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Abstract

As an integral component of cardiac tissue, macrophages are critical for cardiac development, 

adult heart homeostasis, as well as cardiac healing. One fundamental function of macrophages 

involves the clearance of dying cells or debris, a process termed efferocytosis. Current literature 

primarily pays attention to the impact of efferocytosis on apoptotic cells. However, emerging 

evidence suggests that necrotic cells and their released cellular debris can also be removed by 

cardiac macrophages through efferocytosis. Importantly, recent studies have demonstrated that 

macrophage efferocytosis plays an essential role in cardiac pathophysiology and repair. Therefore, 

understanding macrophage efferocytosis would provide valuable insights on cardiac health, and 

may offer new therapeutic strategies for the treatment of patients with heart failure. In this review, 

we first summarize the molecular signals that are associated with macrophage efferocytosis of 

apoptotic and necrotic cells, and then discuss how the linkage of efferocytosis to the resolution of 

inflammation affects cardiac function and recovery under normal and diseased conditions. Lastly, 

we highlight new discoveries related to the effects of macrophage efferocytosis on cardiac injury 

and repair.
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INTRODUCTION

In the human body, it is estimated that more than 150 billion cells undergo apoptosis 

every day which have to be cleared by phagocytes, a process known as programmed cell 

removal, or “efferocytosis” (1, 2). Efferocytosis is derived from Greek meaning “carry the 

corpse to the grave,” and initially referred to as phagocytosis of apoptotic cells (3–5). The 

process of efferocytosis is evolutionarily conserved and occurs for various physiological or 
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pathological reasons, including removing excess cells generated during development and 

only allowing selected subset of cells to mature and progress; replacing aged cells that 

come to the end of the lifespan; and eliminating damaged cells during tissue remodeling 

after injury, which facilitates the progress of tissue repair (6–9). In most tissues, removal 

of apoptotic/necrotic cells is mediated by either professional or non-professional phagocytes 

(5). Macrophages are the most common professional phagocytes that are capable of rapidly 

ingesting and processing multiple corpses in succession (10, 11). Immature dendritic cells 

are also professional phagocytes, although the capacity of phagocytosis and their access 

to apoptotic/necrotic corpses are tissue-specific (10, 11). In contrast, non-professional 

phagocytes generally represent multiple cell types that are “neighbors” to apoptotic/necrotic 

cells, such as epithelial cells, mesenchymal cells, endothelial cells, and fibroblasts (10, 

12). Interestingly, there are specialized phagocytes that exist in specific tissue context, 

for example, the retinal pigment epithelial cells that remove damaged photoreceptor outer 

segments, and Sertoli cells that engulf apoptotic germ cells (7).

In adult human and mouse hearts, predominant phagocytes are macrophages that account 

for ~7% of the nonmyocyte population under healthy condition, and they may represent an 

even larger fraction in developing hearts (13, 14). The traditional view held that cardiac 

macrophages were originated from circulating monocytes, which arose from bone marrow-

derived hematopoietic stem cells and spleens (15, 16). However, recent studies using fate-

mapping and lineage-tracing techniques have revealed that tissue-resident macrophages 

are established during embryonic development, and they are capable of maintaining 

the population through self-renewal (17–19). These discoveries have prompted us to 

better appreciate the diversity of cardiac phagocytes, and sparked significant interests in 

understanding macrophage efferocytosis in the heart under healthy and disease conditions. 

In this review, we will summarize the molecular mechanisms that govern the efferocytosis 

of apoptotic and necrotic cells, and further highlight recent findings on macrophage 

efferocytosis in cardiac diseases and repair.

MOLECULAR SIGNALING INVOLVED IN EFFEROCYTOSIS OF APOPTOTIC 

AND NECROTIC CELLS

Despite immense number of cell turnover daily, very few apoptotic cells remain at 

homeostasis, indicating the presence of an efferocytosis machinery with very high efficiency 

and capacity. For instance, approximately 7,000 red blood cells are cleared every second 

by macrophages in mouse spleen and liver (20). Therefore, to ensure such high efficiency 

and no off-target clearance of healthy cells, efferocytosis has to be tightly regulated and 

orchestrated through several signaling programs, including: “find-me” signaling, a set 

of molecules that mediate the recruitment of phagocytes to dying/dead cells; “eat-me” 

signaling, receptor-mediated uptake of apoptotic and necrotic cells; and digestion signaling, 

postengulfment processing of cellular material, generally via phagolysosomal degradation. 

These three stages of signaling cascades are well organized and importantly, disturbance in 

one or more of these pathways will result in defective efferocytosis and subsequent immune 

dysfunction and tissue damage (7, 21, 22).
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While apoptosis has been considered the dominant mechanism for homeostatic cell turnover, 

other types of cell death (i.e., gene-regulated necrosis) are also present in various tissues 

in response to stress conditions (23). Interestingly, recent studies have demonstrated that 

necrotic cells could be removed by efferocytosis (23). Nonetheless, the signaling pathways 

for efferocytosis of apoptotic cells and necrotic cells are not entirely the same, as described 

below.

“Find-me” signaling

Many factors (i.e., the types of dying/dead cells and phagocytes, stimuli that drive cell 

death, and the stage of cell death) determine the relevance of individual “find-me” 

signals in efferocytosis (24). To date, several key “find-me” signaling molecules have 

been identified including: triphosphate nucleotides (ATP, UTP); chemokines; and lipids 

such as lysophos-phatidycholine (LPC) and sphingosine-1-phosphate (S1P) (Fig. 1). These 

“find-me” signaling molecules can be directly released as soluble mediators or exposed on 

the membrane of apoptotic cells that detach and diffuse in the extracellular environment 

(23). For example, nucleotides ATP and UTP are exported through the plasma membrane 

channel pannexin 1 (25). Extracellular ATP may stimulate phagocyte chemotaxis through 

interaction and upregulation of P2Y purinergic receptors (26, 27). In addition, breakdown 

of ATP can generate adenosine that affects macrophage recruitment through A3 receptor 

(28). Interestingly, adenosine has been shown to not only suppress the production of pro-

inflammatory cytokines during efferocytosis through adenosine A2 receptors (29, 30), but 

also upregulate anti-inflammatory mediators (i.e., IL-10, VEGF) and pro-resolving factors 

(i.e., Nr4a1, Thbs1), leading to the switch of macrophages from pro-inflammatory to 

antiinflammatory phenotype (31).

As for CX3C motif chemokine ligand 1 (CX3CL1, also known as fractalkine), it was first 

identified as “find-me” signal by Truman et al. (32). During apoptosis, CX3CL1 is cleaved 

by Caspase-3 and released to extracellular environment as recruitment factor for phagocyte 

chemotaxis through interacting with CX3CR1 (32, 33). In addition, CX3CL1 has been 

shown to enhance efferocytosis by upregulating the “eat-me” ligand MFGE8 in microgial 

cells and peritoneal macrophages (34, 35). Recently, Morganti et al. (36) further showed that 

the soluble form of CX3CL1 could suppress pro-inflammatory cytokine release; whereas 

its membrane-bound form promoted inflammation. It is important to mention here that 

Fas-induced chemokines and cytokines (i.e., CCL2/MCP1, IL-8) can also function as “find-

me” signal to promote recruitment of phagocytes toward apoptotic cells (37). With regards 

to lipids (i.e., LPC and S1P), they are apoptosis-specific signals to attract phagocytes. 

The generation of LPC in apoptotic cells is initiated by Caspase-3 through activating the 

calcium-independent phospholipase A2 (iPLA2, or PLA2G6) that can in turn metabolize 

phosphatidylcholine into LPC and subsequently be excreted out via ABCA1-mediated 

process (38, 39). Interestingly, ABCA1, along with ABCG1 and HDL, can ameliorate 

oxidative stress and thus protect macrophages against apoptosis during efferocytosis (40). 

Recent studies have further implicated that LPC could suppress inflammation, evidenced 

by knockout of the LPC receptor, G2A, causes increased tissue inflammation and systemic 

autoimmunity (41, 42). Likewise, S1P acts as a potent chemoattractant that is induced by 

caspase-dependent sphingosine kinase 1 and 2 during apoptosis (43, 44). SIP enhances 
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macrophage recruitment through binding to S1P family of G-protein-coupled receptors 

(SIPR1–5) (43). Remarkably, S1P could elicit both anti-apoptotic and antiinflammatory 

effects in macrophages, evidenced by suppression of TNF-α and IL-12 but upregulation of 

IL-8, IL-10, and VEGF (43, 45). In consistency, recent studies have shown that S1P can 

promote macrophages toward anti-inflammatory phenotype through the activation of PPARγ 
and inhibition of NF-κB pathway (43, 46).

In a similar way to apoptotic cells, necrotic cells are capable of releasing ATP, nucleotides, 

and chemokines as “find-me” signals. However, unlike apoptotic cells, there are other 

bona fide cellular components [i.e., formylated peptides, leukotriene B4 (LTB4), hydrogen 

peroxide (H2O2), and complements] exposed in necrotic cells (23) (Fig. 1). Upon 

necrosis, formylated peptides are produced by damaged mitochondria, and act as potent 

chemoattractants for macrophages to necrotic sites through binding to formylated peptides 

receptor 1 (47–49). LTB4 is rapidly produced by necrotic leukocytes (i.e., neutrophils and 

macrophages) (50, 51), and acts in conjunction with formylated peptides and chemokines to 

recruit neutrophils (52). However, the formation of LTB4 would produce superoxide which 

can be converted to H2O2 by superoxide dismutase (53). Interestingly, a recent study by Yoo 

et al. (54) showed that H2O2 could activate Src family kinase Lyn in leukocytes, leading 

to enhanced chemotactic responses. Indeed, it is recognized that reduced production of 

H2O2 could suppress monocyte recruitment into atherosclerotic lesion (55). Moreover, using 

a small-molecule functional screening, Hattori et al. (56) showed that H2O2 can regulate 

chemotactic responses mediated by other “find-me” signals including formylated peptides, 

LTB4, and IL-8. Lastly, as for the complement system in necrotic cells, it is activated 

by cleavage of complement proteins, and then deposited onto target cells or secreted into 

extracellular area to interact with neighboring cells and phagocytes (23). However, current 

knowledge suggests that activities of complement system may vary in different tissues or 

different disease models (57–60). Future studies should focus on the specificity of key 

complement components in the efferocytosis of necrotic cells.

“Eat-me” signaling

Once macrophages reach the damaged tissue, they need to distinguish dying cells from 

healthy cells through “eat-me” signals on the cell surface. The best characterized “eat-me” 

signal is the lipid mediator phosphatidylserine (PtdSer), which is normally confined to 

the inner leaflet of the viable cell membrane and externalized during cell death (61, 62). 

Up to date, there are at least 12 efferocytosis receptors identified that can bind to PtdSer 

directly (i.e., BAI-1, TIM-4, CD300, and Stabilin/MEGF10) or indirectly [i.e., TAM (Tyro3, 

Axl, Mer), tyrosine kinases, CD36, and integrins)] (Fig. 2) (21, 63). Binding of PtdSer 

to indirect receptors requires “bridging molecules” such as dimers of Gas6 and Protein S 

for MerTK (MER receptor tyrosine kinase) signaling, and MFGE8 for integrins activity 

(Fig. 2) (7). Recognition of PtdSer by phagocytes could trigger anti-inflammatory responses 

(64, 65), yet in specific context, it might promote pro-inflammatory responses (66). Other 

“eat-me” signals identified so far include calreticulin (CRT), ICAM-3, lipids, and modified 

carbohydrates (23, 67, 68).
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Unlike efferocytosis of apoptotic cells, current understanding of molecular signaling 

involved necrotic cell uptake is limited. Several studies have shown some overlap of “eat-

me” signals for necrotic cells with the signals for apoptotic cells (67). For example, PtdSer is 

also exposed on necrotic cells and debris through distinct mechanisms. Nonetheless, necrotic 

cells do express unique “eat-me” signals such as deposition of complement components, 

and translocation of Annexin A1 to the plasma membrane to enhance phagocytic uptake 

(67). As apoptotic cells enter late apoptotic or secondary necrotic stages, complement 

components are strongly induced to enhance their recognition by phagocytes (69). A study 

by Gaipl et al. (70) showed that C1a, C3b, and C4 bound weakly to irradiated lymphocytes 

undergoing apoptosis; however, as these lymphocytes persisted into secondary necrosis, 

these complement components bound to them with significantly greater affinity. Such 

observations suggest that deposition of complement components not only promotes necrotic 

cell removal, but also acts as an alternative mechanism to remove late apoptotic cells and 

debris. With regard to Annexin A1, it was previously reported to translocate to apoptotic 

cell surface (71, 72). However, Blume et al. (73) recently showed that Annexin A1 was 

externalized only on secondary necrotic cells, but rarely translocated to surface of primary 

apoptotic cells. These observations suggest that Annexin A1 may be the hallmark for 

secondary necrosis. Indeed, Annexin A1 has later been shown to act as a bridging molecule 

for phagocytes to recognize PtdSer on the cell membrane of necrotic cells (74). Importantly, 

other than promoting efferocytosis of dying cells, Annexin A1 is capable of suppressing the 

production of proinflammatory cytokines by macrophages after ingestion of necrotic cells 

(74).

Digestion signaling

Engulfment of dying cells or debris leads to excessive accumulation of cellular materials 

such as proteins, lipids, nucleotides, and carbohydrates, if not deposed properly, they could 

lead to inflammatory responses or autoimmunity. Therefore, postengulfment signaling to 

digest and efflux these materials is needed. Upon recognition by phagocytes, actin filaments 

are activated and orchestrated by Rac1 to form early phagosome, which contains Rab5 that 

is critical for the phagosome development (68, 75). Nonetheless, it remains unresolved as 

how Rab5 is recruited to phagosome. As early phagosome matures and transitions to late 

phagosome, Rab5 protein is diminished with concomitant acquisition of another GTPase 

Rab7 (68), which can interact with lysosome membrane proteins LAMP1 and LAMP2 

to facilitate fusion of late endosome with lysosome (76). Additionally, such direct fusion 

requires intact microtubules and is coordinated by a Ca2+-dependent SNARE complex, 

composed of VAMP7 and syntaxin7 (68, 77). Ultimately, this leads to the formation of 

phagolysosome in which the engulfed cargoes are hydrolyzed and degraded (78). On the 

other hand, once internalized, lipids on phagosome membrane can be conjugated with 

LC3-family protein complex that contains Rubicon, VPS34, Beclin1, UVRAG, and VPS15, 

a process called LC3-associated phagocytosis (LAP) (79). These phagosomes are referred 

to as LAPosomes, which can readily fuse with lysosomes to facilitate the hydrolytic 

degradation of the cargoes (80).

Consequently, macrophages are overloaded with macromolecular constituents, which in 

turn activate multiple metabolic sensing pathways. For example, excess intracellular 
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cholesterol could activate peroxisome proliferator-activated receptor (PPAR), retinoid X 

receptor, and liver X receptor (LXR) families of nuclear receptors, which are key mediators 

for cholesterol efflux through upregulation of ABCA1 and ABCG1 (81, 82). Regarding 

phagocytosed chromosomal DNA, it is degraded by DNase II within lysosomes of 

macrophages (83). Importantly, activation of certain metabolic sensing pathways could 

enhance macrophage efferocytosis through upregulation of engulfment-related genes such 

as PtdSer-binding soluble proteins and receptors (i.e., CD36, MerTK) (84). In addition to 

augmenting efferocytosis, many nuclear receptors can modulate inflammation via increasing 

the production of various anti-inflammatory mediators (i.e., IL-10, TGFβ, and lactate), 

whereas macrophages with LXR or PPARδ deficiency produce more TNF-α and IL-12 

when treated with apoptotic cells (84–86). Furthermore, Yamaguchi et al. (87) observed 

that stimulating macrophages with apoptotic cells increased gene expression of another 

nuclear receptor Nr4a1, resulting in anti-inflammatory properties. Notably, Nr4a1 can be 

activated by adenosine, a prominent “find-me” signaling molecule (88). Put together, all 

these findings indicate that nuclear receptors can potentially be activated at different stages 

of efferocytosis, which further ensure adequate generation of pro-resolving signals.

IMPACT OF MACROPHAGE EFFEROCYTOSIS ON HEART DEVELOPMENT

During cardiac development, failure to remove apoptotic cells in a timely manner may 

result in fetal congenital heart block (CHB). In fact, immunohistochemical analysis of heart 

samples from fetuses with CHB revealed that apoptosis signal was more than 30-fold higher 

in septal tissues (89, 90). Of note, human and rodent fetal cardiomyocytes may act as 

nonprofessional phagocytes to engulf neighboring apoptotic cells (91, 92). However, very 

little is known about the function of professional phagocytes such as macrophages during 

various cardiac developmental stages. Leid et al. (93) recently observed that primitive yolk 

sac-derived macrophages became apparent in the heart at E11.5, which are characterized 

by low expression of CCR2 and MHC-II (CCR2−MHC-IIlow) on cell surface. This subset 

of macrophages plays essential roles in coronary development and maturation through 

releasing insulin-like growth factor 1 and 2 starting at E13.5 to E14.5 (93). During this 

developmental stage, fetal monocyte-derived macrophages (CCR2+MHC-IIlow) are also 

recruited to the heart (93). Nonetheless, this subset of macrophages seems dispensable 

for cardiac development, and their function in heart development is currently unknown. 

Intriguingly, Zhao and Rivkees (94) showed that, in heart samples from rats at E16, 

macrophages were noticed during engulfment of dying mesenchymal cells, suggesting that 

macrophage efferocytosis may modulate early cardiac development. Several recent studies 

further indicate that, throughout the first 2 weeks of neonatal heart development, both 

primitive and definitive CCR2− macrophages with low expression of MHC-II are present 

(18, 95). Besides potential roles in facilitating heart development and maturation, these 

CCR2− macrophages are also pivotal regulators for cardiac tissue repair in neonatal hearts 

(14, 19, 96).

Yutian et al. Page 6

Shock. Author manuscript; available in PMC 2022 February 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



EFFECTS OF MACROPHAGE EFFEROCYTOSIS ON ADULT HEART 

HOMEOSTASIS

The number of cardiomyocytes is established perinatally and remains virtually constant 

throughout life. The turnover of cardiomyocytes is estimated to be less than 1% per 

year in adulthood. In contrast, the exchange rates for endothelial cells and mesenchymal 

cells (including fibroblasts and smooth muscle cells) are roughly 20% and 5% per year, 

respectively (97, 98). Therefore, efficient removal of unwanted cells or debris is essential to 

maintain homeostasis and avoid inciting inflammation.

In adult human and mouse hearts, macrophages can be classified into three distinct 

subsets: CCR2−MHC-IIlow; CCR2−MHC-IIhigh; and CCR2+MHC-IIhigh (18, 99). The first 

two populations (CCR2−) are referred to as tissue-resident macrophages that are derived 

from embryonic precursors and maintained through local proliferation. They are the 

first responders to damaged tissue by releasing cytokines and chemokines for recruiting 

granulocytes from blood (100). In addition, they are actively involved in resolving 

inflammation and facilitate the reparative tissue remodeling processes (18, 99). More 

importantly, tissue resident CCR2− macrophages display enhanced phagocytic capacity 

for dying cardiomyocytes when compared with CCR2+ macrophages (99). In vitro 
studies further demonstrated that CCR2−MHC-IIlow macrophages are the most efficient 

population in eliminating apoptotic cells or necrotic cell debris (18, 101). In the contrary, 

CCR2+MHC-IIhigh macrophages are exclusively derived from circulating monocytes and 

maintained through differentiation and proliferation of infiltrated monocytes (18, 19). They 

are generally considered as pro-inflammatory population by activation of NLRP3 and 

IL-1β secretion, and subsequently contribute to adverse cardiac remodeling (18, 19, 99). 

Furthermore, sufficient efferocytosis is particularly important in the elderly population, as 

inadequate removal of apoptotic or senescent cells can lead to non-resolving inflammation, 

delayed or maladaptive cardiac repair, and thereby increases risk for heart failure (102, 103).

MACROPHAGE EFFEROCYTOSIS IN CARDIAC INJURY AND REPAIR

MerTK in macrophage efferocytosis

One of the prominent functions of cardiac macrophages is the clearance of dying/dead cells 

and extracellular matrix. Defective efferocytosis by macrophages in both neonatal and adult 

hearts can lead to impaired tissue remodeling and function, particularly following insults 

from myocardial infarction (MI) and/or reperfusion (14, 104, 105). Up to date, MerTK is the 

best-characterized efferocytosis receptor on macrophages during myocardial infarction. It 

can recognize PtdSer on dying/dead cells through binding to “bridging” molecules Gas6 and 

Protein S (7), which could cause receptor dimerization with MerTK itself or other tyrosine 

kinase receptors including Tyro3 and Axl, leading to activation of Rac-1 and engulfment of 

target cells/debris (106). Wan et al. (107) recently found that the expression of MerTK was 

upregulated in left ventricle after MI, peaking at day 7 post-surgery in the ischemic zone. 

Furthermore, using MerTK-knockout mouse model, these authors observed that apoptotic 

cardiomyocytes were accumulated to a greater degree when comparing to WT hearts after 

MI (107). Importantly, defective efferocytosis at early stage of MI promoted larger scar 
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formation accompanied by exacerbated cardiac dysfunction at long term (28 days after 

MI) (107). Of note, an inactivated form of MerTK, known as solMER, was detected in 

the heart 5 days after MI (107). Interestingly, a recent study by Suresh et al. showed that, 

in both human diabetic hearts and high glucose-treated macrophages, expression levels of 

miR-126 were reduced with a corresponding upregulation of ADAM9 (a dis-integrin and 

metalloproteinase), compared with normal controls (108). Notably, ADAM9 could induce 

proteolytic cleavage of MerTK, leading to higher levels of solMer in macrophages, and 

consequently impaired efferocytosis of apoptotic/necrotic cardiomyocytes (108). Therefore, 

restoring MerTK activity or prevention of MerTK cleavage may be of great therapeutic 

value to reduce cardiac damage from MI or metabolic diseases.

Similarly, a recent study by de Couto et al. (104) demonstrated that expression of MerTK is 

necessary for enhanced efferocytosis and cardio-protection. These authors first treated bone 

marrow-derived macrophages (MΦ) with extracellular vesicles isolated from cardiosphere-

derived cells (MΦ-CDCev). By using both in vitro and in vivo efferocytosis assays, they 

showed that MΦ-CDCev could enhance clearance of apoptotic/necrotic cells, resulting 

in reduced infarct size after MI (104). More importantly, such protective effects were 

diminished when applied to MerTK-knockout mice (104). Further investigation revealed that 

CDCev treatment upregulated miR-26a, which subsequently suppressed the expression of 

ADAM17 (another disintegrin and metalloproteinase that can cleave MerTK) and reduced 

the cleavage of MerTK (104). Meanwhile, transfer of CDCev increased cellular content 

of complement protein C1qa in macrophages, which could facilitate the bridging of 

macrophages with dying cells and thus stimulated efferocytosis (Fig. 3) (104). Collectively, 

these findings mentioned above have clearly demonstrated the importance of effective 

efferocytosis and the therapeutic potential of MerTK as a candidate to ameliorate cardiac 

injury. Nonetheless, future studies focusing on MerTK-independent efferocytosis pathways 

should be warranted to provide further insight into this dynamic process.

Efferocytosis in resolving cardiac inflammation

Upon cardiac injury, influx of neutrophils occurs prior to monocyte/macrophage infiltration 

to damaged tissue (109, 110). As terminally differentiated cells, neutrophils start undergoing 

apoptosis shortly after reaching the infarcted myocardium and disintegrate after 48 h (111, 

112). Consequently, they are capable of releasing phagocytic signals such as nucleotides 

(“find-me”) and PtdSer (“Eat-me”) that can be readily recognized by macrophages (111–

113). It is now well appreciated that enhanced efferocytosis by macrophages can activate 

anti-inflammatory program by downregulating proinflammatory cytokines and increasing 

the production of proresolving factors such as IL-10 and TGF-β (114). In the presence of 

proinflammatory stimuli (i.e. cytokines, TLR ligands), TGF-β can inhibit inflammatory gene 

synthesis in macrophages through the activation of Smad3 pathway (115, 116). Interestingly, 

efferocytic macrophages are able to directly and rapidly activate Smad3 without active 

TGF-β release; and Smad3-deficient macrophages exhibited blunted efferocytosis capacity 

with concomitant defective anti-inflammatory actions, as evidenced by marked increase in 

the expression of IL-1β, TNF-α, and CCL2 (117).
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It is important to mention here that after initiating the recruitment of leukocytes, tissue 

resident macrophages diminish within 2 h of injury, and the cardiac pool is primarily 

replenished by circulating monocyte-derived macrophages in two sequential phases (118, 

119). During the inflammatory phase (first 5 days post-MI), CCR2+Ly6Chigh monocytes 

accumulate in the heart in response to CCL2/MCP-1 (“find-me”), and they display 

pro-inflammatory phenotype by secreting cytokines (i.e., TNF-α and IL-6) (120, 121). 

During the reparative phase, Ly6Chigh monocytes/macrophages differentiate to Ly6Clow 

macrophages to increase efferocytosis and reduce inflammation through the Nr4a1-mediated 

signaling pathway (120). Recently, Marinković et al. (122) showed that extended blockade 

of S100A9 hindered the trafficking of monocytes from spleen to the heart in mice after MI, 

and this was accompanied with impaired transition of pro-inflammatory Ly6Chigh phenotype 

to anti-inflammatory Ly6ClowMerTKhi phenotype, resulting in insufficient efferocytosis and 

stronger inflammatory responses. This interference of macrophage phenotype transition 

was due to the downregulation and inhibition of Nr4a1 after blocking S100A9 (122). 

Furthermore, Nr4a1 can positively regulate MerTK expression by binding directly to the 

gene regulatory elements (123, 124). Interestingly, Nr4a1, as a potent anti-inflammatory 

mediator, is necessary for phagocyte survival and can be induced by efferocytosis signaling 

such as adenosine (“find-me”) or activation of CD36 (“Eat-me”). Supportively, it has 

been demonstrated that Nr4a1-deficient macrophages produce more nitric oxide and pro-

inflammatory cytokines with impaired phagocytic capacity (125, 126). Therefore, it is 

reasonable to speculate that adequate efferocytosis is a critical prerequisite for timely 

resolution of inflammation, and many pathways in efferocytosis and anti-inflammatory 

programs are intertwined that cooperatively modulate macrophage functions in the heart.

Effects of macrophage efferocytosis on cardiac angiogenesis

Efferocytosis may also participate in post-MI angiogenesis and vascular bed regeneration 

through either physically mediated anastomosis or secretion of paracrine factors (127–

129). During transition from pro-inflammatory to reparative phenotype, macrophages in 

the myocardium release numerous growth factors such as TGF-β and VEGF (130), which 

are well known for promoting angiogenesis and vascular formation during reparative phase 

post-MI (130, 131). Interestingly, the expression of TGF-β and VEGF has been reported 

to be regulated by MerTK and MFGE8 (101, 132, 133). Moreover, mice with macrophage-

specific knockout of TGF-β receptor II (TGF-βRII) or VEGF exhibited a blunted reparative 

function of macrophages, leading to impaired cardiac function and angiogenesis (133, 

134). By contrast, stimulation with TGF-β ligand or overexpression of VEGF increased 

recruitment of monocytes to injured site and promoted pro-angiogenic phenotype (130, 135). 

Additionally, Chen et al. (117) showed that TGF-β-induced Smad3 signaling was required 

for proper cardiac efferocytosis function. They observed that expression levels of genes 

involved “eat-me” signaling (i.e., MFGE8, IL-10, TGF-β1, and VEGF) were reduced in 

Smad3-null bone marrow-derived macrophages. Mice with myeloid cell-specific knockout 

of Smad3, after 28 days of permanent coronary occlusion, showed increased mortality 

and worsened cardiac dysfunction, which was associated with defective macrophage 

efferocytosis, leading to scar expansion and cardiomyocyte death of the border zone (117).
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Macrophage efferocytosis signals in cardiac repair

Pro-inflammatory macrophages clear injury site through efferocytosis and secretion of 

proteases (i.e., MMP2 and MMP9) (136). During the final stages of cardiac repairing and 

remodeling, timely transition of these macrophages toward reparative phenotype and proper 

neutralization of proteases are vital in preventing adverse cardiac remodeling or rupture 

(136). On the other hand, it has been shown that suppression of macrophage transition 

toward pro-inflammatory phenotype through inhibition of MAPK and NF-κB pathways 

could attenuate cardiomyocyte death upon MI injury (137). In addition, macrophage class 

A scavenger receptor (SR-A) is widely known as “eat-me” signal in efferocytosis of dying 

cells (138–140). Nonetheless, loss of SR-A is reported to upregulate TNF-α and increase 

proteolytic activity of MMP9, ultimately leading to post-MI cardiac rupture (141). Indeed, 

MMP9 can target factors involved in efferocytosis signaling including chemokines of CXCL 

family, CD36 (“eat-me”) and Thbs-1 (pro-resolving) (142); and depletion of MMP9 could 

promote CD36-dependent macrophage efferocytosis and reduce risk of cardiac rupture 

after MI injury (143, 144). However, effects of SR-A are dependent on the type and 

duration of cardiac injury (141, 145, 146). For example, SR-A knockout mice subjected 

to cardiac ischemia/reperfusion showed significantly exacerbated cardiac inflammation 

and cardiomyocyte death (146). By contrast, SR-A-deficient mice with permanent LAD 

occlusion (MI model) showed improved survival and reduced inflammation and cardiac 

rupture after 21 days (137, 141).

Regarding whether efferocytosis of collagen would promote extracellular matrix deposition, 

Vagnozzi et al. recently showed that phagocytic macrophages with increased expression of 

CX3CR1 (“find-me”) could alter cardiac fibroblast activity, leading to reduced extracellular 

matrix content in the border zone and enhanced cardiac contractility (147). Furthermore, 

these authors demonstrated that, 3 days after injecting bone marrow-derived mononucleated 

cells into the heart after ischemia/reperfusion, macrophage subtypes were shifted from 

mainly CCR2−CX3CR1+ phenotype observed in basal condition to a mixed population 

of CCR2+ and CCR2+CX3CR1+ macrophages (147). These data suggest that the pro-

inflammatory population is gradually acquiring a reparative phenotype. Likewise, anti-

inflammatory macrophages expressing mannose receptor (CD206+) also contribute to the 

efferocytosis of collagen and possibly involve new extracellular matrix deposition, as 

evidenced by that depletion of CD206+ macrophages in MI triggers substantial decrease 

in collagen contents (148, 149). More importantly, crosstalk between fibroblasts and 

phagocytes could affect the efficiency of efferocytosis and reparative process. For example, 

during acute injury from autoimmune myocarditis, activated fibroblasts are able to not only 

inhibit Ly6Clow monocyte differentiation to reparative macrophages through upregulation 

of IL-17A, but also promote shedding of MerTK on Ly6Chigh macrophages, leading to an 

overall pro-inflammatory phenotype with impaired efferocytosis activity (150). Moreover, 

IL-17A may act as autocrine for stimulating cardiac fibroblasts to boost secretion of GM-

CSF, which in turn direct Ly6Chigh macrophages toward more proinflammatory phenotype 

in the dilated cardiomyopathy model (151). Notably, reparative macrophages could release 

a large amount of TGFβ1, which drives the phenotypic transformation of homeostatic 

fibroblasts to myofibroblasts that have superior capacity to produce matrix components (136, 

152).
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“DON'T EAT-ME” SIGNALS IN THE HEART

Given the long lifespan and the extremely low cellular turnover of cardiomyocytes, it 

is plausible to speculate that anti-phagocytic (or “don’t eat-me” signaling) may play 

important roles in repelling macrophages. Aging mice with thrombospondin-2 (a CD47 

ligand) deficiency exhibit impaired cardiomyocyte survival via suppression of Akt pathway, 

which is accompanied with increased cardiac inflammation and fibrosis, leading to dilated 

cardiomyopathy (153). These findings suggest that “don’t eat-me” signaling is important 

to maintain proper cardiac homeostasis. Nonetheless, it remains incompletely understood 

whether antiphagocytic signaling directly participates in dying cardiac cell removal. 

Recently, several studies have indicated that CD47 expression is highly upregulated in 

apoptotic neonatal cardiomyocytes and in hearts after MI, and activation of CD47 with 

thrombospondin-1 upregulates HDAC3 via Ca2+-CaMKII signaling pathway, resulting in 

myocyte hypertrophy (154–156). Furthermore, blocking with anti-CD47 antibody could 

suppress hypertrophy but enhance clearance of apoptotic myocytes and resolution of 

inflammation, leading to reduced infarct size and improved contractile function (154, 155). 

Therefore, along with other standards of treatment regimes, early targeting of CD47 in the 

heart may provide better clinical outcome by enhancing efferocytosis of damaged cardiac 

cells, and thereby improving wound repair in ischemic hearts. Further investigation to 

determine the doses and timing of CD47 antibodies should be warranted to prevent collateral 

efferocytosis on neighboring viable cells.

CONCLUSION AND FUTURE DIRECTION

Despite the development and improvement of many clinical treatments for patients with MI 

and heart failure, the incidents of new and recurrent heart failure, as well as mortality, are 

still growing worldwide. New strategic approaches aiming to halt aberrant inflammatory 

signaling and improve cardiac repair are gaining more attention due to growing number of 

patients who have become intolerant or show serious adverse effects of existing treatment 

options. With fast advancing technologies in gene-editing and Flow Cytometry, a new era 

has emerged in which diverse macrophage populations with distinct origins and function 

are being characterized. Enhanced appreciation of these macrophages is recognized as 

their therapeutic potentials have been explored vastly in different animal and disease 

models. Nonetheless, an important question remains: whether human heart contains similar 

populations of macrophages as animal heart? Although studies have shown that, similar to 

mouse models, cardiac macrophages can be partitioned into different groups using CCR2 

and MHC-II markers in human failing hearts (18, 119), the exact roles of these divergent 

macrophages remain to be determined, and the underlying molecular mechanisms governing 

the activity and function of these macrophages need to be investigated.

Up to date, overall benefits of targeting inflammation remain inconclusive, based on 

the results from different clinical trials. For example, the Cardiovascular Inflammation 

Reduction Trial reported that effects of low-dose methotrexate in patients with stable 

atherosclerosis did not differ from placebo treatments (157). However, according to the 

results from Canakinumab Anti-Inflammatory Thrombosis Outcomes Study, targeting IL-1β 
pathway with Canakinumab was able to not only lower the rate of recurrent cardiovascular 
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events without affecting lipids (158), but also lower heart failure-related hospitalization and 

mortality in patients with previous myocardial infarction (159). Given that the execution 

of efferocytosis is intertwined with modulating inflammatory responses, targeting the 

processes associated with efferocytosis may guide the treatment on cardiac inflammation, 

which can be highly context-specific, as different types and stages of cardiac injury may 

present distinct microenvironmental cues to fine-tune the activity of macrophages. For 

example, deficiency of SR-A elicits protective effects during acute ischemia/reperfusion 

injury, whereas it promotes adverse cardiac remodeling in a long-term cardiac ischemic 

model (160). In addition, macrophage efferocytosis requires both the inhibition of “don’t 

eat-me” signals and presentation of “find-me” and “eat-me” signals. Therefore, multiple 

levels of check and balance to tightly regulate the targeting of efferocytosis could minimize 

the off-target effects. In conclusion, development of therapeutic approaches to manipulate 

efferocytosis represents a promising strategy to properly control cardiac inflammation and 

promote cardiac repair in aging individuals as well as patients with various cardiac injuries.
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Fig. 1. “Find-me” signals and their respective receptors for apoptotic and necrotic cells.
As cells undergo apoptosis, various “find-me” signals [i.e., nucleotides (ATP/UTP), 

chemokine (CX3CL1), and lipids (LPC and S1P)] are secreted or exposed on the 

outer leaflet of plasma membrane. Pannexin 1 (PANX1) is important membrane channel 

responsible for ATP/UTP export, whereas LPC is released by activated ABCA1. Upon 

binding to receptors, these find-me signals stimulate chemotaxis of macrophages to injured 

site. Meanwhile, they could promote resolution of inflammation by suppressing gene 

expression of proinflammatory factors (i.e., CXCL1 and CXCL2), and upregulating anti-

inflammatory genes (i.e., IL-10 and VEGF) as well as pro-resolving mediators (i.e., Nr4a1, 

Thbs1). The efferocytic macrophage-mediated resolution of inflammation is primarily 

through the inhibition of NF-κB pathway and the activation of PPARγ signaling cascade. 

Importantly, interaction of CX3CL1 to its receptor also promotes MFGE8, a key bridging 

molecule of “eat-me” signal. On the other hand, necrotic cells elicit unique “find-me” 

signaling. For example, formylated peptides are released from damaged mitochondria and 

interact with FRP1 on macrophages to increase chemotaxis. LTB4 is secreted through 

MVBs-exosomes that can act in conjunction with formylated peptides. H2O2 is shown to 

activate Src family of kinase Lyn, leading to enhanced monocyte/macrophage recruitment. 

In addition, H2O2 can regulate other “find-me” molecules such as formylated peptide, LTB4, 

and IL-8. Complement proteins can be deposited to target cells or released into extracellular 

area to interact with neighboring cells. FPR1 indicates formylated peptide receptor 1; 

LPC, lysophosphatidylcholine; LTB4, leukotriene B4; MVBs, multivesicular bodies; S1P, 

sphingosine-1-phosphate.
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Fig. 2. Apoptotic “eat-me” signals and their respective receptors.
The best characterized “eat-me” signal is phosphatidylserine (PtdSer, or PS), which is 

exposed to the outer leaflet of plasma membrane on dying cells. Macrophages can directly 

recognize PS through its interaction with receptors such as BAI, TIM-4, and CD36. 

Alternatively, PS can be bound indirectly to receptors on macrophages through “bridging 

proteins” such as MFGE8 for integrins, GAS6-ProS dimer for TAM tyrosine kinases. Other 

“eat-me” molecules include CRT and CD31. In coordination with MBL and C1q, CRT 

interacts with LRP1 and facilitates the recognition of PS by macrophages. In addition, CD31 

activates integrins after binding to the bridging molecule fibronectin (FN). Recognition of 

eat-me signals switches macrophages to anti-inflammatory phenotype partly through the 

activation of nuclear receptors such as LXR and PPARγ. BAI indicates brain-specific 

angiogenesis inhibitor; C1q, complement factor C1q; CRT, calreticulin; GAS6, growth 

arrest-specific 6; LRP1, low-density lipoprotein (LDL) receptor-related protein 1; MBL, 

mannose-binding lectin; MFGE8, milk fat globule-EGF factor 8; ProS, protein S; TAM, 

Tyro3, Axl, Mer; TIM-4, T cell immunoglobulin mucin receptor 4.
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Fig. 3. Transfer of extracellular vesicles containing miR-26a from cardiosphere-derived cells to 
macrophages enhances efferocytosis of dying cardiomyocytes in MI models.
Extracellular vesicles released by cardiosphere-derived cells (CDCev) transfer miR-26a to 

targeting macrophages, leading to inhibition of ADAM17 mRNA translation. Consequently, 

ADAM17-mediated cleavage of MerTK is reduced, resulting in increased levels of active 

MerTK. In addition, CDCev also upregulate complement factor C1q in macrophages. 

Thus, increased levels of MerTK and C1q promote the recognition of “eat-me” signals 

and stimulate the efferocytosis of dying cardiomyocytes. Furthermore, sustained MerTK 

inhibits pro-inflammatory responses (i.e., reduced levels of IL-6, IL-1α/β, and TNFα) 

in macrophages via suppression of NF-κB and MAPK pathways. Therefore, augmented 

efferocytosis together with reduced inflammation results in improved cardiac repair after MI 

injury.
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