
https://doi.org/10.1177/19322968211060074

Journal of Diabetes Science and Technology
2022, Vol. 16(1) 29 –39
© 2021 Diabetes Technology Society
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/19322968211060074
journals.sagepub.com/home/dst

Symposium/Special Issue

Introduction

Technological progress in the field of diabetes management, 
and in particular, the improvement of continuous glucose 
monitors, has enabled the development of semi-automated 
(hybrid) insulin delivery (AID) systems for blood glucose 
control, the so-called artificial pancreas, which consists of a 
subcutaneous continuous glucose sensor and a subcutaneous 
infusion pump that delivers insulin at a rate decided by a 
computer program (control algorithm) to maintain glucose 
levels within a target range.1,2

Clinical studies have shown that a hybrid AID can 
improve glycemic control compared with standard treat-
ment.3 The commercialization of the first hybrid AID, the 

Medtronic MiniMed 670G with SmartGuard (Medtronic, 
California),4 occurred in 2018 and was followed by the com-
mercialization of four more systems, the Tandem Control-IQ 
(Tandem Diabetes, San Diego, California), the Medtronic 
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Abstract
Background: User-developed automated insulin delivery systems, also referred to as do-it-yourself artificial pancreas 
systems (DIY APS), are in use by people living with type 1 diabetes. In this work, we evaluate, in silico, the DIY APS Loop 
control algorithm and compare it head-to-head with the bio-inspired artificial pancreas (BiAP) controller for which clinical 
data are available.

Methods: The Python version of the Loop control algorithm called PyLoopKit was employed for evaluation purposes. A 
Python-MATLAB interface was created to integrate PyLoopKit with the UVa-Padova simulator. Two configurations of BiAP 
(non-adaptive and adaptive) were evaluated. In addition, the Tandem Basal-IQ predictive low-glucose suspend was used as a 
baseline algorithm. Two scenarios with different levels of variability were used to challenge the algorithms on the adult (n = 
10) and adolescent (n = 10) virtual cohorts of the simulator.

Results: Both BiAP and Loop improve, or maintain, glycemic control when compared with Basal-IQ. Under the scenario 
with lower variability, BiAP and Loop perform relatively similarly. However, BiAP, and in particular its adaptive configuration, 
outperformed Loop in the scenario with higher variability by increasing the percentage time in glucose target range 70-180 
mg/dL (BiAP-Adaptive vs Loop vs Basal-IQ) (adults: 89.9% ± 3.2%* vs 79.5% ± 5.3%* vs 67.9% ± 8.3%; adolescents: 74.6 ± 
9.5%* vs 53.0% ± 7.7% vs 55.4% ± 12.0%, where * indicates the significance of P < .05 calculated in sequential order) while 
maintaining the percentage time below range (adults: 0.89% ± 0.37% vs 1.72% ± 1.26% vs 3.41 ± 1.92%; adolescents: 2.87% 
± 2.77% vs 4.90% ± 1.92% vs 4.17% ± 2.74%).

Conclusions: Both Loop and BiAP algorithms are safe and improve glycemic control when compared, in silico, with Basal-
IQ. However, BiAP appears significantly more robust to real-world challenges by outperforming Loop and Basal-IQ in the 
more challenging scenario.
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MiniMed 780G with SmartGuard, the CamAPS FX 
(CamDiab, Cambridge, UK), and the DBLG1 system 
(Diabeloop, Grenoble, France). In addition, other systems 
are currently being assessed and soon commercialized.5

Several closed-loop control algorithms for AID have been 
described and clinically evaluated, including model predic-
tive control,6 proportional-integral-derivative (PID),7 fuzzy 
logic,8 and bio-inspired.9 However, none of these controllers 
have yet shown a clear superiority when compared with oth-
ers in a clinical setting.10,11

Although commercial solutions of hybrid AID systems 
now exist, the availability of continuous glucose monitoring 
(CGM) and insulin pumps motivated people with diabetes to 
form the #WeAreNotWaiting movement and develop do-it-
yourself (DIY) AID systems, such as OpenAPS, AndroidAPS, 
and Loop.12,13 The DIWHY survey of DIY system users by 
the EU-funded Open Project highlighted key motivations as 
improved glycemic control, reducing long-term complica-
tions, reduced interaction with their therapy systems, and a 
lack of commercially available closed-loop systems in their 
country.14

Data reported for these DIY systems suggest general 
safety and improved glycemic control. For the openAPS 
algorithm, this includes retrospective analysis of CGM15,16 
and in silico trials by Toffanin et al.17 A large observational 
study into real-world use of the loop system concluded it can 
be used safely and effectively by children and adults.18

With increasing availability of commercial AID systems, 
people with type 1 diabetes have a choice of systems and 
comparative data may contribute to this, as well as serving to 
benchmark performance. In this article, we provide, to the 
best of our knowledge, the first in silico evaluation of the 
Loop control algorithm with the UVa-Padova simulator.19 In 
addition, we provide an in silico head-to-head comparison of 
the Loop system with the clinically evaluated bio-inspired 
artificial pancreas (BiAP) control algorithm developed at 
Imperial College London (London, UK).9,20-22 The baseline 
algorithm for this comparison is the Tandem Basal-IQ pre-
dictive low-glucose insulin suspend and bolus calculator sys-
tem (Tandem Diabetes Care, San Diego, California).22

Methods

Loop Controller Implementation

Loop control algorithm modulates temporary basal insulin 
rates and offers recommended meal and correction insulin 
bolus to reach a predefined target glucose range by account-
ing for current CGM readings and the effect of ingested 
meals and administered insulin doses on future glucose lev-
els. Details about the control algorithm can be found in the 
Loop documentation.23

In this work, to evaluate the Loop control algorithm, we 
used its open-source Python version called PyLoopKit, 
which can be downloaded from a GitHub repository.24

PyLoopKit can parse either Tidepool issue reports or an 
input dictionary containing the profile settings, along with 
meal, insulin, and glucose history. For this work, we created a 
Python-MATLAB interface which allowed us to call 
PyLoopKit with the required inputs, handle storing the 
required history, and parse the output to the correct format for 
the UVa-Padova simulator. An open-source version of such 
interface can be downloaded from a GitHub repository.25

To approximate the average user experience, settings 
were provided following Loop’s setup configuration recom-
mendations, which included using subject-specific informa-
tion provided by the simulator, such as insulin sensitivity 
factor (ISF), insulin-to-carbohydrate ratio (ICR), and basal 
insulin. As suggested by the Loop documentation, the maxi-
mum basal rate was set to 4 times the highest scheduled rate. 
Based on multiple in silico tests, the correction range was set 
to 100 to 110 mg/dL for the adult cohort and to 110 to 140 
mg/dL for the adolescent cohort. This range was empirically 
selected by considering, for the two evaluated scenarios, a 
trade-off between maximizing the percentage time in the gly-
cemic target range (70-180 mg/dL) and minimizing the per-
centage time in hypoglycemia (<70 mg/dL).

Loop allows a slow, medium, and fast absorption rate to be 
chosen for meals, but because version 3.2 of the UVa-Padova 
simulator does not include this option, the default medium rate 
of 180 minutes was used throughout our evaluation. We also 
used the recommended adult/adolescent rapid-acting exponen-
tial insulin model of 6 hours, with a 75-minute peak.

BiAP Controller Implementation

The BiAP is a hybrid AID system that includes a closed-loop 
control algorithm based on the mathematical modeling of the 
pancreatic beta-cell physiology. To recommend meal insulin 
and correction doses, BiAP incorporates an adaptive bolus 
calculator that learns to optimize the bolus calculator settings 
from the controller’s functioning, user’s behavior, and CGM 
outcomes.26

The BiAP controller used in this work slightly differs from 
the one originally presented by the authors.26 In particular, the 
employed beta-cell model has been modified to include the 
potentiation effect of sustained elevated glucose levels on 
insulin secretion. Details about the updated model can be 
found in Supplemental Appendix. It is worth remarking that, 
as demonstrated in Herrero et al,9 the employed beta-cell 
model is mathematically equivalent to a proportional-deriva-
tive (PD) controller with two low-pass filters, and by exten-
sion, the updated version employed in the current work is 
equivalent to a PID controller with two low-pass filters.

The BiAP closed-loop algorithm modulates insulin deliv-
ery in two different ways. The beta-cell model, which includes 
an insulin feedback mechanism to account for insulin stack-
ing, is used to deliver micro-boluses, every 5 minutes, to com-
pensate for hyperglycemia. Then, a predictive low-glucose 
insulin suspend system (PLGS) is employed to minimize 
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hypoglycemia by partially (ie, 50%), or totally, suspending 
basal insulin delivery. The BiAP controller was tuned using 
subject-specific information provided by the simulator, such 
as ISF, ICR, and basal insulin. Glucose targets for the beta-cell 
model and bolus calculator were set to 100 mg/dL, and the 
partial and total suspension thresholds for the PLGS were set 
to 100 mg/dL and 80 mg/dL, respectively.

Finally, with the aim of reducing post-prandial peaks, a 
super bolus strategy has been introduced.27 With a super 
bolus, some of the basal insulin delivery is stopped or par-
tially reduced and delivered instead as additional bolus insu-
lin on top of a normal meal or correction bolus. In this case, 
basal insulin delivery is suspended for 60 minutes after an 
insulin bolus is delivered.

Two configurations of the BiAP controller were evalu-
ated: with non-adaptive bolus calculator (BiAP) and with 
adaptive bolus calculator (BiAP-Adaptive). The BiAP con-
trol algorithm employed in this work was implemented in 
MATLAB 2020b (MathWorks, Natick, Massachusetts).

Figure 1 shows a block diagram of the BiAP control algo-
rithm, and Figure 2 shows an example of the different insulin 
delivery strategies employed by Loop and BiAP. Loop mod-
ulates the basal insulin delivery rate in both directions with 
respect to the basal profile, while BiAP only reduces the 
basal insulin rate (by 50% or 100%) and, when necessary, 
delivers additional micro-boluses at 5-minute intervals.

Tandem Basal-IQ and Bolus Calculator 
Implementations

The Tandem Basal-IQ predictive low-glucose insulin sus-
pend algorithm was implemented in MATLAB as described 

in the manufacturer’s user manual.28 However, the basal 
resumption condition, which states that basal insulin delivery 
is resumed once the current CGM sensor reading increases 
compared with the previous reading, was modified to be con-
sistent with the figures in the manual and from the observa-
tion of the functioning of the actual system. In particular, this 
condition was replaced by a condition that requires three 
consecutive CGM sensor readings to increase with respect to 
the previous reading before the basal is resumed.

Based on multiple in silico tests, the glucose threshold to 
suspend insulin was left to the default value of 80 mg/dL for 
the adult cohort and set to 110 mg/dL for the adolescent 
cohort. The Tandem bolus calculator was implemented in 
MATLAB based on the work presented by Buchanan et al.29

In Silico Environment

The in silico head-to-head evaluation was performed on ver-
sion 3.2 of the UVa-Padova simulator.19 However, to create 
more challenging scenarios for the controllers, additional 
intra-day variability on insulin absorption, carbohydrate esti-
mation, meal timing, and insulin sensitivity was introduced. 
Details about how this variability was introduced can be 
found in Herrero et al.26 In addition, to account for additional 
variability in meal composition, the simulator meal library, 
which consists of 30 different meals, was supplemented with 
a further 16 new mixed-meal absorption profiles described 
by the authors in a previous work.30

Two in silico scenarios were employed to challenge the 
evaluated controllers at different levels. Both scenarios con-
sisted of three meals a day at 7 am, 1 pm, and 8 pm with 70, 
100 and 80 g of carbohydrates, respectively. No snacks were 
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Figure 1. Block diagram of the BiAP control algorithm. Rounded rectangles represent inputs to the controller and the non-rounded 
ones correspond to different modules of the controller. Nodes indicate where different connectors meet. 
Abbreviation: BiAP, bio-inspired artificial pancreas.
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provided to prevent any masking of hypoglycemic events. 
Similarly, no rescue carbohydrates were given to see the 
capacity of the controllers to minimize hypoglycemia.

In scenario 1, all meals were announced for meal bolus 
calculation, and there was a 50% chance of checking for a 
correction bolus at 2.5 hours after a meal. If glucose levels 
were above 200 mg/dL at this check, then the correction 
bolus recommended by the algorithm being tested was 
accepted. The occurrence of this check was generated ran-
domly and then kept consistent across participants, scenar-
ios, and algorithms.

Scenario 2 included additional challenges for the control-
lers, such as offsetting bolus calculator settings (ICR, ISF) 
and basal insulin profile settings (Table 1), and skipped or 
delayed meal announcement. A trigger for skipping and 
delaying meal announcement was randomly generated based 
on an average 2.5 meal announcements skipped and 2 meals 
delayed per week.31 This was then used consistently across 
all tests and comparisons. As the Loop algorithm uses a car-
bohydrate absorption model, when the delayed meals were 
announced, they were set to the correct time retrospectively 
as is recommended practice in the Loop documentation. The 
design of scenario 2 aimed to attain glycemic outcomes (ie, 
percentage time in glucose targets) that are closer to the out-
comes observed when evaluating open-loop and closed-loop 
insulin delivery strategies in clinical and real-world 
settings.4,32

The simulation was performed on the adult (n = 10) and 
adolescent (n = 10) cohorts of the simulator over a 60-day 
period. The last 30 days of the simulation were used for 

evaluation purposes to allow comparison with the adaptive 
version of BiAP. Tuning of all the evaluated algorithms was 
kept consistent in all scenarios.

Evaluation Metrics and Statistical Analysis

Common glycemic control metrics for artificial pancreas 
clinical trials33 were employed for evaluation purposes. These 
included mean blood glucose measured with the CGM in mg/
dL (MEAN BG) and time-in-range metrics, including per-
centage time within the 70-180 mg/dL range (%TIR70-180), 
percentage time below 70 mg/dL (%TB70), percentage time 
below 54 mg/dL (%TB54), percentage time above 180 mg/dL 
(%TA180), and percentage time above 250 mg/dL (%TA250). 
Other glycemic metrics were low blood glucose index 
(LBGI), high blood glucose index (HBGI), risk index (RI), 
average insulin units per day (INSULIN), and mean absolute 
glucose (MAG). Results are reported as mean ± SD.

Figure 2. Comparison of the different insulin delivery strategies employed by Loop and BiAP. Upper graph shows the CGM profiles for 
Loop (blue) and BiAP (red) for the same 24-hour meal scenario. Note that the announcement of lunch is omitted. Middle graph displays 
the basal-bolus insulin delivery by Loop and the bottom graph by BiAP. 
Abbreviations: BiAP, bio-inspired artificial pancreas; CGM, continuous glucose monitoring.

Table 1. Offsetting of the Bolus Calculator and Basal Insulin 
Profile Settings.

ICR schedule 3:00-11:00 11:00-17:00
ICR offset +20% −20%
ISF schedule 8:00-16:00 16:00-24:00
ISF offset +20% −20%
Basal insulin schedule 0:00-12:00 12:00-24:00
Basal insulin offset −40% +20%

Abbreviations: ICR, insulin-to-carbohydrate ratio; ISF, insulin sensitivity 
factor.
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For the comparison of the different evaluated interventions, 
a one-way analysis of variance (ANOVA) test was used to 
reject the null hypothesis that all intervention means are equal 
(P values shown in the last row of Tables 2–4), with post hoc 
tests (Tukey-Kramer with α = 0.05) to compare pairwise 
interventions. For the comparison of the effect of the BiAP 
adaptation mechanism over time (ie, week 1 vs week 8), a 
paired t test was used. The statistical MATLAB 2020b toolbox 
was used for this purpose. Statistical significance was set at P 
< .05 for both the ANOVA post hoc test and the t test.

Results

Tables 2 and 3 show the glycemic outcomes for the adult 
cohort on scenarios 1 and 2, respectively. Similarly, Tables 4 
and 5 show the glycemic outcomes for the adolescent cohort 
on scenarios 1 and 2, respectively.

In scenario 1, there is significant variance (from the one-
way ANOVA test, indicating at least one intervention differs 

significantly from the group mean) in mean glucose and all 
time in ranges except %TB54 in the adult cohort and %TB70 
and %TB54 in the adolescent cohort. Mean glucose and 
times above ranges were optimal with BiAP-adaptive in both 
cohorts, while %TIR70-180 was only optimal in the adult 
cohort. %TB70 was lowest with Loop, although in pairwise 
post hoc testing %TB70 with Loop was only significantly 
different to that with Basal-IQ in the adult cohort (0.38% ± 
0.33% vs 1.4% ± 0.81%; P < .05).

For variability metrics in scenario 1, there is significant 
variance between AID approaches in LBGI, HBGI, and RI in 
the adult cohort, while for the adolescent cohort only show 
significant variance in HBGI. In post hoc testing, LBGI was 
significantly lower with Loop compared with Basal-IQ (0.52 
± 0.28 vs 2.79 ± 1.19; P < .05) in the adult cohort. No vari-
ance was seen in MAG or insulin delivered.

In scenario 2, in the adult cohort, there is significant vari-
ance in all metrics, but not in MAG and insulin delivered. In 
the adolescent cohort, there is significant variance in 

Table 2. Glycemic Outcomes for the Adult Cohort on Scenario 1.

No. Algorithm Mean BG %TIR70-180 %TB70 %TB54 %TA180 %TA250

1 Basal-IQ 135.3 ± 8.8 86.5 ± 7.1(4) 1.40 ± 0.81(2) 0.38 ± 0.50 12.07 ± 6.61 0.92 ± 1.37
2 Loop 136.7 ± 6.8(4) 86.3 ± 4.6(4) 0.38 ± 0.33(1) 0.09 ± 0.09 13.31 ± 4.73(4) 1.59 ± 1.12(4)

3 BiAP 133.5 ± 5.9 89.8 ± 5.8 0.62 ± 0.71 0.12 ± 0.19 9.58 ± 5.29 0.47 ± 0.55
4 BiAP-Adaptive 128.4 ± 3.5(2) 93.6 ± 3.0(1,2) 0.83 ± 0.76 0.22 ± 0.23 5.52 ± 2.69(2) 0.20 ± 0.26(2)

 P value .0368 .0126 .0133 .1421 .0075 .0118

No. Algorithm LBGI HBGI RI INSULIN MAG

1 Basal-IQ 0.52 ± 0.28(2) 2.79 ± 1.19 3.31 ± 1.37(4) 45.8 ± 11.1 1.48 ± 0.18
2 Loop 0.24 ± 0.10(1) 3.01 ± 0.93(4) 3.25 ± 0.90 45.3 ± 10.8 1.68 ± 0.20
3 BiAP 0.30 ± 0.17 2.41 ± 0.87 2.71 ± 0.98 46.1 ± 11.1 1.52 ± 0.28
4 BiAP-Adaptive 0.36 ± 0.17 1.74 ± 0.48(2) 2.10 ± 0.59(1) 47.8 ± 12.0 1.46 ± 0.22
 P value .0180 .0181 .0348 .9649 .1135

P values in the last row correspond to the ANOVA test, and the numbers within the superindex indicate the groups that are statistically different (P < .05) as a result of the 
post hoc analysis.
Abbreviations: ANOVA, analysis of variance; BG, blood glucose; BiAP, bio-inspired artificial pancreas; HBGI, high blood glucose index; INSULIN, average insulin units per day; 
LBGI, low blood glucose index; MAG, mean absolute glucose; RI, risk index.

Table 3. Glycemic Outcomes for the Adult Cohort on Scenario 2.

No. Algorithm Mean BG %TIR70-180 %TB70 %TB54 %TA180 %TA250

1 Basal-IQ 162.2 ± 16.1(2,3,4) 67.9 ± 8.3(2,3,4) 3.41 ± 1.92(2,3,4) 1.60 ± 1.31(3,4) 28.69 ± 7.39(2,3,4) 8.86 ± 5.49(2,3,4)

2 Loop 146.9 ± 8.3(1) 79.5 ± 5.3(1,4) 1.72 ± 1.26(1) 0.66 ± 0.68 18.83 ± 5.89(1,4) 2.29 ± 1.36(1)

3 BiAP 140.0 ± 6.4(1) 85.8 ± 4.9(1) 1.11 ± 0.87(1) 0.43 ± 0.47(1) 13.05 ± 4.85(1) 1.03 ± 0.81(1)

4 BiAP-Adaptive 135.8 ± 4.7(1) 89.9 ± 3.2(1,2) 0.89 ± 0.37(1) 0.28 ± 0.27(1) 9.22 ± 3.13(1,2) 0.89 ± 0.62(1)

 P value <.00001 <.000001 <.0001 .026 <.000001 <.000001

No. Algorithm LBGI HBGI RI INSULIN MAG

1 Basal-IQ 1.13 ± 0.75(2,3,4) 7.67 ± 3.42(2,3,4) 8.80 ± 3.98(2,3,4) 43.8 ± 10.5 1.87 ± 0.49
3 Loop 0.58 ± 0.33(1) 4.28 ± 1.14(1) 4.86 ± 1.04(1) 44.3 ± 10.5 1.77 ± 0.23
4 BiAP 0.41 ± 0.27(1) 3.12 ± 0.87(1) 3.53 ± 0.92(1) 45.3 ± 10.9 1.60 ± 0.24

5 BiAP-Adaptive 0.34 ± 0.12(1) 2.54 ± 0.64(1) 2.88 ± 0.70(1) 46.3 ± 11.4 1.56 ± 0.22
 P value .0011 <.000001 <.000001 .9572 .1084

P values in the last row correspond to the ANOVA test, and the numbers within the superindex indicate the groups that are statistically different (P < .05) as a result of the 
post hoc analysis.
Abbreviations: ANOVA, analysis of variance; BG, blood glucose; BiAP, bio-inspired artificial pancreas; HBGI, high blood glucose index; INSULIN, average insulin units per day; 
LBGI, low blood glucose index; MAG, mean absolute glucose; RI, risk index.
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all metrics, but not in %TB70, %TB54, LBGI, and insulin 
delivered. In the adult cohort, when compared with Basal-IQ, 
both Loop and BiAP (non-adaptive and adaptive) were opti-
mal in all significantly variant metrics with the exception of 
%T54, which was not different for Loop. In the adolescent 
cohort, only BiAP (non-adaptive and adaptive) was signifi-
cantly different to Basal-IQ in mean glucose, %TIR70-180, 
%TA180, and HBGI. %TIR70-180 and %TA180 were opti-
mal with BiAP-adaptive when compared with Loop 
(%TIR70-180: 89.9% ± 3.2% vs 79.5% ± 5.3%, P < .05 
[adult]; 74.6 ± 9.5 vs 53.0 ± 7.7 [adolescent]; %TA180: 
9.22% ± 3.13% vs 18.83% ± 5.89%, P < .01 [adult]; 
22.48% ± 7.33% vs 42.10% ± 6.18% [adolescent]). For 
variability metrics in scenario 2, there is significant variance 
between AID approaches in LBGI (only adult cohort), HBGI, 
and RI, but the post hoc testing did not show significant dif-
ferences between Loop and BiAP.

Figures 3 and 4 depict the 24-hour adult and adolescent 
population CGM averages, respectively, expressed as median 

[5th and 95th percentiles], corresponding to Loop and BiAP 
with adaptive bolus calculator (BiAP-Adaptive).

Table 6 presents, for scenario 2, the metric %TIR70-180, 
%TA180, and %TBR corresponding to weeks 1 and 8 for the 
BiAP with and without meal bolus adaptation and evaluated 
the adult and adolescent cohorts. Figures 5 and 6 display the 
temporal evolution of %TIR70-180 over the 8-week period 
for the two BiAP configurations evaluated on scenario 2 and 
the adult and adolescent cohorts, respectively. Note that, 
unlike the non-adaptive version, the adaptive version results 
in a %TIR70-180 and %TA180 significantly superior in 
week 8 when compared with week 1.

Discussion

Overall, both Loop and BiAP, in its non-adaptive and adap-
tive configurations, improve glycemia control when com-
pared with the Tandem Basal-IQ predictive low-glucose 
insulin suspend system. Such improvements are more 

Table 4. Glycemic Outcomes for the Adolescent Cohort on Scenario 1.

No. Algorithm Mean BG %TIR70-180 %TB70 %TB54 %TA180 %TA250

1 Basal-IQ 163.9 ± 17.3 63.0 ± 14.3 2.73 ± 3.06 1.45 ± 2.29 34.29 ± 12.07 9.94 ± 10.73
2 Loop 175.9 ± 16.7(3,4) 60.2 ± 10.5 1.25 ± 2.21 0.62 ± 1.57 38.53 ± 8.75(4) 17.39 ± 9.73(4)

3 BiAP 157.2 ± 14.2(2) 68.0 ± 14.1 2.20 ± 3.11 1.02 ± 1.95 29.84 ± 11.80 7.63 ± 8.79
4 BiAP-Adaptive 147.0 ± 8.8(2) 74.7 ± 13.1 2.80 ± 4.11 1.43 ± 2.88 22.50 ± 9.74(2) 4.40 ± 4.92(2)

 P value <.001 .080 .68 .81 <.05 <.05

No. Algorithm LBGI HBGI RI INSULIN MAG

1 Basal-IQ 1.12 ± 1.54 7.69 ± 3.76 8.81 ± 4.85 48.7 ± 17.4 2.11 ± 0.53
2 Loop 0.58 ± 0.99 10.19 ± 3.84(4) 10.77 ± 4.65 46.4 ± 15.8 2.58 ± 0.61
3 BiAP 0.88 ± 1.42 6.52 ± 3.18 7.40 ± 4.27 49.8 ± 17.8 2.06 ± 0.55
4 BiAP-Adaptive 1.11 ± 1.85 4.89 ± 2.10(2) 6.00 ± 3.69 51.8 ± 18.5 1.97 ± 0.50
 P value .83 <.01 .11 .91 .08

P values in the last row correspond to the ANOVA test, and the numbers within the superindex indicate the groups that are statistically different (P < .05) as a result of the 
post hoc analysis.
Abbreviations: ANOVA, analysis of variance; BG, blood glucose; BiAP, bio-inspired artificial pancreas; HBGI, high blood glucose index; INSULIN, average insulin units per day; 
LBGI, low blood glucose index; MAG, mean absolute glucose; RI, risk index.

Table 5. Glycemic Outcomes for the Adolescent Cohort on Scenario 2.

No. Algorithm Mean BG %TIR70-180 %TB70 %TB54 %TA180 %TA250

1 Basal-IQ 172.2 ± 16.8(4) 55.4 ± 12.0(4) 4.17 ± 2.74 2.40 ± 2.22 40.47 ± 10.68(4) 13.91 ± 10.30
2 Loop 176.2 ± 14.8(4) 53.0 ± 7.7(4) 4.90 ± 1.92 2.35 ± 1.64 42.10 ± 6.18(4) 18.05 ± 9.48(4)

3 BiAP 163.9 ± 13.7 61.2 ± 11.4(4) 3.27 ± 2.58 1.57 ± 2.08 35.53 ± 10.10(4) 9.78 ± 8.36
4 BiAP-Adaptive 147.9 ± 6.7(1,2) 74.6 ± 9.5(1,2,3) 2.87 ± 2.77 1.17 ± 1.69 22.48 ± 7.33(1,2,3) 4.45 ± 4.24(2)

 P value <.001 <.001 .28 .40 <.0001 <.01

No. ALGORITHM LBGI HBGI RI INSULIN MAG

1 Basal-IQ 1.76 ± 1.77 9.40 ± 3.64(4) 11.16 ± 4.42(4) 47.5 ± 16.6 2.12 ± 0.46
3 Loop 1.69 ± 1.38 10.64 ± 3.46(4) 12.33 ± 4.56(4) 47.0 ± 16.5 2.63 ± 0.57(4)

4 BiAP 1.27 ± 1.53 7.74 ± 2.94 9.01 ± 3.76 48.6 ± 16.9 2.05 ± 0.47
5 BiAP-Adaptive 0.99 ± 1.09 4.96 ± 1.63(1,2) 5.95 ± 2.48(1,2) 51.7 ± 17.8 1.93 ± 0.43(2)

 P value .61 <.01 <.01 .92 <.05

P values in the last row correspond to the ANOVA, test and the numbers within the superindex indicate the groups that are statistically different (P < .05) as a result of the 
post-hoc analysis.
Abbreviations: ANOVA, analysis of variance; BG, blood glucose; BiAP, bio-inspired artificial pancreas; HBGI, high blood glucose index; INSULIN, average insulin units per day; 
LBGI, low blood glucose index; MAG, mean absolute glucose; RI, risk index.
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relevant in the more challenging scenario 2. These differences 
can be explained by the fact that in scenario 2, the bolus cal-
culator settings are more offset, and, in some cases, meal 
announcement is omitted or delayed. Hence, a closed-loop 
controller can better compensate for such uncertainties and 
perturbations.

In both scenarios and both cohorts, when compared with 
Loop, BiAP-Adaptive increases %TIR70-180 and reduces 

hyperglycemia (%TA180 and %TA250). Hence, adaptation 
is potent, even over a relatively short period (ie, 2 weeks), as 
can be observed in Figure 4. Furthermore, unlike Loop, both 
BiAP and BiAP-Adaptive reduce hypoglycemia in scenario 
2 (adult cohort) compared with Tandem Basal-IQ.

It is worth remarking the effectiveness of the BiAP adap-
tation mechanism for the adolescent cohort, which might 
indicate that there is greater potential for improvement when 

Figure 3. Twenty-hour-hour adult population CGM averages expressed as median [5th and 95th percentiles] corresponding to Loop 
and BiAP with adaptive bolus calculator on scenario 2. 
Abbreviations: BiAP, bio-inspired artificial pancreas; CGM, continuous glucose monitoring.

Figure 4. Twenty-hour-hour adolescent population CGM averages expressed as median [5th and 95th percentiles] corresponding to 
Loop and BiAP with adaptive bolus calculator on scenario 2.
Abbreviations: BiAP, bio-inspired artificial pancreas; CGM, continuous glucose monitoring.
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starting with a lower percentage time in glucose range 
baseline.

The fact that the differences in performance between 
Loop and BiAP, and in particular its adaptive version, are 
more evident in the more challenging scenario 2 may be 
explained by the nature of the controllers. Loop is based on 
a model-predictive strategy and BiAP is primarily a reac-
tive controller, similar to a PID; hence, Loop’s performance 
is closely tied to the goodness of the glucose forecasting 
models it uses. The BiAP suffers less from this problem 
because it does not rely on a long-term glucose prediction. 

Furthermore, as can be observed in Figure 2, BiAP tends to 
deliver insulin in response to a glucose increase in a shorter 
period when compared with Loop. This might also help to 
explain BiAP’s advantage over Loop because the former 
could be better suited to deal with the slow insulin 
pharmacokinetics.

Another reason that might partially explain the relative 
performance of Loop when compared with BiAP is the fact 
that Loop control algorithm bases its decision on a glucose 
forecast over a 6-hour window. Then, if a hypoglycemic 
event is predicted within the post-prandial period forecast, 

Table 6. Comparison of Percentage Time in Target Corresponding to Week 1 and Week 8 Between BiAP Control With and Without 
Meal Bolus Adaptation Corresponding to Scenario 2 Evaluated on the Adult and Adolescent Cohorts.

Adult cohort

 BiAP-adaptation BiAP (no adaptation)

 %TIR70-180 %TA180 %TB70 %TIR70-180 %TA180 %TB70

Week 1 86.5 [81.5, 88.9] 12.1 [9.9, 18.0] 1.31 [0.45, 2.1] 87.5 [80.6, 89.1] 11.8 [9.6, 18.7] 1.24 [0.69, 2.18]
Week 8 90.7 [87.0, 91.4]* 8.9 [7.5, 12.3]* 0.79 [0.40, 1.2] 85.4 [81.9, 89.6] 12.3 [9.7, 17.8] 1.49 [0.2, 1.98]

Adolescent cohort

 BiAP-adaptation BiAP (no adaptation)

 %TIR70-180 %TA180 %TB70 %TIR70-180 %TA180 %TB70

Week 1 63.1 [46.9, 69.8] 34.9 [27.5, 43.9] 3.2 [0.99, 4.3] 62.0 [46.9, 69.1] 33.9 [28.1, 45.8] 2.75 [1.63, 3.76]
Week 8 79.6 [69.3, 84.9]* 16.9[14.3, 27.2]* 2.0 [0.69, 4.4] 63.7 [69.3, 71.3] 33.4 [28.2, 41.7] 2.75 [1.98, 3.22]

Results are presented as median [25th and 75th percentiles].
Abbreviation: BiAP, bio-inspired artificial pancreas.
*P < .05.

Figure 5. Temporal evolution of percentage time in glucose target range (70-180 mg/dL) corresponding to BiAP control with 
and without meal bolus adaptation evaluated on scenario 2 and the adult cohort. Results are presented as median [25th and 75th 
percentiles]. Abbreviations: BiAP, bio-inspired artificial pancreas; IQR, interquartile range.
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Loop will not suggest a meal bolus, which may lead to exces-
sive hyperglycemia.

The BIAP-Adaptive shows a trend toward giving the most 
insulin but has lower, or equal, percentage time in hypogly-
cemia. This can be explained by a more optimized ICR, 
thanks to the adaptation mechanisms. This advantage might 
be less evident in a real-life scenario when meal carbohy-
drate content and absorption are even more challenging.

This study has several limitations. Although efforts have 
been put into generating realistic in silico simulations that 
yield glycemic results close to clinical trials from the litera-
ture, these scenarios are still not able to include all the vari-
ability and perturbations seen in a clinical or real-world 
setting. One example is the lack of a mathematical model 
that can realistically emulate the effect of physical exercise 
on glucose regulation.

As previously described, we decided not to include snack 
and rescue carbohydrates to challenge the controller with 
respect to hypoglycemia. However, this is not what would be 
expected in a real-life scenario. Hence, the provided results 
might underestimate the percentage time in hyperglycemia 
and overestimate hypoglycemia. Another aspect that can be 
affected by the inclusion of snack and rescue carbohydrates 
is the convergence speed of the adaptation mechanism of the 
bolus calculator in BiAP because these perturbations can 
mask or invalidate the adaptation. Hence, the provided 
results might overestimate the benefits of the adaptation 
mechanism when compared with a real-life setting.

Regarding the Tandem Basal-IQ algorithm, we have 
implemented it based on information provided in the user 
manual and scientific literature; however, the actual imple-
mentation of this algorithm in the commercial product might 
differ from our implementation, so these results should be 
interpreted with caution.

Finally, we have done everything possible to tune the con-
trollers to optimize glycemic outcome. However, no formal 
method has been employed for this purpose. Instead, a mix 
of clinical and empirical knowledge was employed. If sce-
nario 1 is considered, Loop can be tuned more aggressively 
to increase percentage time in range. However, if this is 
done, then, a clinically significant increase in percentage 
time below range (eg, >1%) in scenario 2 was observed.

Conclusion

Both Loop and BiAP closed-loop control algorithms are safe 
and improve, or maintain, glycemic control when compared 
with the evaluated baseline algorithm (Tandem Basal-IQ).

Under scenarios with less uncertainty and perturbations, 
BiAP and Loop perform relatively similarly. However, BiAP 
appears more robust to real-world challenges such as vari-
ability in the basal-bolus therapy settings and skipped or 
delayed meal announcements. The version of BiAP with 
bolus calculator setting adaptation appears capable of 
improving percentage time in range further without an 
increase in hypoglycemia. Therefore, BiAP has the potential 

Figure 6. Temporal evolution of percentage time in glucose target range (70-180 mg/dL) corresponding to BiAP control with and 
without meal bolus adaptation evaluated on scenario 2 and the adolescent cohort. Results are presented as median [25th and 75th 
percentiles]. Abbreviations: BiAP, bio-inspired artificial pancreas; IQR, interquartile range.



38 Journal of Diabetes Science and Technology 16(1) 

to provide superior glycemic control to Loop in adult and 
adolescent populations with type 1 diabetes.
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