck | −1

∑

j∈Ck

d(i, j)

(5)s(i) =

{

1− a(i)/b(i), if a(i) < b(i)
0, if a(i) = b(i)
b(i)/a(i)− 1, if a(i) > b(i)

(6)Si =





1

Ti

Ti
�

j=1

| Xj − Ai |
p





1/p

(7)Mi,j = � Ai − Aj �p

(8)DB =
1

N

N
∑

i=1

max
i �=j

(

Si + Sj

di,j

)
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both MDS-UPDRS I–II and PDQ-8 scores are also more or less evenly distributed; 320, 496, 245 for clusters 1, 
2, and 3, respectively. Each cluster can be distinguished by the MDS-UPDRS I–II or PDQ-8 scores, with cluster 
one being the lowest and cluster three being the highest. Moreover, the score of Part II of the MDS-UPDRS I–II, 
motor aspects of experiences of daily living (M-EDL), from cluster three is the highest by a significant margin. 
The experimental results show that the tapping features could be one of the tools for quantification of PD severity 
based on MDS-UPDRS I–II and PDQ-8 scores.

To illustrate the differences between clusters, we compare our clustering results with the PD severity levels 
based on MDS-UPDRS scores by Martinez-Martin et al.4. The cut-off values for each MDS-UPDRS I–II sub-
scale were determined by the triangulation value of the percentile 90 of the subscale total score, the analysis of 

Figure 2.   Evaluation results based on Inertia score, Silhouette score, and Davies–Bouldin index.

Figure 3.   PCA results of the three clusters, each represented by a distinct marker. The number of samples is 
594, 897, and 360, for cluster number 1, 2, and 3, respectively. X-axis or pca-one is first rank component with the 
variance percentage of 50.05, and y-axis or pca-two is the second rank component with the variance percentage 
of 26.51.
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Figure 4.   Heatmap plot illustrating the relationship between clusters and features. Each row represents a 
participant in the cluster. Each column represents the feature used in this study. Blue means high value in that 
feature for the participant, while green means low value. For example, most of the participants in cluster three 
have a high value for the corXY feature.
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receiver operating characteristic (ROC), and the ordinal logistic regression model (OLR). Since the mPower 
MDS-UPDRS I–II contains part of the original MDS-UPDRS I–II, the score re-scaling was performed. Table 2 
shows the percentage of participants in each severity group for the three clusters. For Part I, cluster three had a 
significantly higher percentage of severe participants. This trend was reiterated for Part II. However, since there 
is only one participant in Part II in the severe group, cluster three had a significantly higher percentage of mod-
erate participants instead. As for the average score, clusters one and two were assigned to the mild group while 
cluster three was assigned to the moderate group in Part I. All of the clusters were assigned to the mild group 
in Part II. The lower scores from the mPower study could be from fact that all of the questions were answered 
by the patients themselves which could lead to a self-bias. Also, the participants that could be recruited into the 
study must be able to use a smartphone. Therefore, most moderate or severe PD patients would not be able to 
participate in the study (Table 3).

For statistical analysis of the clustering result, the one-sample t-test was used to determine the characteristics 
of clusters. One-sample t-test is a statistical hypothesis testing for determining whether the sample mean is sta-
tistically different from a known or hypothesized mean of the population39. The hypothesis for this study is the 
population average in a cluster is equal to the overall participants average for each grouped feature (baseline). To 
adjust the significance level of hypothesis testing, we also apply Bonferroni correction and set the parameter of 
the family-wise error to 0.0540. Table 3 shows the attributes of the three clusters based on the hypothesis results.

Table 1.   Scores from the mPower MDS-UPDRS I–II and PDQ-8 for the three clusters.

Cluster one Cluster two Cluster three

mPower MDS-UPDRS I–II

 Part I (Maximum 24 points) 4.715 ± 0.146 4.645 ± 0.121 5.403 ± 0.215

 Part II (Maximum 40 points) 2.603 ± 0.174 3.154 ± 0.166 5.228 ± 0.277

 Total (Maximum 64 points) 7.318 ± 0.260 7.799 ± 0.243 10.631 ± 0.421

PDQ-8

Score 8.668 ± 0.759 9.887 ± 0.664 14.405 ± 1.000

Table 2.   Percentage of participants from the mPower MDS-UPDRS I–II in each severity group for the three 
clusters.

Cluster one Cluster two Cluster three

mPower MDS-UPDRS Part I

Mild 64.98 67.00 58.33

Moderate 24.24 21.96 22.50

Severe 10.78 11.04 19.17

mPower MDS-UPDRS Part II

Mild 73.06 76.25 68.05

Moderate 26.94 23.63 31.95

Severe 0.00 0.12 0.00

Table 3.   Statistical analysis for the three clusters. The plus symbol (+) means the population average in a 
cluster is higher than the average of the baseline while the minus symbol (−) means that it is lower. N.S. means 
there is no statistical difference. The number of markers means the p value is less than 0.05, 0.01, and 0.001, 
respectively.

Cluster one Cluster two Cluster three

corXY −−− + + + + + +

numberTaps + + + + + + −−−

skewDriftRight N.S. + + −−−

skewDriftLeft N.S. + + −−−

cvTapInter N.S. + + + −−−

cvDriftRight N.S. N.S. −−

cvDriftLeft N.S. N.S. −−−

meanTapInter −−− −−− + + +

medianTapInter −−− −− + + +
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The characteristics of each cluster are described as follow:

•	 Cluster One This cluster has the lowest severity of PD. This group has the feature values of numberTaps 
significantly higher than the baseline, while the feature values of corXY, meanTapInter, and medianTapInter 
are significantly lower than the baseline.

•	 Cluster Two This cluster has the second lowest severity of PD. This group has the feature values of corXY, 
numberTaps, skewDriftRight, skewDriftLeft, and cvTapInter significantly higher than the baseline, while the 
feature values of cmeanTapInter, and medianTapInter are significantly lower than the baseline.

•	 Cluster Three This cluster has the highest severity of PD. This group has the feature values of corXY, meanTap-
Inter, and medianTapInter significantly higher than the baseline, and other features lower than the baseline.

There are a few research teams that published recent works on the mobile PD severity classification. Zhan 
et al.41 proposed a model to quantify PD motor symptom severity based on five tasks on a smartphone applica-
tion. The tasks consist of voice recording, finger tapping, gait, balance, and reaction time. The scoring model 
was derived from 129 participants with 23 PD patients and 28 control participants who completed an in-clinic 
assessment and found to be correlated well with the MDS-UPDRS (r = 0.81; p < .001 ) and the Hoehn and Yahr 
stage (r = 0.91; p < .001 ). Sano et al.42 proposed an index for quantifying the severity of symptoms related to 
the finger-tapping of PD patients based on the 21 features extracted from the finger-tapping waveforms from 
magnetic sensors. The index gave a mean square error of 0.45 against the finger-tapping part of the UPDRS 
scored by a doctor. Therefore, they concluded that the index had a high correlation when validated with 31 PD 
patients and 360 control participants. While Zhan et al. reported the possibility of the severity assessment via 
a smartphone and Sano et al. proposed an index for quantifying the severity based on magnetic sensors, our 
results validated on a large scale that PD severity assessment could be done remotely by a personal smartphone 
without using any sensitive information.

Limitation.  In our study, data on clinical severity measurement was limited to parts I and II of MDS-UPDRS, 
not a full rating scale that comprises four parts. While this assessment is potentially a limitation, the relationship 
between health-related quality of life (HRQoL) and MDS-UPDRS was only demonstrated in MDS-UPDRS parts 
I and II, not parts III and IV, in a large multicentre study involving more than 3000 PD patients43. Moreover, 
the five items most significantly associated with PDQ8 were depressed mood (1.3), dressing (2.5), apathy (1.5), 
pain (1.9), and fatigue (1.13), all representing items within MDS-UPDRS Parts I and II. In terms of HRQoL 
assessment, both the PDQ-39 and the PDQ-8 were both included as ‘recommended’ scales in patients with PD. 
Whereas the PDQ-39 is the most thoroughly tested and applied questionnaire, the PDQ-8 has the advantages of 
being shorter and simpler to perform44. In a longitudinal study of over 1800 PD patients, the PDQ-8 was found 
to closely replicate results obtained from the parent form, PDQ-39, providing reliable and accurate information 
of HRQoL in PD patients45. In addition, the PDQ-8 has been evaluated in PD patients of different cultural back-
grounds, including the Asian population46.

Although, the clusters were able to discriminate the severity of both non-motor and motor symptoms, as 
illustrated by the percentage of the participants in each cluster. Since there are fewer participants in the moder-
ate and severe groups for Part II, the average scores for all three clusters were assigned to the mild group. Finger 
tapping is just one part of the motor symptoms. It might not be able to represent motor symptoms severity as a 
whole. However, finger tapping represents a feature of bradykinesia that could also affect the quality of life. Nev-
ertheless, our analysis of the finger tapping features suggested that it could be one of the tools for quantification of 
PD severity outside of a clinical environment. The current aim of this study is to explore a relationship between 
tapping activity and PD severity from a large dataset. In the first stage, we examined how the tapping activity 
can be clustered and the relationship between such clusters and PD severity. Hence, we applied unsupervised 
machine learning, K-means clustering, to separate the patients based on the tapping activity data. The insight 
from the analysis in this study could aid with the creation of a more accurate supervised classification model for 
PD severity based on the finger tapping data, which is the plan for our future investigation.

Conclusion
In this study, we performed an unsupervised clustering based on tapping features. Tapping activities were 
recorded on the participant’s mobile device. Based on the recording, tapping features were extracted. Nine of 
the extracted features were used for the clustering. For tapping activity and MDS-UPDRS I–II, there are a total 
of 1851 samples for the analysis; 1061 of those samples also contained PDQ-815. From the results of evaluation 
metrics and expert opinion, we decide that three clusters was appropriate for our study. Each group has dif-
ferent characteristics based on tapping features and could represent different PD severity based on the MDS-
UPDRS and PDQ-8 scores. Our study provides another evidence that quantitative measurement in a form of 
finger tapping can complement standard rating scales like MDS-UPDRS for characterizing PD heterogeneity47. 
Furthermore, since the model does not require sensitive information, the approach could pave the way to the 
remote anonymous screening and diagnosis in the future. We believe that any additional methods that could 
potentially assist with quantitative assessment of disease severity, without the need for a clinical visit would be 
beneficial to both the healthcare professionals and patients. One of the limitations of this study is that the data 
on clinical severity measurement was limited to parts I and II of MDS-UPDRS. However, the insight from the 
unsupervised analysis in this study could aid with the creation of a more accurate supervised classification model 
for PD severity based on the finger tapping data. Further research on the verification of the results with other 
datasets or the combination with other features such as gait and memory could also be explored.
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Data availability
These data were contributed by users of the Parkinson mPower mobile application as part of the mPower study 
developed by Sage Bionetworks and described in Synapse [https://www.synapse.org/mPower]. The preprocessed 
datasets generated for this study are available on request to the corresponding author.
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