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Introduction

Preventing hyperglycemia following eating is still a persis-
tent issue for people with type 1 diabetes (T1D), even while 
using an automated insulin dosing (AID) system which 
delivers insulin variably based on an internal closed-loop 
algorithm.1 The unwanted increase in plasma blood glucose 
(BG) following eating for people with T1D is primarily a 
result of the dynamics associated with subcutaneously 
injected insulin and ingested carbohydrates. Currently avail-
able subcutaneous insulin analogs have slower time con-
stants than consumed carbohydrates, thus necessitating the 

use of feedforward control to prevent hyperglycemia. 
Anticipation and automatic bolusing in an advanced control 
system framework have proven to compensate for the inher-
ent absorption delay from current insulin analogs.2 In this 
contribution, we designed an in silico experiment using 
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Abstract
Introduction: Hyperglycemia following meals is a recurring challenge for people with type 1 diabetes, and even the most 
advanced available automated systems currently require manual input of carbohydrate amounts. To progress toward fully 
automated systems, we present a novel control system that can automatically deliver priming boluses and/or anticipate eating 
behaviors to improve postprandial full closed-loop control.

Methods: A model predictive control (MPC) system was enhanced by an automated bolus system reacting to early glucose 
rise and/or a multistage MPC (MS-MPC) framework to anticipate historical patterns. Priming was achieved by detecting large 
glycemic disturbances, such as meals, and delivering a fraction of the patient’s total daily insulin (TDI) modulated by the 
disturbance’s likelihood (bolus priming system [BPS]). In the anticipatory module, glycemic disturbance profiles were generated 
from historical data using clustering to group days with similar behaviors; the probability of each cluster is then evaluated at 
every controller step and informs the MS-MPC framework to anticipate each profile. We tested four configurations: MPC, 
MPC + BPS, MS-MPC, and MS-MPC + BPS in simulation to contrast the effect of each controller module.

Results: Postprandial time in range was highest for MS-MPC + BPS: 60.73 ± 25.39%, but improved with each module: 
MPC + BPS: 56.95±25.83 and MS-MPC: 54.83 ± 26.00%, compared with MPC: 51.79 ± 26.12%. Exposure to hypoglycemia 
was maintained for all controllers (time below 70 mg/dL <0.5%), and improvement came primarily from a reduction in 
postprandial time above range (MS-MPC + BPS: 39.10 ± 25.32%, MPC + BPS: 42.99 ± 25.81%, MS-MPC: 45.09 ± 25.96%, 
MPC: 48.18 ± 26.09%).

Conclusions: The BPS and anticipatory disturbance profiles improved blood glucose control and were most efficient when 
combined.
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real-world eating behavior to contrast the impact of an auto-
matic bolus priming system (BPS) and anticipatory glyce-
mic disturbance profiles in our control system.

Fully Closed-Loop AID

Several AID systems that do not require users to input meal 
amounts have been tested. In 2014, Harvey et al evaluated a 
fully closed-loop (FCL) AID system on 12 adult participants 
with T1D in an inpatient clinical trial.3 Overall, this system 
produced glycemic control with 80% of all BG readings in 
the 70- to 180-mg/dL range (time in range [TIR]) but caused 
high postprandial glucose values following unannounced 
meals. Forlenza et al presented the performance of an FCL 
that preempts predefined postprandial excursions in a 
72-hour hotel-based study, reporting a TIR of 63.6 ± 9.2%.4 
However, in the four hours following unannounced meals, 
the time above range (>180 mg/dL, TAR) was 60.9 ± 
23.3%. A recent study by Dovc et al used two formulations 
of insulin, FIASP and aspart, in a 27-hour inpatient admis-
sion study of their FCL AID system,5 reporting TIR of 53.3% 
and 57.9% for aspart and FIASP insulins, respectively. Their 
approach relied on a meal detection algorithm but similarly 
faced difficulty with unannounced meals. Multihormone 
approaches have reported better performances, with recent 
early outpatient results.6 In 2021, Haidar et al conducted a 
30-participant open-label crossover trial and showed that an 
AID system using simple meal announcements and empa-
gliflozin was noninferior to a hybrid system with meal 
announcements (mean BG: 153 ± 25.2 vs 153 ± 27.0 mg/
dL).7 Majdpour et al demonstrated the noninferiority of an 
insulin-pramlintide FCL AID to a hybrid AID (TIR: 81% vs 
83%) in another 2021 pilot study.8

Cameron’s 2012 manuscript describes a methodology for 
an AID system that uses multiple BG prediction models, 
each informed by different disturbances.1 When the system 
determines that one disturbance is more likely, additional 
weight is given to that model’s predictions. In addition, 
information was included regarding the likely timing of meal 
disturbances based on normal mealtimes, the time of the last 
meal, and sleep schedule. Using this approach, Cameron et al 
were able to reduce the two-hour prediction error by 45% 
without meal detection and 18% with meal detection. The 
three-hour prediction error was reduced by 60% without 
meal detection and 30% with it.

Cameron et al extended these findings in a 2014 clinical 
trial.2 The so-called multiple model probabilistic controller 
(MMPC) was used by ten patients in an inpatient study where 
they consumed five unannounced meals. For the six patients 
who used the final version of the controller, the mean con-
tinuous glucose monitor (CGM) TIR was 78%. During the 
admission, there was only one controller-induced 
hypoglycemia.

The MMPC was evaluated on ten patients in an inpatient 
clinical study where the mean TIR was 142 mg/dL overall 

and 125 mg/dL overnight.3 A different version of the algo-
rithm that was tested in a hotel-based study with 15 subjects 
achieved an overall mean BG of 152 mg/dL and a mean 
overnight BG of 139 mg/dL.

Use of Behavioral Patterns to Anticipate Glycemic 
Disturbances

Several simulation and clinical experiments conducted by 
our group have shown how anticipatory profiles integrated 
into AID systems can reduce the unwanted effects of glyce-
mic disturbances. Simulation experiments have demon-
strated that multistage model predictive controllers 
(MS-MPC) informed by disturbance profiles to anticipate 
moderate exercise’s effects can reduce hypoglycemia,9-11 
results that were later confirmed in a randomized crossover 
clinical trial with 15 adult participants:12 There were fewer 
hypoglycemic events (9 vs 33), and the percent time where 
BG was <70 mg/dL (time below range [TBR]) was 1.3% 
lower while the participants used the MS-MPC system com-
pared with a well-tuned standard MPC. The overall reduc-
tion in hypoglycemia resulted in no significant increase in 
TAR.

We also demonstrated in silico the capacity of the 
MS-MPC framework to anticipate glycemic disturbances 
caused by meals.2 In that work, disturbance profiles were 
generated from a representative real subject and then used to 
perform closed-loop experiments using the 100 adult cohort 
of the University of Virginia (UVA)/Padova simulator. 
Results showed an average increase in TIR of 1.6% when 
using a hybrid closed-loop approach and 16.4% when using 
an FCL approach.

Our goal in this work is to build upon our past experiences 
and further study the impact of automated priming bolus and 
disturbance anticipation using the MS-MPC framework. To 
test the effects of each component of the control system, we 
implemented a 2 × 2 experimental design (each module on 
or off) resulting in four treatment strategies: model MPC, 
MS-MPC, MPC + BPS, and MS-MPC + BPS.

Methods

Control Strategy

Our modular control strategy is depicted in Figure 1 below. 
Within our legacy modular architecture (ie, data manage-
ment, safety system module, autocorrection, state estima-
tion), we consider four different combinations of modules to 
reject large positive disturbances. Details of each module are 
provided below.

Core controller.  Rather than a single control strategy, MPC 
encompasses a general control paradigm; it integrates the 
predictions from an explicit mathematical model of the 
user’s glucose-related metabolic state within a real-time 
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optimization problem that aims to find the best insulin injec-
tion subject to possible constraints over the model variables. 
In this setup, the MPC part commands optimized basal insu-
lin injections through the pump every five minutes to reject 
internal metabolic disturbances. Multistage model predictive 
controller is a robust control strategy that considers N paral-
lel MPC controllers, each perturbed by a particular distur-
bance realization. In this case, the disturbance realizations 
are composed of N different subject-specific disturbance 
profiles representing typical eating behavior. The final con-
trol action is reached after a consensus of the N controllers 
by the nonanticipatory constraint.2

Bolus priming system.  The BPS was designed to deliver doses 
of insulin that are comparatively higher than basal infusions 
when the probability of sizeable positive glycemic distur-
bance is elevated. This feedforward action is intended to 
work together with the feedback aspects of the controller to 
reduce postprandial BG excursions. At each five-minute 
interval, a second-order polynomial is fit on the last 30 min-
utes of CGM data using least squares regression. The coef-
ficients of this equation roughly approximate the average 
value, first derivative, and second derivative of the most 
recent CGM values. These features are then used in a logistic 
regression-based disturbance detection algorithm.

The logistic regression coefficients were found by train-
ing a logistic regression classifier on a data set where 15 

subjects using CGMs were observed but not supervised at 
home in a clinical trial data collection period based at UVA 
(NCT03394352).13 In this data set, periods following meals 
were labeled in the positive class, and all other times were 
considered the negative class to train the classifier.

The output of the logistic regression, πdisturbance t( ), is then 
used to dictate if a priming bolus should be delivered. 
Because the disturbance’s size is unknown, the BPS priming 
bolus amounts are based on the user’s average total daily 
insulin (TDI). At the escalating thresholds for πdisturbance, the 
BPS delivers different amounts of the patient’s TDI,

	 P t

if t

if t
TDI

disturbance

disturbance( ) =

( ) <
≤ ( ) <

0 0 2

4 0 2 0 3

%

%

π
π

.

. .

77 0 3 0 4

10 0 4

%

%

if t

if t
disturbance

disturbance

. .

.

≤ ( ) <
( ) ≥










π
π

. 	 (1)

The BPS dose, J tBPS ( ) , is then determined based on the 
user’s TDI and the amount of insulin that was previously 
injected by the BPS system. This equation is,

	 J t P t TDI IOB tBPS TDI BPS( ) ( ) ( ),= ⋅ − 	 (2)

where IOB tBPS ( ) was the amount of insulin on board deter-
mined using a 6-hour curve from previous BPS boluses.14

Figure 1.  A schematic of the control strategies tested. System configurations range from a meal naive approach (MPC, green) to a meal 
anticipating system with priming boluses (MS-MPC + BPS, combination of green, yellow, and orange). Abbreviations: CGM, continuous 
glucose monitor; MPC, model predictive control; MS, multistage; BPS, bolus priming system.
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Subject-specific disturbance profile generation.  To construct a 
manageable ensemble of disturbance profiles for the MS-
MPC to anticipate, we need to reduce the current ensemble 
of d t( )  signatures to a few representative profiles. To do so, 
we cluster the occurrence of noticeable disturbances and then 
construct a representative disturbance input for each cluster. 
This necessitates (1) the construction of disturbance signa-
tures, (2) detection of disturbance events, (3) clustering daily 
patterns of detected events, and (4) the construction of signa-
tures that represent each cluster. We detail this process below.

Historical disturbance estimation.  Disturbance signatures, 
d t( ), are estimated for each day of the historical record using 
a Kalman filter with the same internal model as the control-
ler (ie, based on CGM and insulin only, not the meal record). 
In this case, the operating point for the linearization of the 
model is defined based on that subject’s mean CGM value 
for the day, the basal rate, and the steady-state solution of 
the model equations. Kalman filter tuning was performed by 
modifying the covariance matrices for measurement ( )R  and 
modeling ( )Q  noises. Variations on R  and the diagonal ele-
ments of Q  matrix in the range [ ]1 10 1 104 4× ×−  were tested 
to determine values that, in addition to a smoother estimation 
of the d t( ) signature, adequately represented a system input 
to reflect the meal-related fluctuations in glucose observed 
in the CGM. Thus, values for Q  and R  were fixed in such 
a way that d  had suitable behavior representing food intake 
during high glucose excursions. Figure 2 shows an example 
of the estimation of d t( )  for a subject based on daily CGM 

data and the meal record. Kalman filter design is detailed in 
the Supplemental Appendix.

Disturbance detection.  As records of meals would be 
absent in an FCL system, we reconstructed meal-like distur-
bances retrospectively from CGM and insulin data. To fil-
ter out any small deviation and focus on disturbances worth 
anticipating, we propose an automated disturbance detector 
using features characterizing the estimated disturbance val-
ues, d , and continuous glucose measurements, cgm, for each 
day of historical data collected. These features were selected 
to represent the changes in the glucose and disturbance val-
ues characteristic of glycemic disturbances, such as meals. 
A description of the features which were calculated for each 
five-minute sample is listed in Supplemental Table 1.

Once features were generated for each five-minute inter-
val, t , the probability of a large disturbance, π detect t( ), is 
determined using logistic regression (Supplemental Table 2). 
The detection times are determined by finding the local mini-
mums of CGM values when the detection vector was equal 
to one at least 60 minutes apart (or the first index if there 
were no local minimums). If detection times were within one 
hour of each other, the first detection time was used.

Disturbance profiles generation.  Once major glycemic dis-
turbances are detected, daily indicator signals are defined to 
group similar days into clusters (equal to one in the two hours 
following disturbance detections and zero otherwise). Using 
k-means with the hamming distance measure, these signals 

Figure 2.  Estimation of d  from the CGM, insulin, and meal record of one subject.
CGM, continuous glucose monitor.
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are clustered with k = …1 5, , .15,16 The number of clusters,  
k, for each individual is based on which produced the high-
est Calinski-Harabasz score, maximizing cluster separation 
and cohesion.17 Once days of data were grouped, the profile 
trace, ω, for each cluster, i, at each five-minute interval of 
the day, j, is determined from the average of each day in the 
cluster’s disturbance signal in that five-minute interval, dm j, .
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with ndays i,  as the number of days grouped into cluster i . 
These profiles are then smoothed using a centered moving 
average over an hour. The values are multiplied by a weight-
ing function shown in Figure 3 to deemphasize profiles over-
night, allowing for the profile probabilities to return to their 
prior value at the beginning of each day.

We then estimate the prior probability value for each clus-
ter, πprior i, , as the proportion of days of data that were assigned 
to that given cluster.

	 π prior i
days i

days total

n

n,
,

,

= 	 (4)

where ndays i,  was the number of days of data in cluster i  and 
ndays total,  represented the total number of days considered. 
These prior probability values serve as a starting point so that 
the initial weight of each profile in the MS-MPC is related to 
historical data.

Figure 4 shows an example of one subject’s profiles. 
Here, it can be seen that this individual’s disturbance profiles 
are elevated following typical times for breakfast (6-8 am), 
lunch (12-2 pm), and dinner (6-8 pm). The associated prior 

probabilities indicate that this person eats earlier on 31% of 
days, and on 46% of the days of data used, the subject ate 
later. On 23% days, they had less of a discernable pattern of 
eating determined from their detected disturbances.

Profile probability estimation for online MS-MPC weighing.  The 
probability value of each profile is updated in real-time based 
on the current disturbance measurement, which was found 
using the same technique applied to the retrospective data. 
This probability, πi t( ) , is estimated using the method devel-
oped by Patek.18 This process allows each profile’s probabili-
ties to be shifted dynamically following the disturbance 
currently being experienced by the user.

We further add a “night mode,” allowing the profile prob-
abilities real-time estimates to reset back to their prior (so 
each day is not influenced by the previous one). From 11 pm 
to 1 am, the probabilities devolved linearly from the value 
before the beginning of night mode, πi night, , to the prior,
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For the, n, intervals after the beginning of night mode,

	 πi d it l n( ) = ( ), . 	 (6)

Finally, to ensure that the currently observed disturbance 
is prioritized over anticipation of expected disturbances, all 
the profile probability values are scaled based on an index, 
ρ0 , derived from the level of the current disturbance esti-
mate, d t( ). The calculation for ρ0  is detailed in the 
Supplemental Appendix. The final adjusted probabilities, 
πadjusted i t, ( ), were found by multiplying the profile probabili-
ties by 1 0− ρ .

	 π π ρadjusted i it t, .( ) = ( ) ⋅ −( )1 0 	 (7)

Experimental Design

Data collected during the unsupervised at-home portion of a 
large-scale pivotal trial conducted at UVA (NCT03563313) 
were used to evaluate this method.19 These data are from 124 
adult and adolescent participants with T1D over 6 months, 
during which they used an AID system with meal announce-
ments. One hundred clinical subjects’ data were randomly 
selected and paired to an in silico subject in the UVA/Padova 
T1D simulator platform.20 A total of 80% of the data were used 
to create meal profile clusters (see above). Seven days with at 
least one recorded meal were randomly selected from the 
remaining month of collected data. This week of meal record, 
scaled by the bodyweight, was then used as the meal protocol 
of the simulation experiment, which included intraday insulin 
sensitivity variability.20 In this implementation of the simula-
tion platform, circadian changes to insulin sensitivity and 

Figure 3.  Weighting function for profile values.
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dawn phenomenon are simulated using subject-specific (ie, 
class-specific) time-varying profiles, which impacts endoge-
nous glucose production and insulin-dependent glucose utili-
zation. The use of real eating records allowed for more realistic 
behaviors in simulation and the existence of eventual meal 
patterns. This experimental configuration was then tested with 
the four configurations of the control system: MPC, MS-MPC, 
MPC + BPS, and MS-MPC + BPS. Treatments were com-
pared overall and during the four hours after meals using the 
relevant metrics described by Maahs et al’s criteria for evalu-
ating AID systems.21 We provide individual P values (level: 
.05) for mean difference testing between control strategies for 
the primary outcome (TIR: 70-180 mg/dL); to note, due to the 
absence of random factors in our in silico experiment, statisti-
cal testing is potentially misleading;22 it is therefore less 
emphasized than for a similar clinical experiment.

Results

The simulation experiment results suggest that the use of the 
anticipatory profiles in the MS-MPC and the BPS reduced 
BG values overall. The primary outcome (TIR over the entire 
simulation) improved from 72 ± 17.7% with MPC only to 
73.4 ± 17.4% with anticipation and 75.5 ± 17.1% with prim-
ing bolus (all comparisons with P < .001). Maximum effect 
was seen with the combination of priming bolus and anticipa-
tion with TIR reaching 77.2 ± 16.7%, or +5.2% over MPC 
alone (P < .001). On average, when delivered, BPS boluses 
were 27.64 ± 29.70 minutes after the actual mealtime; 4% of 
the patients’ TDI was delivered after 64.11% of meals, 7% 
was delivered after 36.72%, and 10% was delivered after 
22.18%. No BPS dose was delivered after 35.89% of meals. 
The overall false positive rate was 0.69%.

The mean BG for the MS-MPC + BPS was the lowest 
(155.14±31.88 mg/dL). The other controller configurations 
had higher mean BG values of 165.49 ± 33.49, 161.61 ± 

33.60, and 159.65 ± 33.20 mg/dL for the MPC, MS-MPC, 
and MPC + BPS, respectively. This trend in lower BG val-
ues was represented similarly in the TBRs (ie, <50, <60, 
and <70 mg/dL), time in tight range (ie, 70-140 mg/dL), and 
time above ranges (ie, >180, >250, and >300 mg/dL). The 
BPS and anticipatory profiles also reduced the standard devi-
ation of BG values and caused the system to deliver more 
insulin overall. The overall results of the experiment are 
listed in Table 1.

In the four hours following meals, the effect of the antici-
patory profiles and BPS was more evident. During this 
period, the TIR was 60.73 ± 25.39% for the MS-MPC + 
BPS. The mean TIR was 3.78%, 5.9%, and 8.94% less for 
the MPC + BPS, MS-MPC, and MPC configurations, 
respectively. Postprandial mean BG was also 4.51 to 10.35 
mg/dL lower for the MS-MPC + BPS than it was for the 
other controller setups. Time below range for all controller 
setups was less than 1% during this timeframe. Table 2 lists 
the results during the postprandial period.

Discussion

This simulation, which encompasses realistic eating behav-
iors in T1DM, indicates that mean BG values were lowest for 
the MS-MPC + BPS, followed in order by the MPC + BPS, 
the MS-MPC, and the MPC both overall and after eating. 
This relationship was maintained in terms of the percent time 
where BG was in the euglycemic ranges (ie, 70-140 mg/dL 
and 70-180 mg/dL) and the hypoglycemic ranges (ie, <50, 
<60, and <70 mg/dL). It was reversed in the amount of time 
where BG was in the hyperglycemic ranges (ie, >180, >250, 
and >300 mg/dL). This shows that both the anticipatory pro-
files and the BPS had the effect of lowering BG values over-
all. Overall, the MPC + BPS had a 5.84-mg/dL lower mean 
BG and TIR 3.38% higher than the MPC. The MS-MPC case 
resulted in a 1.35% greater TIR compared with the MPC, 

Figure 4.  A representative subject’s profiles. Prior probabilities for each profile in legend.
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where no profiles were used. The MPC + BPS and MS-MPC 
+ BPS cases had a difference of 1.67% in TIR. This indi-
cates a synergetic interaction between BPS and the anticipa-
tory disturbance profiles. While statistically significant, the 
differences between MPC versus either MS-MOC or MPC + 
BPS were incremental, while MS-MPC + BPS showed a 
potentially clinically relevant difference above 5% TIR.

Across the four configurations, there was no meaningful 
change in the amount of hypoglycemia overall. Comparing 
the MPC and MS-MPC + BPS shows that the modules may 
be responsible for increasing the amount of TBR by less than 
five minutes, while increasing TIR by more than 5% overall, 
which is clinically relevant.

The most insulin was used in the case where both the BPS 
and profiles were active (MS-MPC + BPS). This was less 
when only BPS was used (MPC + BPS), then even less 

when just the profiles were used (MS-MPC), and the least 
when the standard MPC. Interestingly, the MS-MPC case 
had the highest average coefficient of variation (CV), fol-
lowed by MPC, MS-MPC + BPS, and MPC + BPS.

The postprandial TIR was increased by nearly 10% when 
the anticipatory profiles and BPS were used compared with 
the standard MPC. In addition, there was an increase in the 
70- to 140-mg/dL range, but this amount was slightly smaller. 
This difference resulted from a reduction in TAR and a 
reduction in the mean BG of roughly 16 mg/dL. The combi-
nation of the MS-MPC structure and BPS had its greatest 
effect during the postprandial period by lowering BG values 
without increasing hypoglycemia.

A limitation of this work is that this is a simulation study 
and does not include some variability inherent in free-living 
conditions (eg, stress, hormonal changes). An additional 

Table 2.  Artificial Pancreas Evaluation Metric Mean and Standard Deviation Values from Simulation Experiments During the Four 
Hours After Meals.

Controller MPC MS-MPC MPC + BPS MS-MPC + BPS ANOVA P value

<50 mg/dL (%) 0.00 ± 0.02 0.00 ± 0.02 0.00 ± 0.01 0.03 ± 0.15 1.00
<60 mg/dL (%) 0.01 ± 0.08 0.03 ± 0.16 0.01 ± 0.06 0.08 ± 0.33 <.001
<70 mg/dL (%) 0.03 ± 0.17 0.08 ± 0.33 0.06 ± 0.32 0.17 ± 0.53 <.001
70-140 mg/dL (%) 23.02 ± 18.78 27.79 ± 22.09 25.67 ± 18.92 31.24 ± 22.28 <.001
70-180 mg/dL (%) 51.79 ± 26.12 54.83 ± 26.00 56.95 ± 25.83 60.73 ± 25.39 <.001
>180 mg/dL (%) 48.18 ± 26.09 45.09 ± 25.96 42.99 ± 25.81 39.10 ± 25.32 <.001
>250 mg/dL (%) 17.87 ± 19.85 16.61 ± 19.28 13.77 ± 18.46 12.46 ± 17.91 <.001
>300 mg/dL (%) 8.68 ± 14.73 8.13 ± 14.34 6.69 ± 13.77 6.19 ± 13.16 <.001
Mean (mg/dL) 197.2 ± 54.4 191.1 ± 54.2 188.6 ± 54.4 181.7 ± 52.3 <.001
SD (mg/dL) 53.87 ± 30.73 54.59 ± 30.37 49.67 ± 32.03 50.00 ± 30.96 <.001
CV (%) 25.69 ± 9.09 26.97 ± 8.95 24.61 ± 8.96 25.83 ± 8.76 <.001
Insulin delivered (U) 3.52 ± 1.92 3.61 ± 1.98 3.67 ± 2.07 3.79 ± 2.13 <.001

The ANOVA P value tests the hypothesis that at least one condition is different from the others.
Abbreviations: MPC, model predictive control; MS, multistage; BPS, bolus priming system; ANOVA = analysis of variance; SD, standard deviation; CV, 
coefficient of variation.

Table 1.  Artificial Pancreas Evaluation Metric Mean and Standard Deviation Values from Simulation Experiments Overall.

Controller MPC MS-MPC MPC + BPS MS-MPC + BPS ANOVA P value

<50 mg/dL (%) 0.03 ± 0.21 0.07 ± 0.40 0.02 ± 0.15 0.14 ± 0.54 <.001
<60 mg/dL (%) 0.06 ± 0.41 0.23 ± 0.85 0.10 ± 0.45 0.33 ± 1.01 <.001
<70 mg/dL (%) 0.14 ± 0.64 0.47 ± 1.37 0.24 ± 0.81 0.65 ± 1.58 <.001
70-140 mg/dL (%) 49.16 ± 17.94 50.35 ± 19.25 51.92 ± 17.61 53.81 ± 18.89 .02
70-180 mg/dL (%) 72.02 ± 17.67 73.37 ± 17.38 75.50 ± 17.07 77.17 ± 16.73 <.001
>180 mg/dL (%) 27.85 ± 17.47 26.16 ± 17.25 24.27 ± 16.84 22.18 ±16.45 <.001
>250 mg/dL (%) 9.92 ± 11.51 9.31 ± 11.25 7.66 ± 10.71 7.02 ± 10.28 <.001
>300 mg/dL (%) 4.81 ± 8.29 4.52 ± 8.03 3.74 ± 7.86 3.43 ± 7.36 <.001
Mean (mg/dL) 165.5 ± 33.5 161.6 ± 33.6 159.7 ± 33.2 155.1 ± 31.9 <.001
SD (mg/dL) 53.90 ± 33.49 53.62 ± 32.72 49.51 ± 34.32 48.91 ± 32.82 <.001
CV (%) 30.46 ± 12.09 31.12 ± 11.89 28.85 ± 12.01 29.44 ± 11.88 <.001
Total daily insulin (U) 36.72 ± 17.33 37.65 ± 17.57 38.09 ± 18.04 39.20 ±18.34 <.001

The ANOVA P value tests the hypothesis that at least one condition is different from the others.
Abbreviations: MPC, model predictive control; MS, multistage; BPS, bolus priming system; ANOVA = analysis of variance; SD, standard deviation; CV, 
coefficient of variation.
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limitation is that there was no physical activity which could 
cause both a risk for hypoglycemia and hyperglycemia in the 
simulation. Because the system does not know future actions 
like a person might, physical activity could be dangerous if 
an increase in automatic insulin delivery preceded it. In 
future versions of this work, we will address this issue by 
incorporating our past methodologies that consider inputs 
related to negative disturbances in the prediction model. 
Other improvements involve using activity sensors to detect 
eating and exercise events. Model personalization could also 
improve the generation of the disturbance estimation 
procedure.

Conclusion

This experiment shows that in a simulation environment, 
both the BPS and the disturbance profiles positively impact 
the amount of time that BG values are in the euglycemic 
range while also decreasing hyperglycemia. These modules 
are the most impactful during the four hours following eat-
ing. Independently, both modules improve TIR and do even 
better in combination. The reduction in mean BG values 
attributed to the BPS and disturbances profiles did increase 
hypoglycemia, but only to a degree that is not clinically 
meaningful. The BPS and disturbance profiles seem to 
impact the variability of glucose, although the cause of this is 
unclear. Future work will determine how this system is 
impacted by situations that may create risk for hypoglycemia 
and hyperglycemia.

Abbreviations

AID, automated insulin dosing; BG, blood glucose; BPS, bolus 
priming system; CGM, continuous glucose monitor; CV, coeffi-
cient of variation; FCL, fully closed-loop; MPC, model predictive 
control; MS-MPC, multistage model predictive control; SAP, sen-
sor-augmented pump; SD, standard deviation, TAR, time above 
range; TIR, time in range; TDI, total daily insulin; T1D, type 1 
diabetes.
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