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Abstract

Chemical Exchange Saturation Transfer (CEST) MRI has shown promise for classifying tumors 

based on their aggressiveness, but CEST contrast is complicated by multiple signal sources and 

thus prolonged acquisition times are often required to extract the signal of interest. We investigated 

whether deep learning could help identify pertinent Z-spectral features for distinguishing tumor 

aggressiveness as well as the possibility of acquiring only the pertinent spectral regions for 

more efficient CEST acquisition. Human breast cancer cells, MDA-MB-231 and MCF-7, were 

used to establish bi-lateral tumor xenografts in mice to represent higher and lower aggressive 

tumors, respectively. A convolutional neural network (CNN)-based classification model, trained 

on simulated data, utilized Z-spectral features as input to predict labels of different tissue types, 

including MDA-MB-231, MCF-7, and muscle tissue. Saliency maps reported the influence of 

Z-spectral regions on classifying tissue types. The model was robust to noise with an accuracy 

of over 91.5% for low and moderate noise levels in simulated testing data (SD of noise less than 

2.0%). For in vivo CEST data acquired with a saturation pulse amplitude of 2.0 μT, the model had 

a superior ability to delineate tissue types compared to Lorentzian difference (LD) and MTRasym 

analysis, classifying tissues to the correct types with a mean accuracy of 85.7%, sensitivity of 

81.1%, and specificity of 94.0%. The model performance did not improve substantially when 

using data acquired at multiple saturation pulse amplitudes or when adding LD or MTRasym 

spectral features, and did not change when using saliency map-based partial or downsampled Z-

spectra. This study demonstrates the potential of CNN-based classification to distinguish between 

different tumor types and muscle tissue, and speed up CEST acquisition protocols.
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1. INTRODUCTION

Chemical Exchange Saturation Transfer (CEST) MRI is an emerging imaging approach that 

has shown promise for detecting molecular level changes in various cancers1–9. CEST MRI 

detects the interaction between exchangeable protons in low concentration solute molecules 

and bulk water by selectively labelling solute protons using radiofrequency (RF) irradiation. 

Variations in the relative concentration or the chemical microenvironment of these solute 

protons change their contributions to the CEST contrast. Several previous breast tumor 

studies applying CEST MRI to cells, animals, and humans have demonstrated the potential 

of CEST for metabolite detection, tumor characterization, and treatment assessment5,10–13.

CEST MRI studies often try to quantify a signal at a specific saturation frequency but most 

often a series of images at multiple saturation frequencies (Z-spectral images) is acquired 

to assist in separating the desired contrast from other signal sources14. Interfering signals 

include direct water saturation (DS)15, other types of exchangeable protons16, semi‐solid 

magnetization transfer contrast (MTC)17, and relayed Nuclear Overhauser Effects (rNOEs) 

of mobile macromolecules1,18–21. CEST acquisition of a full Z-spectrum may result in 

excessive scan times and may still result in erroneous or unreliable CEST maps.

Machine learning is being adopted rapidly in the medical imaging community for tasks 

such as segmentation, parameter estimation, and tumor classification22–24. In CEST 

MRI, machine learning has previously been successfully applied to classify Z-spectra 

of pancreatic cancer25. Since then, deep learning26,27 has been proposed to learn data 

features more effectively and perform complex tasks. The neural network in CEST MRI 

involved learned features of 3T CEST signals to map with 9.4T ultrahigh-field CEST 

contrast28. Uncertainty quantification using the DeepCEST neural network provided a robust 

estimation of Lorentzian parameters for both healthy and human brain tumor tissue at 

3T and demonstrated the reliability of the neural network29. In addition, artificial neural 

network (ANN) CEST was used to map the concentration of phosphocreatine (PCr) in 

human skeletal muscle as well as its guanidinium proton exchange rates, B0 and B1 field 

inhomogeneities simultaneously30.

Here, we introduce a deep learning-based classification approach to distinguish different 

types of breast tumors with CEST MRI in a preclinical model. A bi-lateral human tumor 

xenograft model of MDA-MB-231 and MCF-7 cancer cells (known to be higher and 

lower aggressive, respectively) was used to assess the feasibility of using Z-spectra to 

classify these tissue types and separate them from normal muscle tissue. The convolutional 

neural network (CNN) also provided a saliency map that reported the impact of saturation 

frequencies on predicting class labels. After training, robustness to noise was tested on 

simulated Z-spectra and the classification approach was then tested on the bi-lateral human 

tumor xenograft models.
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2. MATERIALS AND METHODS

2.1 Cells and animal model

All animal experiments were performed in accordance with the Animal Care and Use 

Committee guidelines of the Johns Hopkins University, USA. MCF-7 (lower aggressive 

human breast cancer cells) and MDA-MB-231 (higher aggressive human breast cancer 

cells) were obtained from American Type Culture Collection (ATCC). Cells were cultured 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% PBS, 100 

μg/ml penicillin, 100 U/ml streptomycin, at 37 °C in a humidified atmosphere containing 

5% CO2. Xenograft tumors were induced in 6 – 8-week-old severe combined immune 

deficiency (SCID-ICR) female mice by injecting MDA-MB-231 and MCF-7 cancer cells 

(106 cells /100 μl) into the right and left flank of mice (n=5), respectively.

2.2 MR imaging

MR imaging was performed 3–5 weeks post-implantation with the mice anesthetized 

using 0.5–2% isoflurane prior to imaging. MRI images were acquired on a Bruker 11.7T 

horizontal MRI scanner, with a 72-mm quadrature volume resonator for transmission and 

an 8-channel phased array RF coil for reception. CEST MRI images at 81 frequency offsets 

between ±6 ppm with step size of 0.15 ppm were acquired using a continuous-wave (CW) 

saturation pulse, followed by a single-slice rapid acquisition with relaxation enhancement 

(RARE) sequence (RARE factor = 23). S0 image was collected at 40 ppm. The scanning 

time for each saturation power was 14 mins. The other imaging parameters were as follows: 

tsat = 4,000 ms, TR/TE = 10,000 ms/ 3.49 ms, saturation pulse amplitudes (B1,sat) = 0.5, 

1.0, and 2.0 μT. The slice thickness was 1 mm, field of view (FOV) was 28 × 21 mm2, and 

matrix size was 64 × 64.

2.3 Image processing

The CEST images were normalized by the S0 image. B0 inhomogeneity in CEST images 

was corrected on a voxel-by-voxel basis by finding the frequency offset of direct water 

saturation chemical shift in Z-spectra at B1,sat = 0.5 μT31. Median filter with kernel size of 3 

was applied on CEST images to improve signal-to-noise (SNR).

For analysis, three regions of interests (ROIs) were drawn manually within MDA-MB-231, 

MCF-7, and muscle tissue. The multi-B1,sat Z-spectra of Mouse #1 were fitted with a 

seven-pool Bloch-McConnell equation32 to obtain parameters, including water (0 ppm), 

guanidinium protons at 2.1 and 2.6 ppm, Amide protons at 3.5 ppm, rNOEs at −3.5 ppm, 

symmetric (0 ppm) and asymmetric (−2.3 ppm) MTC pools. R2 (goodness of fit), as defined 

by33:

R2 = 1 −
∑i Sexp, i − Sfit,i

2

∑i Sexp, i − Sexp
2 [1]

was used to evaluate discrepancies between the fitted (Sfit) and experimental data (Sexp), and 

where i is the index of the saturation frequency and Sexp is the average value of all the data 

points in the Z-spectrum.
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For comparison, CEST contrast was also quantified using magnetization transfer ratio 

asymmetry (MTRasym)34–36, which takes the difference in normalized signal intensity 

between opposite frequencies (±Δω) about the water resonance in the water saturation 

spectrum (Z-spectrum), defined by:

MTRasym Δω = Ssat −Δω − Ssat +Δω
S0

[2]

where Ssat(-Δω) and Ssat(+Δω) are the water signal intensities after saturation with RF 

irradiation at negative and positive frequency offset (Δω) relative to water, and S0 is an 

image acquired without RF saturation.

In addition, Lorentzian difference (LD) analysis, which employs a single Lorentzian line 

to represent DS and then takes the difference from experimental data to quantify saturation 

transfer contrast37–40, was used to quantify CEST contrast. Lorentzian fitting of the water 

signal was performed by using the Z-spectral ranges −0.5 to 0.5 ppm and 5.5 to 6.0 

ppm18. The spectra of residual CEST signals were obtained by subtracting the experimental 

Z-spectra from the fitted spectra.

All Bloch equation-based fitting and simulations were performed on MATLAB 2019a using 

source code downloaded from http://www.cest-sources.org41. Other data processing was 

performed using custom-written scripts in Python. Statistical analyses were performed with 

Prism8 (GraphPad Software). Groups were considered to be different when a Wilcoxon 

Rank‐Sum analysis showed with P ≤ 0.05 between groups.

2.4 Classification model

2.4.1 Training data for classification—Bloch equation fitting parameters were further 

used to generate simulated Z-spectra for MDA-MB-231, MCF-7, and muscle tissue. The 

Z-spectra contained 81 frequency offsets between ±6 ppm with tsat = 4,000 ms, and B1,sat = 

0.5, 1.0, 2.0 μT for the CW saturation pulse. The B0 field was set to 11.7 T. To mimic true 

signal variation, concentration ranges were set for guanidinium, amide, rNOE, and MTC 

pools, accompanied by different levels of Rician noise42 with a mean of 0 and standard 

deviation (SD) of 0.3%, 0.5%, and 0.8% were added to the simulation data. Finally, a total 

of 300,000 simulated Z-spectra (100,000 for each class) were obtained and used to train the 

classification model.

2.4.2 Classification architecture and training—The CNN-based classification 

model (using Z-spectra acquired with B1,sat = 2.0 μT), which took 1D vectors with 81 

elements that represent Z-spectra as inputs, consisted of four convolution and max pooling 

layers, one fully connected layer, and one classification layer (with softmax function as 

activation function) to learn Z-spectral features of different tissue types (Figure 1). The 

dropout regularization with value of 0.2 was added before the fully connected layer. A 

rectified linear unit (ReLU) was used as an activation function and categorical cross-entropy 

was used as a loss function. Training data were randomly split for training and validation 

(80% and 20% of the sample, respectively). The stochastic gradient descent (SGD) 

optimization algorithm43 with learning rate of 10−3 was used to train the model for 200 
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epochs with a batch size of 64. Early stopping strategy was employed when validation losses 

did not improve within 5 consecutive epochs. Hyperparameter estimation was performed by 

grid search frameworks as described in the Supporting Information (Figure S8). Notably, the 

saliency vectors obtained from the CNN input vectors estimate the influence of Z-spectral 

features on the output classification44. The saliency maps were obtained for randomly 

selected voxels over the respective regions of mice. The simulated three-class Z-spectra were 

used for training, and in vivo Z-spectra (except for Mouse #1, which was used for Bloch 

equation fitting and tuning hyperparameters of CNN) were used as testing data. The CNN 

model was implemented in the Keras framework45 with Tensorflow backend46.

The total training time was 4 hours 43 mins and the prediction speed was 220 observations 

per second on a personal computer (2.6 GHz Intel Core i7 with 16 G memory).

2.5.3 Evaluation of classification performance—ROIs were drawn over known 

regions of MDA-MB-231, MCF-7, and muscle tissue. The model was measured by a 

confusion matrix, which shows the true positive (TP) rates versus false negative (FN) rates, 

and true negative (TN) rates versus false positive (FP) rates. Accuracy, sensitivity, and 

specificity were calculated from the confusion matrix, as following:

Accuracy =   TP+TN
TP+TN + FN + FP × 100% [3]

Sensitivity = TP
TP+FN × 100% [4]

Specificity =   TN
TN+FP × 100% [5]

In addition, the performance of the model was evaluated by the area under curve (AUC) of 

the receiver operating curve (ROC).

3. RESULTS

3.1 Bloch equation fitting and simulation of Z-spectra

The Z-spectra of two tumors and muscle tissue (circles in Figure 2) from Mouse #1 show 

clear dips centered at 2.0, 3.5, and −3.5 ppm, which we attributed to guanidinium protons 

(mobile proteins in tumor and creatine (Cr) in muscle), amide protons (mobile proteins), 

and rNOEs of aliphatic protons in mobile proteins, respectively. Z-spectra from muscle 

tissue contained an additional peak at 2.6 ppm, known to be from PCr guanidinium protons. 

These obvious peaks as well as the water and MTC pools were selected as pools in the 

Bloch equation fitting. The choice of both symmetric and asymmetric MTC pools was based 

on the assumption of saturation transfer originating directly from solid-like groups around 

water (e.g., −OH and bound water, symmetric) and relayed from aliphatic protons from 

lipids (asymmetric). Assuming a single resonance, the fitting results (Figure 2) indicate 

that that the peaks at 2.0 and 3.5 ppm in muscle have lower exchange rates (see from the 
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narrower lineshape) compared to tumors. The fitting results at B1,sat = 0.5, 1.0, and 2.0 μT 

are shown in Figure 2, and the obtained fitting parameters are shown in Table 1. The mean 

R2 of three tissues under multi-B1,sat was better than 0.98. Based on the fitting parameters, 

concentration ranges for guanidinium, amide, relayed NOE, and MTC pools were set to 

generate simulated Z-spectra for use as training dataset (Table 1). Larger concentration 

ranges were assigned to the pools with higher concentrations.

3.2 Simulations: Effect of noise on classification accuracy

The influence of noise on the ability of the classification model at B1,sat = 2.0 μT to 

distinguish between different tissue types is illustrated using synthetic Z-spectra in Figure 

3. The simulated data (3,000 sets) with a larger concentration range than simulated training 

data and different levels of noise were used as testing data. The model performed well 

with low noise levels (noise SD < 0.8%) and achieved accuracies greater than 98.7%. The 

increased noise levels (noise SD between 1.0% and 2.0%) made it difficult to visually 

distinguish Z-spectra from different tissues. However, the classification model was still able 

to distinguish between the three tissue types with an accuracy of greater than 91.5% with 

these moderate noise levels. When adding high levels of noise (noise SD > 2.5%), the 

Z-spectra of MDA-MB-231 and MCF-7 closely resembled each other and the classification 

accuracy was greatly reduced (lower than 87.0%). With very high noise levels, noise SD = 

4%, the accuracy was 72.4%.

3.3 Conventional analysis results

LD and MTRasym analysis were applied to quantify CEST contrast of in vivo data at B1,sat 

= 2.0 μT as shown in Figure 4 (data from Mouse #1, which was used for fitting). The T2w 

image (Figure 4E) shows a bi-lateral human tumor xenograft mouse with MDA-MB-231 on 

the right flank (shown in blue) and MCF-7 on the left (shown in red). In Figure 4A, the LD 

spectral curves of the three tissue types show the mentioned peaks (2.0, 3.5, and −3.5 ppm) 

in Z-spectra (Figure 2), and the corresponding images at these frequencies (Figure 4C) show 

that LD can separate tumor from muscle tissue, but cannot distinguish between the tumors. 

The presence of asymmetric MTC and other up-field signals complicates interpretation 

of the MTRasym spectra (Figure 4B), but the MTRasym spectra of the ROIs seemed to 

indicate separation of all three tissues in the 3.0 – 4.5 ppm offset range. However, this 

was not the case on a voxel-by-voxel basis for the complete tumor, where the contrast was 

heterogeneous. Thus, it was difficult to reliably distinguish between MDA-MB-231 and 

MCF-7 based on LD and MTRasym maps in this mouse.

Figure 5 summarizes the LD and MTRasym analysis at specific saturation frequencies (2.0, 

3.5, 4.0, and −3.5 ppm) at B1,sat = 2.0 μT for all mice (ROIs were drawn over known 

regions of the three tissue types, shown in colored voxels in Figure 4, 6). LD and MTRasym 

analysis were first applied on ROIs (Figures 5A–D). LD and MTRasym spectra with small 

SD show good reproducibility among these mice (Figures 5A, B). LD intensities between 

MDA-MB-231 and MCF-7 were only statistically different at −3.5 ppm (Figure 5C), and 

the MTRasym intensities between two tumor types were only statistically different at 3.5 

ppm (Figure 5D). From both LD and MTRasym analysis, muscle tissue and two tumor 

types were statistically different at certain specific saturation frequencies. Furthermore, the 
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histograms for LD and MTRasym intensities of voxels within ROIs are shown in Figures 5E, 

F. LD intensities of tumors and muscle tissue were distinguishable but the histograms for 

MDA-MB-231 and MCF-7 almost completely overlapped. MTRasym intensities of the three 

tissues closely resemble each other. Therefore, LD and MTRasym analysis were unable to 

classify all three tissue types voxel-by-voxel at these specific saturation frequencies.

3.4 Performance of the classification model

Next, the classification model, which was trained using Z-spectral simulations at B1,sat = 2.0 

μT, was tested on the in vivo data to distinguish between the three tissue types on a voxel-

wise basis (Figure 6). Mice #2–5 were used as testing subjects. The model performance was 

evaluated using the voxels within ROIs corresponding to the three tissue types (the colored 

voxels in Figure 6). To display the classification results intuitively, the predictive results 

were fused on CEST images (first column, Figure 6). The predictive maps illustrate that 

the three tissue types could essentially be distinguished, but some voxels were misclassified 

when the Z-spectra in these false predictive regions closely resembled each other, especially 

for Mouse #5 (Figure S10). The calculated confusion matrices (second column, Figure 6) 

showed that the mean true positive (TP) rates of MDA-MB-231, MCF-7, and muscle were 

69.6%, 81.4%, and 92.5%, respectively. Additionally, the model provided AUC of the ROCs 

(third column, Figure 6) with true positive rates ranging from 0.86 to 0.98 for each tissue 

type classification, indicating good classification efficiency for Mouse #2–4. According to 

the saliency maps (fourth column, Figure 6), the Z-spectral features between −1.5 to 1.5 

ppm were of less importance for classification.

The performance of the classification model using Z-spectra at different B1,sat levels is 

shown in Figure 7. The classification model at high B1,sat (2.0 μT) provided a mean accuracy 

of 85.7%, sensitivity of 81.1%, and specificity of 94.0% over the tested mice (Figures 7A–

C). The model at moderate B1,sat (1.0 μT) also could distinguish between the three tissue 

types (mean accuracy of 87.4%, sensitivity of 79.4%, and specificity of 94.1%). However, 

the Z-spectral features at low B1,sat (0.5 μT) could not separate two tumor types from muscle 

tissue (Figures 7D–F). After combining Z-spectral information at multi- B1,sat (2.0 μT + 1.0 

μT, 2.0 μT + 0.5 μT, 1.0 μT + 0.5 μT, and 2.0 μT + 1.0 μT + 0.5 μT), the accuracy, sensitivity, 

and specificity of classification models changed slightly, and the TP rates were maintained 

for tumors. Therefore, the performance of model was not improved substantially when using 

combined CEST data acquired at various B1,sat.

Then, the influence of LD or MTRasym spectral features on the performance of classification 

model at B1,sat = 2.0 μT was investigated in Figure 8. After combining Z-spectra with LD or 

MTRasym spectra, the performance of models did not change within error (mean accuracies 

of 85.9% and 85.6%, respectively), and the same was true for the TP rates of three tissues 

types (Figures 8D–F). Therefore, the LD and MTRasym spectral information did not improve 

classification performance.

Finally, the number of saturation frequencies required for the classification model at B1,sat = 

2.0 μT was assessed in Figure 9. According to saliency maps (Figures 1, 6), the Z-spectral 

region from −1.5 to 1.5 ppm contributed less to the classification of three tissue types 

compared to other Z-spectral regions (saliency values close to 0). The model using partial 
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Z-spectra without −1.5 to 1.5 ppm was investigated (totally 62 offsets). To further study the 

influence of downsampling on the classification model, every second point in the Z-spectra 

was removed and the region from −1.5 to 1.5 ppm was excluded (totally 32 offsets). 

Compared with the classification results from the fully sampled Z-spectra with 81 offsets, 

the performance of model trained with partial or downsampled Z-spectra was maintained 

(mean accuracies of 85.1% and 85.8%, respectively), and the TP rates of three tissue types 

only changed slightly when using partial or downsampled Z-spectra. Therefore, Z-spectra 

can be sampled more sparsely based on saliency maps to reduce acquisition time.

4. DISCUSSION

In this study, we developed a CNN-based classification method for processing CEST MRI 

data and distinguishing different types of tumors. Machine learning-based classification has 

previously been shown to be useful for classifying Z-spectra of pancreatic tumors25 and here 

we demonstrated the utility of deep learning to discriminate higher aggressive and lower 

aggressive tumors and muscle tissue.

When comparing the CNN-based classification model with the fully connected neural 

network and other machine learning models (e.g., K Nearest Neighbors, Random Forest, 

Support Vector Machine, and Logistic Regression) at B1,sat = 2.0 μT, the CNN model was 

found to slightly outperform other models (Table S4). Still, traditional machine learning 

models and the DNN model may have higher performance in other situations. In this 

classification problem, the training data and general structure of the learning model are more 

important than the specific architecture of model. So while we chose 1D spectral CNN, other 

models may perform better in other situations. In general, the chosen model should have 

sufficient abilities to learn the available correlations between the input data and provide a 

means to visualize the classification (e.g., via saliency maps) to understand and interpret the 

classification mechanisms and guide downsampling of Z-spectra.

Similar to other deep learning-based classification schemes, the proposed classification 

approach is data-driven and its performance highly depends on the training data. In this 

study, three classes of training data were generated using Bloch equations with consideration 

for differences in the relative concentration of different Z-spectral components in three 

tissue types. It is worth noting that the parameters used for generating simulation data are 

not real ground truth values. Here, only the dominant CEST components were considered. 

Z-spectral peaks acquired with high and moderate B1,sat were broad and thus were fit 

well by a single line while peaks in Z-spectra acquired with low B1,sat were narrow and 

separated and not fit as well with the limited number of pools (Figure 2), which might 

cause the poor classification performance at low B1,sat (Figure 7). However, the tumor size 

was relatively small, and obtaining a large number of animal datasets for training the deep 

learning model was not feasible in our study and difficult in general. Previous studies30 

along with the present study demonstrate that simulated spectra comprising dominant signal 

components reasonable concentration ranges can be used as an alternative to the real data 

and still obtain good performance. The accuracy could be further improved if more in vivo 
data were available for training. Additionally, through cross-validation, it was found that the 

classification model was independent of inter-mouse variability (Figure S9).
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The performance of the classification model was tested on a synthesized testing dataset 

and bi-lateral human breast tumor xenograft models. According to the simulations, the 

model tolerated low and moderate levels of noise but accuracy was reduced at high noise 

levels (Figure 3), illustrating that the model performance was affected by the quality of 

input data. Hence, a median filter was applied to improve SNR of in vivo data (Figure S3, 

Table S2) and further increased the classification performance (Table S1). The in vivo data 

resembled the simulations with SD of noise around 2.0%, which corresponds to moderate 

noise levels in the simulations (Tables S2, S3). However, in vivo data was more complex 

than simulations due to heterogeneity and partial volume effects in tumors, and blood 

vessels within muscles. Consequently, the classification results from simulations were higher 

than in vivo data despite similar noise levels. In addition, motion artifacts would interfere in 
vivo data, especially for tissue boundaries. The in-plane motion of tumors and muscle tissue 

were relatively small (within 0.2 mm and 0.2°) in dominant Z-spectral classification region 

(Figure S1), which should have a small impact on classification. However, there was a slight 

through-plane respiration motion during acquisition that was difficult to correct and thus 

might affect classification performance. B1,sat inhomogeneity can also affect CEST data. 

B1,sat over the field of view were generated using a PBS phantom and Bloch equation fitting 

at B1,sat = 0.5 μT. The map shows that B1,sat homogeneity was within ±0.1 μT and this 

variation has only a very slight influence on Z-spectra (Figure S2) thus B1,sat inhomogeneity 

was not considered by our models.

The classification model at B1, sat = 2.0 μT could separate the three tissue types voxel-

by-voxel but there were still some misclassified voxels that were caused by overlapping 

Z-spectra with other tissue types (Figure S10). The misclassified tumor voxels were located 

primarily at the periphery of the tumors, indicating the negative influence of partial 

volume effects which were possibly exacerbated by motion (Figure 6). And the severe 

misclassification of MDA-MB-231 for Mouse #5 might be due to tumor heterogeneity 

which was not considered in the simulated training data. In addition, misclassified muscle 

tissue might be due to blood vessels. In contrast to the classification model, LD and 

MTRasym analysis at specific frequencies were less able to distinguish between the two 

tumor types at all three B1,sat amplitudes (Figures 4, 5, S4–S7). Therefore, the classification 

model had superior ability to distinguish between different tumors and potentially could be 

used on a voxel-wise basis to study different tumor regions.

The CNN model could provide saliency maps (Figures 1, 6). According to saliency maps of 

CNN at B1,sat = 2.0 μT, the Z-spectral region from −1.5 to 1.5 ppm (dominated by the direct 

water saturation signal) had little impact on the classification, showing that the classification 

was primarily based on the relative concentrations of the different Z-spectral components but 

not the tissue water relaxation properties. This was also observed from the fitted set of Bloch 

equation parameters which showed the Z-spectra of the tissue types clearly differed from 

each other in the relative concentration of Z-spectral components, especially MTC (Table 

1). In addition, the saliency maps illustrate that compared to the easily identifiable muscle 

tissue, the model required more Z-spectral features to distinguish between the two tumor 

types which were difficult to separate.

Bie et al. Page 9

NMR Biomed. Author manuscript; available in PMC 2023 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The inclusion of additional CEST data and parameters in the classification model was 

assessed to determine if they improve classification performance. The combination of 

features at multi-B1,sat did not improve classification performance (Figure 7), illustrating 

that there was redundant information in the combination input features. It was also intuitive 

that the model performance remained unchanged when using additional LD or MTRasym 

spectra (Figure 8) since LD and MTRasym are different representations of the same CEST 

information contained in Z-spectra, and would be regarded as redundant information in 

classification model.

It is also important to consider how the classification model performs with more 

sparely sampled data which can greatly speed up acquisition. Saliency maps guided the 

downsampling of Z-spectra and the performance of the model with saliency map-based 

partial or downsampled Z-spectra was surprisingly maintained (Figure 9). This suggests 

that only pertinent spectral regions or sparsely-sampled Z-spectra may be needed for tumor 

detection and classification, which will allow much shorter CEST acquisitions without 

compromising diagnostic efficacy. In this sampling scheme, excluding Z-spectral regions 

did not dramatically affect B0 correction (Figure S11). Further refinement of the saturation 

frequency list may be possible, especially based on the approach presented in this work, and 

perhaps also using different intervals between frequencies for different parts of the spectrum.

Finally, the proposed classification model can be easily tailored to other cancer types beyond 

breast cancer. The Z-spectra of various tissue types in the brain and body could be analyzed 

using the proposed approach to achieve classification of different tissue types.

However, the limitation of the present study is that the performance of classification 

model might be affected by simulated training data based on a limited number of pools, 

which might not represent the ground truth. Nevertheless, the present study demonstrates 

a proof-of-concept study to utilize the ability of deep learning with simulated training 

data to analyze tissue-specific Z-spectra for accurate tissue classification. Additionally, 

the Z-spectra acquired at higher magnetic fields (11.7 T) will have more clearly resolved 

features, which is helpful for the current deep learning classification model. Accordingly, the 

models may not work well on data acquired at lower magnetic fields.

In summary, we demonstrated the capability of a CNN-based classification model 

to distinguish between multiple tissue types based on their Z-spectral features. The 

performance of classification was robust in the presence of low and moderate noise 

perturbations and did not substantially change when including additionally spectral features. 

The model also produced saliency maps revealing pertinent regions on the Z-spectra which 

could be used to speed up CEST acquisition protocols by sampling limited frequencies. 

The method could classify in vivo tumors and muscle tissue voxel-by-voxel, implying 

deep learning technologies have potential to be helpful for utilizing and interpreting CEST 

spectral data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ANN artificial neural network

AUC area under curve

CEST chemical exchange saturation transfer

CNN convolutional neural network

CW continuous-wave

Cr Creatine

DS direct water saturation

FN false negative

FOV field of view

FP false positive

LD Lorentzian difference

MRI magnetic resonance imaging

MTC magnetization transfer contrast

MTRasym magnetization transfer ratio asymmetry

PBS phosphate‐buffered saline

PCA principal component analysis

PCr phosphocreatine

rNOEs relayed Nuclear Overhauser Effects

RARE rapid acquisition with relaxation enhancement

ROC receiver operating curve
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ROIs regions of interests

SD standard deviation

SNR signal-to-noise

T2w T2-weighted

TP true positive

TN true negative
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Figure 1. 
Illustration of the classification model. In the training stage, the simulated Z-spectra of 

MDA-MB-231, MCF-7, and muscle tissue are used to train the multi-class classification 

model which distinguishes the three tissue types. CNN model and saliency map (which is 

computed using keras-vis package47) are obtained. In the testing stage, the voxels to be 

classified are input into the CNN model to predict labels, and then, the confusion matrix and 

AUC of the receiver operating curve (ROC) are obtained.
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Figure 2. 
Fitting results for Z-spectra of ROIs taken in (A) MDA-MB-231, (B) MCF-7, and (C) 

muscle tissue at B1, sat = 0.5, 1.0, 2.0 μT from Mouse #1. The ROIs used for the Z-spectra 

are shown in Figure 4D. Experimental Z-spectra are shown with circles and fitted Z-spectra 

with solid lines. The bottom row shows the residuals between experimental and fitted 

Z-spectra for three B1,sat values and indicates the mean R2 (goodness of fit) over the three 

B1,sat values.
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Figure 3. 
Effects of added noise on classification model performance at B1,sat = 2.0 μT. The standard 

deviation (SD) of noise and accuracy of classification are shown in the top center of each 

subplot.
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Figure 4. 
Lorentzian difference (LD) and magnetization transfer ratio asymmetry (MTRasym) analysis 

of in vivo data at B1,sat = 2.0 μT for Mouse #1. (A) LD spectra, and (B) MTRasym spectra 

of MDA-MB-231, MCF-7, and muscle tissue. ROIs for the three tissues are indicated in 

MTRasym map at 2.0 ppm. (C) LD maps at 2.0, 3.5, 4.0 and −3.5 ppm. (D) MTRasym maps at 

2.0, 3.5, and 4.0 ppm. (E) T2w image, with MDA-MB-231 shown in blue and MCF-7 shown 

in red.
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Figure 5. 
LD and MTRasym analysis for MDA-MB-231, MCF-7, and muscle tissue at B1,sat = 2.0 μT. 

Average and standard deviation of (A) LD and (B) MTRasym spectra of ROIs. Distributions 

of (C) LD and (D) MTRasym of ROIs at specific saturation frequencies (2.0, 3.5, 4.0, and 

−3.5 ppm) for the three tissue types. Significance levels: *P ≤ 0.05, **P ≤ 0.01. Histograms 

of (E) LD and (F MTRasym intensities of voxels within ROIs at these specific frequencies for 

the three tissue types.
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Figure 6. 
Classification results of the model at B1,sat = 2.0 μT, using mice #2–5 as testing subjects. 

Voxels within ROIs (i.e. the colored voxels in the left column) were chosen and labelled for 

MDA-MB-231, MCF-7, and muscle tissue to evaluate the performance of the classification 

model. First column, predictive maps (predicted voxels of MDA-MB-231 in blue, MCF-7 

in red, and muscle tissue in green); second column, confusion matrix representations; third 

column, ROC analyses of the prediction performance of the classification model; fourth 

column, saliency maps of the model.
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Figure 7. 
Performance of the classification model using CEST Z-spectra with various saturation pulse 

amplitude combinations. (A) Accuracy, (B) sensitivity, and (C) specificity of classification 

model which was training and testing using CEST Z-spectra with B1,sat = 2.0 μT, 1.0 μT, 

0.5 μT, 2.0 μT + 1.0 μT, 2.0 μT + 0.5 μT, 1.0 μT + 0.5 μT, and 2.0 μT + 1.0 μT + 0.5 

μT. True positive (TP) rates for (D) MDA-MB-231, (E) MCF-7, and (F) muscle tissue of 

classification model at different B1,sat combination.
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Figure 8. 
Performance of the classification model at B1,sat = 2.0 μT using different spectral 

combinations. (A) Accuracy, (B) sensitivity, and (C) specificity of classification model 

which was training and testing using Z-spectra, Z-spectra and LD spectra, and Z-spectra 

and MTRasym spectra. True positive (TP) rates for (D) MDA-MB-231, (E) MCF-7, and (F) 

muscle tissue of classification model with different spectral combinations.
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Figure 9. 
Performance of the classification model at B1,sat = 2.0 μT using different numbers of 

saturation frequencies. Partial Z-spectra were chosen without spectral region from −1.5 

to 1.5 ppm (total of 62 offsets). Z-spectra were downsampled by collecting every second 

frequency and excluding −1.5 to 1.5 ppm (total of 32 offsets). (A) Accuracy, (B) sensitivity, 

and (C) specificity of classification model which was training and testing using partial and 

downsampled CEST Z-spectra. True positive (TP) rates for (D) MDA-MB-231, (E) MCF-7, 

and (F) muscle tissue of the classification model with different numbers of saturation 

frequencies.
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Table 1.

Parameters used for fitting Z-spectra and for generating simulation data of MDA-MB-231 / MCF-7 / muscle 

tissue.

Pool*
Peak position 

(ppm)
T1 (s) T2 (ms) Exchange Rate (Hz)

Concentration (mM)

Fitting Simulation range

Water 0.0

1.20 29

1 111,000 111,0001.00 19

1.31 14

Mobile protein, Cr (Guanidinium) 2.1 1 2

600 110 90 – 130

600 150 130 – 170

180 160 140 – 180

PCr (Guanidinium) 2.6 1 5

\ \ \

\ \ \

160 90 70 – 110

Mobile protein (Amide) 3.5 1 1

100 180 160 – 200

100 260 240 – 280

40 200 180 – 220

Mobile protein, aliphatic protons relayed 
NOE −3.5 1 0.45 35

900 850 – 950

1,200 1,150 – 1,250

650 600 – 700

Symmetric MTC 0.0 1 0.07 20

5,900 4,000 – 6,500

7,200 7,100 – 8,500

6,400 4,500 – 9,000

Asymmetric MTC −2.3 1 0.03 20

200 100 – 500

1,400 1,200 – 1,800

7,800 7,500 – 8,500

Abbreviations: Cr, creatine; MTC, magnetization transfer contrast; NOE, nuclear Overhauser effects; PCr, phosphocreatine.

*
Pools were chosen to consist of the dominant protons at that frequency.
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