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Abstract: There is a strong need to eliminate batch-specific differences when integrating single-
cell RNA-sequencing (scRNA-seq) datasets generated under different experimental conditions for
downstream task analysis. Existing batch correction methods usually transform different batches of
cells into one preselected “anchor” batch or a low-dimensional embedding space, and cannot take full
advantage of useful information from multiple sources. We present a novel framework, called IMGG,
i.e., integrating multiple single-cell datasets through connected graphs and generative adversarial
networks (GAN) to eliminate nonbiological differences between different batches. Compared with
current methods, IMGG shows excellent performance on a variety of evaluation metrics, and the
IMGG-corrected gene expression data incorporate features from multiple batches, allowing for
downstream tasks such as differential gene expression analysis.

Keywords: scRNA-seq; batch effect; connected graphs; deep learning; GAN

1. Introduction

The maturation of single-cell RNA-sequencing (scRNA-seq) technologies and the
continuing decrease in sequencing costs have encouraged the establishment of large-scale
projects such as the Human Cell Atlas, which generates transcriptomic data from thousands
to millions of cells and almost inevitably involves multiple batches across time points,
sequencing technologies, or experimental protocols [1,2]. With the explosive accumulation
of single-cell studies, integrative analysis of data from experiments of different contexts is
particularly important. However, batch effects or systematic differences in gene expression
profiles across batches not only can obscure the true underlying biology but also may
lead to spurious findings [3–5]. Therefore, to avoid misleading conclusions, they must be
corrected before further analysis.

In recent years, a number of algorithms have been published for batch-effect correction.
There are two main categories of these methods, according to the correction results. The
first is to select a batch as “anchor” and convert other batches to the “anchor” batch, e.g.,
MNN [6], iMAP [7], SCALEX [8], etc., which has the advantage that different batches of
cells can be converted to one other so that gene expression can be studied under the same
experimental conditions, and the disadvantage that it is not possible to fully combine
the features of each batch and it is difficult to select an “anchor” batch because the cell
types contained in each batch are unknown. The other is to transform all batches of data
into a low-dimensional space to correct batch effects, e.g., Scanorama [9], Harmony [10],
DESC [11], BBKNN [12], etc., which has the advantage of extracting biologically relevant
latent features and reducing the impact of noise, and the disadvantage that it cannot be
used for differential gene expression analysis.
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To compensate for the shortcomings of these methods, we integrate multiple single-
cell datasets through connected graphs and generative adversarial networks (GAN) to
design a batch-effect correction framework called IMGG. IMGG first finds mutual nearest
neighbor pairs (MNNs) multiple times in the low-dimensional embedding space, then
constructs cross-batch similar-cell connected graphs by MNNs and builds an intermediate
batch based on the similarity relationship of cells on these graphs, finally correcting the
batch effects by transforming all batches of cells to the intermediate batch with GAN. Our
experiments on multiple datasets demonstrate that IMGG is superior in various evaluation
metrics compared to other algorithms; moreover, the IMGG-corrected data can improve
gene differential expression analysis. Finally, according to different task goals, we give
some recommendations for the use of batch-correction methods.

2. Results

To show the superiority of IMGG, we designed multiple datasets and used four evalu-
ation methods to compare its ability to mix batches while maintaining cell-type separation
with current prevalent algorithms (Figure 1). The datasets covered two batches, n (n > 2)
batches, non-overlapping, and simulation data, respectively (Appendix A.2). All com-
parison methods, which have attracted a lot of attention from researchers in recent years,
included MNN and its variants, which corrected batch effects by transforming all batches
to a particular batch or embedding them into a low-dimensional space (Appendix A.3).
To evaluate the batch-correction effect, we used the Uniform Manifold Approximation
and Projection (UMAP) [13] visualizations, average silhouette width (ASW) [14], adjusted
rand index (ARI) [15], and local inverse Simpson’s index(LISI) [10] benchmarking metrics
(Appendix A.1). UMAP plots visualized the changes in different batch data before and after
correcting batch effects, and ASW, ARI, and LISI metrics were used to assess the ability
to mix batches and maintain cell-type separation [16]. For easy comparison, ASW scores
were plotted as 1 − ASW batch and ASW cell type, and ARI scores were calculated and
plotted in the same manner (1 − ARI batch and ARI cell type). For the LISI metric, we
calculated the mean of all cell scores and plotted the scores as 1 − cLISI and iLISI, so that a
higher value would indicate better performance. All evaluation methods were calculated
for common cell types only, and to summarize these metrics, we summed the scores of
IMGG and other algorithms according to their ranking on each evaluation method, so that
a lower sum of ranking scores indicates better overall algorithm performance. Specific
experimental results are presented below.
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2.1. IMGG Outperforms Existing Methods on Two Batches of Overlapping Data

We first showed the performance of IMGG in correcting two batches of overlapping
data using the human peripheral blood mononuclear cell(PBMC) dataset [16,17], which
comprised ‘pbmc_3p’ batch obtained by 10× 3’ Genomics protocols and ‘pbmc_5p’ batch
obtained by 10× 5’ Genomics protocols.

The UMAP visualization plots (Figure 2) showed a large deviation between the two
batches of cells in the raw data after preprocessing. Except for the MNN method, IMGG
and all other methods could successfully mix the common cells; the “kissing effects” (where
the different types of cells are not clearly separated on the visualization plot and their
borders are close together) was obvious in SCALEX; the ‘CD8 naive T’ cells were separated
into two parts in BBKNN; and IMGG, Harmony, and iMAP, as well as Scanorama could
achieve good results in differentiating cell types.
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Figure 2. Qualitative evaluation of 7 batch-effect correction methods using UMAP visualization for
PBMC dataset. The UMAP diagrams of raw data, IMGG, Harmony, and iMAP are plotted in the top
half, and the UMAP diagrams of MNN, SCALEX, Scanorama, and BBKNN are plotted in the bottom
half. Each half contains two rows of UMAP plots. In the first row, cells are colored by batch, and in
the second by cell type.

For ASW (Figure 3a), both IMGG and other methods obtained good scores in batch
mixing (1 − ASW batch > 0.98), and in cell-type purity score IMGG was second only to
SCALEX. For ARI (Figure 3b), both IMGG and other methods obtained good scores (1 −
ARI batch > 0.99), and in cell-type purity IMGG scores ranked third. For LISI (Figure 3c),
IMGG ranked highest in both cell-type purity metric cLISI and batch-mixing metric iLISI.
Finally, based on the sum of the rankings of the evaluated metrics (for fairness, if the score
difference was less than 0.01, the ranking was considered the same), IMGG ranked first
(Figure 3d).
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2.2. IMGG Outperforms Existing Methods on Multiple Batches of Overlapping Data

To show the advantage of IMGG in processing multiple batches, we compared its
performance with the current mainstream algorithms using the human pancreas (Pancreas)
dataset [18–22], which contained five batches of data obtained by different techniques.

The UMAP visualization plots (Figure 4) showed that the preprocessed raw data had
large batch effects, the MNN algorithm could only pull together different batches and could
not mix batches well, while IMGG and the other five methods all mixed different batches
and distinguished different cell types well.

For ASW (Figure 5a), IMGG was ahead of other methods in both batch-mix score
and cell-purity score. For ARI (Figure 5b), all methods performed well in batch-mix score
(1 − ARI batch > 0.98), and IMGG was ahead of other methods in cell-type purity. For LISI
(Figure 5c), IMGG had the highest score in batch-mix index iLISI; and in the cell-type purity
index cLISI, IMGG, Harmony, MNN, and Scanorama were comparable (score difference
less than 0.01). Finally, based on the sum of the rankings of the evaluated indicators (for
fairness, if the score difference was less than 0.01, the ranking was considered the same),
IMGG ranked first (Figure 5d).
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2.3. IMGG Outperforms Existing Methods on Non-Overlapping Data

In practical studies of scRNA-seq, cell types usually differ between batches. Therefore,
we again performed experiments on non-overlapping data to demonstrate the ability of
IMGG to handle real data.

Human dendritic cells (DC) were a two-batch dataset obtained using Smart-seq2
technology, and consisted of four types of human dendritic cells (DCs), i.e., CD1C DC,
CD141 DC, plasmacytoid DC (pDC), and double-negative cells (DoubleNeg) [23]. Two
types of biologically similar cells, CD1C DC from batch1 and CD141 DC from batch2, were
removed to ensure the two sub-datasets contained batch-specific cells [16].

We first conducted experiments using the DC dataset to demonstrate the ability of
IMGG in handling two batches of non-overlapping data.

The UMAP visualization plots (Figure 6) showed only a “kissing effect” between the
two batches in the preprocessed raw data, indicating small batch effects. After running
batch-correction algorithms, the two batch-specific cell types ‘CD1C’ and ‘CD141’ over-
lapped incorrectly in Harmony and Scanorama, and there was still a “kiss effect” on iMAP
and SCALEX, as well as BBKNN. Only IMGG and MNN can correctly distinguish different
cell types.
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Figure 6. Qualitative evaluation of 7 batch-effect correction methods using UMAP visualization for
DC dataset. The UMAP diagrams of raw data, IMGG, Harmony and iMAP are plotted in the top half,
and the UMAP diagrams of MNN, SCALEX, Scanorama, and BBKNN are plotted in the bottom half.
Each half contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the
second by cell type.

For ASW (Figure 7a), all methods performed well in mixing batches (1 − ASW > 0.99)
and IMGG was next to SCALEX in cell-type purity assessment. For ARI (Figure 7b), all
methods performed well in batch mixing (1 − ARI batch > 1), and IMGG was tied with
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Harmony for first place in cell-type purity. For LISI (Figure 7c), IMGG was second only
to Harmony in batch-mixing assessment, and ranked first in cell-type purity assessment.
Finally, based on the sum of the rankings of the assessment metrics (for fairness, if the
score difference was less than 0.01, the ranking was considered the same), IMGG ranked
first alongside Harmony (Figure 7d), but the UMAP visualization plots suggested that
Harmony was not well suited to handle this type of data.
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Figure 7. Quantitative evaluation of 6 batch-effect correction methods using the three-assessment
metrics (a) ASW, (b) ARI, and (c) LISI on DC dataset. Methods appearing at the upper-right quadrant
of the ASW, ARI, and LISI plots are the good performing methods. (d) The sum of each method’s
ranking on all evaluation metrics, with smaller values indicating better overall performance. Detailed
data are recorded in Table A7.

We also demonstrated the ability of IMGG to handle multiple batches of non-overlapping
data (Appendix A.5).

2.4. IMGG-Corrected Data Can Integrate Features from Multiple Batches

The novelty of IMGG is the ability to combine the features of different batches. We first
performed differential expression analysis using B cells from the PBMC dataset between
the ‘pbmc_3p’ batch and the ‘pbmc_5p’ batch to filter out the significant genes causing the
separation of the two batches of B cells. The IMGG batch-correction algorithm was then
run by selecting the Mean, Max, and Min modes, respectively, and the corrected data were
subjected to differential expression analysis again, and no genes were screened out, which
demonstrated that each pattern could eliminate the differences between the two batches.

We visualized the changes in expression of significant genes causing B-cell segregation
before and after correction. In the Mean pattern (Figure 8a) the expression of significant
genes changed toward their means (i.e., for a single gene, the expression after IMGG
correction was approximately equal to the mean of the expression in the two batches before
correction). In the Max pattern (Figure 8b) the expression of significant genes changed
toward their maxima. In the Min pattern (Figure 8c) the expression of significant genes
changed toward their minima.
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Figure 8. Gene differential expression analysis. (a–c) Differential expression of significant genes on B
cells in the PMBC dataset before and after IMGG correction, where (a) Mean pattern, (b) Max pattern,
and (c) Min pattern. (d) Venn diagram of changes in the number of differentially expressed genes
of B cells and CD4 T cells in the PBMC dataset before and after IMGG correction. The original data
with ‘pbmc_3p’ batch was colored in blue and ‘pbmc_5p’ in red. The IMGG-corrected data no longer
distinguished between batches and used lime-green coloring.

Meanwhile, we showed IMGG’s ability in finding differentially expressed genes by
combining multi-batch features. We performed differential expression analysis using B
cells and CD4 T cells from PBMC dataset in ‘pbmc_3p’ batch, ‘pbmc_5p’ batch, and IMGG
corrected data, and the number of filtered differentially expressed genes was visualized by
Venn diagram, respectively (Figure 8d; similarly, the Venn diagrams of NK cells and DC
cells, as well as CD8 T cells and monocyte-CD14 cells are shown in Figure A4). As can be
seen from the figure, the differentially expressed genes found in the ‘pbmc_3p’ batch and
the ‘pbmc_5p’ batch are more different, but the differentially expressed genes found after
IMGG correction are more similar to the genes found in each batch individually, which
indicated that the differential expression analysis using the IMGG-corrected data can filter
genes that incorporate both batches’ characteristics and better reflect the true differences.
To prove the above conclusion, we used the expression of these three sets of differentially
expressed genes on raw data, ‘pbmc_3p’ batch, ‘pbmc_5p’ batch, and IMGG-corrected data
for ASW assessment of the two cell types, respectively, and higher ASW scores indicated
that the two cell types were more dissimilar, and the experimental results showed that
the differentially expressed genes found using IMGG-corrected data achieved the best
ASW scores (Appendix A.6), which confirmed that the IMGG can improve differential
expression analysis.
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2.5. IMGG Performs at an Excellent Level in Terms of Time Overhead

To test the time-performance of IMGG, we simulated datasets of 500–100,000 cells and
compared the runtime of IMGG and other methods on these datasets, respectively.

For better presentation, we logarithmized the running time (Figure 9). The three deep
learning-based methods, IMGG, iMAP, and SCALEX, all have a larger time overhead than
the other non-deep learning methods on small datasets because there is an additional
training process using deep learning techniques. The time spent by these three methods
increases at a lower rate than the other methods as the data size increases, and the time
complexity approximates O(log), and IMGG outperforms iMAP and SCALEX. The running
time of the methods that return corrected gene expression matrices is larger than that of
the methods that return reduced dimensional matrices, but this gap decreases as the data
size increases. In summary, the time complexity of IMGG is better than that of the same
class method.
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expression matrix is returned and EM means corrected embedding matrix is returned.

3. Discussion

IMGG provides a solution to the batch effects present in two-batch, multi-batch,
and non-overlapping single-cell RNA-seq datasets. It takes the gene expression profile
matrices from different batches as inputs, and outputs the corrected expression profiles.
Our model combines connected graphs and generative adversarial networks, first breaking
the convention that the MNN algorithm is performed only once by finding MNNs multiple
times in PCA low-dimensional space, and then using MNNs to construct cross-batch similar
cell connected graphs to obtain similarity relationships for all paired cells. We use the
similarity relationship to build an intermediate batch as the target domain and other cells
in the similar cohort as the source domain, and use GAN to perfectly mix the distributions
of the shared cell types.

A remarkable feature of IMGG is that it can fully utilize the useful sides of each of the
sources. We designed three patterns—Mean, Max, and Min, and demonstrated that the
gene expression after IMGG correction can combine the characteristics of each batch and
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adjust the gene expression according to the set pattern, which may provide new insights to
study the gene expression of different batches of cells.

Based on the experimental results, we give suggestions for use in different cases. If
you want to obtain a low-dimensional embedding representation of gene expression, we
recommend using Harmony, although IMGG uses generative adversarial networks, its
performance in dimensionality reduction is not proven; if you want to obtain a graph
representation of all cells, we recommend using BBKNN, although IMGG also constructs
connected graphs, it does not cover all cells to improve running speed; if you want to
obtain a gene expression matrix that can be used for downstream analysis, then our IMGG
is recommended and it may bring you new discoveries.

In summary, extensive real-dataset benchmarking suggests that IMGG not only better
rescues biological features and provides improved clustering results, but also helps to
identify biologically relevant DEGs. Therefore, we anticipate that IMGG is valuable for the
comprehensive analysis of multiple scRNA-seq datasets, accelerating studies involving
single-cell transcriptomic gene expression.

4. Materials and Methods

GAN has been shown to outperform AutoEncoder-based methods in image-style
migration tasks [24]. Different batches of cells are similar to different styles of images, so
GAN can also be introduced to address the batch effects.

Our IMGG framework consists of three stages: in the first stage (Figure 10a), all genes
were first preprocessed to filter out highly variable genes (HVGs), followed by transforming
the HVGs to the low-dimensional embedding space by principal component analysis (PCA).
In the second stage (Figure 10b), the MNN algorithm was executed multiple times to find
as many different MNNs as possible between batches in the embedding space, and then
MNNs were used to construct cross-batch similar-cell connected graphs. In the last stage
(Figure 10c), the connected graphs obtained in the embedding space were first mapped to
the HVGs’ space, and in the HVGs’ space, different batches of cells were sampled from
each group of similar cells to form a synthesis queue. Then, using the middle point of
the cohort synthesis as the target domain and the other cells in the cohort as the source
domain, a network was trained using GAN to transform from the source domain to the
target domain, and finally, the batch effect could be corrected using the trained generator.
Details are further explained below.

4.1. Data Preprocessing

All preprocessing of the scRNA-seq datasets in this study was performed using the
Scanpy package in the Python language environment [25].

Firstly, genes starting with ‘ERCC’, ‘MT-’, and ‘mt-’ were filtered out to prevent
interference from the size of the library or the large proportion of mitochondrial gene counts.
Secondly, the “scanpy.pp.filter_cells” function of Scanpy and the “ scanpy.pp.filter_genes”
function exclude cells expressing fewer than 600 genes and genes expressed in fewer
than 3 cells, followed by “scanpy.pp.highly_variable_genes” to select 2000 highly variable
genes and normalize the data using “scanpy.pp.normalize_total”. Finally, the data were
logarithmically transformed using the “scanpy.pp.log1p” function and the “scanpy.tl.pca”
function was used to obtain an embedding representation of the data.
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4.2. Constructing Cross-Batch Similar-Cell Connected Graphs

In this stage, we further explored the potential of the MNN algorithm.
First, in the low-dimensional embedding space, we executed the MNN algorithm

multiple times to find MNNs (Each time, the paired cells were removed and no more than
3000 cells were sampled per batch, which could increase the diversity of paired cells and
save time).

Second, to discover similar relationships between cells in different batches, we con-
structed connected graphs of similar cells across batches using MNNs. The construction
method was consistent for overlapping and non-overlapping datasets. Here, for conve-
nience, the construction methods are explained in terms of cells of type A appearing in
three batches simultaneously.

Closed-loop connection (Figure 11a): A1, A2, and A3 can perfectly form a connected
graph if A1 in batch 1, A2 in batch 2, and A3 in batch 3 are all MNN pairs with each other.

Transmitting connection (Figure 11b): We found that similar cells across batch are
transmittable (e.g., if A1 in batch 1 and A2 in batch 2 are MNNs, and A2 in batch 2 and A3
in batch 3 are MNNs, then A1 and A3 are similar cells). According to the transmissibility,
A1, A2, and A3 can also form a connected graph.



Int. J. Mol. Sci. 2022, 23, 2082 12 of 21

Weak transmitting connection (Figure 11c): To make the connected graphs contain as
many cells from different batches as possible, we loosened the transmissibility condition.
The k-nearest neighbor algorithm is first executed within batches, and k within-batch
neighbors are identified for each cell. If A in batch 1 and B in batch 2 are MNNs, A’ in batch
1 and C in batch 3 are MNN pairs, and A and A’ are k-nearest neighbors within batches,
then B is a similar cell to C, and thus A/A’, B, and C can construct a connectivity graph.
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By performing these three connection methods to construct connected graphs, the
similarity of relationships of cells in different batches are obtained.

4.3. Correcting Batch Effects by GAN

Instead of selecting a batch as the “anchor” and transforming other batches to the
“anchor” batch in turn as other MNN-based algorithms do, IMGG adopts the strategy of
finding an intermediate batch and transforming all batches to the intermediate batch at the
same time.

Firstly, we mapped the connected graphs obtained from the embedding space to the
HVGs’ space, and randomly sampled each batch of cells on each connected graph to obtain
a cohort of similar cells from different batches. To build the intermediate batch we designed
three patterns, i.e., Mean, Max, and Min. For the Mean pattern, IMGG selects the mean
value of each gene expression in the similar cell cohort as the synthesis target, which has the
advantage of equalizing the differences in gene expression between batches and does not
cause the corrected data to deviate from the normal range of values due to abnormalities in
one batch. For the Max pattern, IMGG selects the maximum value of each gene expression
in the similar cell cohort as the synthesis target, which has the advantage of combining
the benefit points of different techniques when the batches are from different techniques
and reflects a more comprehensive gene expression. For the Min pattern, IMGG selects the
minimum value of each gene expression in the similar cell cohort as the synthesis target,
which does not seem to be beneficial, but we did not remove it for the sake of algorithmic
integrity. Using the synthesis point of each cohort as the target domain and the respective
gene expression of the cells in the cohort as the source domain, a network was trained
using GAN to transform from the source domain to the target domain, whereas the batch
effects could be corrected later using the trained generator.

4.4. Model Details

As shown in Figure 12, we used a residual fully connected layer as the generator of the
GAN; each fully connected unit contains Linear, BatchNormal, and Mish activations [26].
Finally, the ReLU activation function was used to ensure that the output conformed to the
gene expression distribution.
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To facilitate and stabilize the GAN training process, adversarial losses were optimized
via the WGAN-GP [27].

The loss function of the discriminator is:

Ladv = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(1)

The loss function of the generator is:

Lg = − E
x̃∼Pg

[D(x̃)] (2)

However, in practice, we found that it would be difficult to integrate multiple batches
of distributions using only the WGAN-GP loss, so we added a reconstruction loss to help
GAN fit multiple batches of distributions better and faster, with good experimental results
(Appendix A.4).

Lrec = E
x̃∼Pg ,x∼Pr

[‖x̃− x‖2]·n (3)

where n is the number of genes.
We adopted the Adam optimizer [28] to train the networks, with a learning rate of

0.0002. The total time cost depends on the time spent building intermediate data and
network-optimization parameters (epoch, batch size), and users can adjust all hyper-
parameters to achieve better results.

All jobs are run on a Linux server configured with an Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90 GHz, 376 G DDR4 RAM, and a 32 G Tesla V100S GPU.
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Appendix A

Appendix A.1. Evaluation Indicators

To evaluate the effectiveness of batch correction, researchers have designed various
evaluation metrics, such as ASW [14], ARI [15], and LISI [10], among others. Although each
evaluation metric has its limitations, we believe that for the same data set, the algorithm
is optimal only if it performs well on multiple evaluation metrics. The implementation
details of each evaluation metric are as follows:

Appendix A.1.1. Average Silhouette Width (ASW)

The silhouette coefficient is a way of evaluating the effectiveness of clustering. As-
suming that we have clustered the data by a certain algorithm, for one of the points, i, the
silhouette coefficient is:

S(i) =
b(i)− a(i)

max{a(i), b(i)} (A1)

where a(i) is the average distance of other samples in the same category as it and b(i) is
the average distance of samples in different categories that are closest to it. The value of
the silhouette coefficient is between [−1, 1], the closer to 1 means that the cohesion and
separation are relatively good. The average of the silhouette coefficients of all points is the
total silhouette coefficient of the clustering result.

In our work, the ASW score was calculated in the python language environment
using the “silhouette_score” function of the “sklearn.metrics” package and with the top
50 principal components of the corrected data as input. Using batch as the label, a lower
ASW score indicates better batch mixing, and using cell type as the label, a higher ASW
score indicates better cohesion of similar cells.

Appendix A.1.2. Adjusted Rand Index (ARI)

Given the actual category information C, assuming that K is the clustering result, a
denotes the number of pairs of elements that are of the same category in both C and K, and
b denotes the number of pairs of elements that are of different categories in both C and K,
then the Rand index is

RI =
a + b

C
nsamples
2

(A2)

where C is the total number of element pairs that can be composed in the data set and RI
takes values in the range [0, 1], with larger values implying that the clustering results match
the true situation. For random results, RI does not guarantee that the score is close to zero.
In order to achieve “the indicator should be close to zero in the case of randomly generated
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clustering results”, an adjusted Rand factor is proposed, which provides a higher degree of
discrimination:

ARI =
RI − E[RI]

max(RI)− E[RI]
(A3)

The ARI takes values in the range [−1, 1], with larger values meaning that the cluster-
ing results match the true situation.

In our work, K-Means (where k is the number of cell types) clustering was performed in
the Python language environment using the “KMeans” function from the “sklearn.cluster”
package and using the top 50 principal components of the corrected data as input. To
assess cell-type purity using ARI, cell-type labels were compared to k-mean clustering
results using the “adjusted_rand_score” function of the “sklearn.metrics” package, with
high ARI scores corresponding to high cell-type purity. For batch-mixing assessment, only
cells whose types were present in all batches were considered, and their respective batch
labels were compared with the KMeans clustering labels, and a low ARI score indicated
good mixing.

Appendix A.1.3. Local Inverse Simpson’s Index (LISI)

LISI is a metric for assessing the mix of batches and cell types. In the case of LISI
integration (iLISI) to measure batch mixing, the index is computed for batch labels, and
a score close to the expected number of batches denotes good mixing. The iLISI score is
only computed for cells whose type appears in all batches. For cell-type LISI (cLISI), the
index is computed for all cell-type labels, and a score close to 1 denotes that the clusters
contain pure cell types. We calculated the iLISI and cLISI scores for each cell in the dataset
and then determined the mean for comparison.

Appendix A.1.4. Differential Gene Expression Analysis (DEG)

To perform DEG analysis, we first preprocessed the data (including log2 normaliza-
tion), then selected samples and grouped them, after which we calculated the difference in
expression levels of target genes between different groups of samples (i.e., fold change).
We used the stats function of the SciPy package in the Python language environment to
perform t-tests to calculate the significance (p-value) of gene expression differences between
samples. In our experiments, the threshold value of fold change was 1 and p was 0.05.

Appendix A.1.5. Uniform Manifold Approximation and Projection (UMAP) Visualization

We ran UMAP with the default number of neighbors using the Scanpy package in the
Python environment to visualize the raw data and batch-corrected output.

Appendix A.2. Datasets

Table A1. The real datasets used in this study.

Dataset Description Batch (Number of Cells) Number of Cell Types Genes Overlap

PBMC human peripheral blood
mononuclear cells

pbmc_3p (8098) 12
33,694 Truepbmc_5p (7378) 12

Pancreas human pancreas

Indrop (8569) 13

34,363 True
smartseq2 (2394) 13

celseq2 (2285) 13
Celseq (1004) 13

fluidigmc1 (638) 13

DC human dendritic cells
Batch1 (283) 3

26,593 FalseBatch2 (286) 3



Int. J. Mol. Sci. 2022, 23, 2082 16 of 21

Table A1. Cont.

Dataset Description Batch (Number of Cells) Number of Cell Types Genes Overlap

Panc_rm Panc_rm

Indrop (5147) 11

34,363 False
smartseq2 (1898) 11

celseq2 (1808) 11
Celseq (725) 11

fluidigmc1 (592) 11

PBMC_rm PBMC_rm
pbmc_3p (150) 2

33,694 Truepbmc_5p (150) 2

We also generated simulated data using the splatter package in R environment [29],
with “batch.facLoc” set to 0.1 and “batch.facScale” set to 0.15.

Table A2. The simulated datasets used in this study.

Number of Cells Batch1:Batch2:Batch3:Bath4 Group1:Group2:Group3:Group4 Genes

1000 1:1:1:1 1:1:1:1 10,000
2000 1:1:1:1 1:1:1:1 10,000
5000 1:1:1:1 1:1:1:1 10,000

10,000 1:1:1:1 1:1:1:1 10,000
20,000 1:1:1:1 1:1:1:1 10,000
50,000 1:1:1:1 1:1:1:1 10,000
80,000 1:1:1:1 1:1:1:1 10,000

100,000 1:1:1:1 1:1:1:1 10,000

All the datasets that we used are available at https://github.com/dongzuoyk/IMGG
(accessed on 14 January 2022).

Appendix A.3. Comparison Methods

Table A3. The comparison methods used in this study.

Tools Output Language Availability

iMAP [7] Normalized gene expression matrix Python https://github.com/Svvord/iMAP
(last access date: 12 February 2022)

MNN [6] Normalized gene expression matrix Python/R https://github.com/MarioniLab/MNN2017
(last access date: 12 February 2022)

Scanorama [9] Normalized dimension reduction
vectors Python/R https://github.com/brianhie/scanorama

(last access date: 12 February 2022)

Harmony [10] Normalized feature reduction vectors Python/R https://github.com/immunogenomics/harmony
(last access date: 12 February 2022)

SCALEX [8]
Normalized feature reduction vectors

and Normalized gene expression
matrix

Python https://github.com/jsxlei/SCALEX
(last access date: 12 February 2022)

BBKNN [12] Connectivity graph and normalized
dimension reduction vectors Python https://github.com/Teichlab/bbknn

(last access date: 12 February 2022)

https://github.com/dongzuoyk/IMGG
https://github.com/Svvord/iMAP
https://github.com/MarioniLab/MNN2017
https://github.com/brianhie/scanorama
https://github.com/immunogenomics/harmony
https://github.com/jsxlei/SCALEX
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Figure A1. The first row plots the UMAP diagrams of IMGG-corrected data after adding reconstruc-
tion loss. The second row plots the UMAP diagrams of IMGG-corrected data without adding recon-
struction loss. 
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Figure A2. Qualitative evaluation of 7 batch-effect correction methods using UMAP visualization
for Panc_rm dataset. The UMAP diagrams of raw data, IMGG, Harmony, and iMAP are plotted in
the top half, and the UMAP diagrams of MNN, SCALEX, Scanorama, and BBKNN are plotted in the
bottom half. Each half contains two rows of UMAP plots. In the first row, cells are colored by batch,
and in the second by cell type.
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The Panc_rm dataset was composed by removing some cells in each of the five batches
of the Pancrease dataset. We removed ductal and beta cells in ‘indrop’ batch, acinar and
beta cells in ‘smartseq2′ batch, acinar and delta cells in ‘celseq’ batch, acinar and delta
cells in ‘celseq’ batch, and acinar and delta cells in ‘fluidigmc1′ batch, thus constructing a
five-batch non-overlapping dataset.

We used the Panc_rm dataset for our experiments and the UMAP visualization plots
(Figure A2) showed that MNN performed the worst in terms of batch mixing, and there
were “kissing effects” between beta and delta cells in SCALEX, Harmony, iMAP, and
Scanorama. Acinar and ductal cells showed varying degrees of “kissing effects” in all
methods, which may be attributed to the similarity of gene expression.
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was considered the same), IMGG was ranked first (Figure A3d). 

Figure A3. Quantitative evaluation of 6 batch-effect correction methods using the three-assessment
metrics (a) ASW, (b) ARI, and (c) LISI on Panc_rm dataset. Methods appearing at the upper right
quadrant of the ASW, ARI, and LISI plots are the good performing methods. (d) The sum of each
method’s ranking on all evaluation metrics, with smaller values indicating better overall performance.
Detailed data are recorded in Table A8.

For ASW (Figure A3a), IMGG was second only to Harmony in terms of batch mixing
and ahead of all other algorithms in terms of cell-type purity. For ARI (Figure A3b), all
algorithms performed well in batch mixing (1 − ARI batch > 0.99), and IMGG scored
highest in cell-type purity assessment. For LISI (Figure A3c), IMGG was second only to
iMAP in batch-mixing assessment, and it took fourth place in cell-type purity, but the score
difference with the top three was less than 0.01. Finally, based on the sum of the rankings
of the assessment metrics (for fairness, if the score difference was less than 0.01, the ranking
was considered the same), IMGG was ranked first (Figure A3d).

Appendix A.6. Experiment 3

We performed differential expression analysis of B cells and CD4 T cells in the
‘pbmc_3p’ batch, the ‘pbmc_5p’ batch, and the IMGG-corrected data from the PBMC
dataset, and obtained 36, 44, and 39 differentially expressed genes, respectively. We used
the expression of these differentially expressed genes for ASW assessment on the raw data,
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the ‘pbmc_3p’ batch, the ‘pbmc_5p’ batch, and the IMGG-corrected data, respectively. The
higher value of ASW indicates that the two cell types are more dissimilar. As can be seen
from Table A4, the differentially expressed genes obtained using IMGG-corrected data had
the highest ASW scores, which indicates that the IMGG-corrected data can be analyzed for
differential expression and that the differentially expressed genes found are more reflective
of cellular differences.

Table A4. ASW assessment of B cells and CD4 T cells using expression of differentially expressed
genes.

Batch ASWDEG_3p_36 ASWDEG_5p_44 ASWDEG_IMGG_39

Raw 0.511844 0.505531 0.518933
pbmc_3p 0.496737 0.498288 0.511863
pbmc_5p 0.578334 0.574564 0.590644

IMGG-corrected 0.703968 0.70964 0.714085
DEG_3p_36: 36 differentially expressed genes obtained using the ‘pbmc_3p’ batch; DEG_5p_44: 44 differentially
expressed genes obtained using the ‘pbmc_3p’ batch; DEG_IMGG_39: 39 differentially expressed genes obtained
using the IMGG-corrected data.

To demonstrate the robustness of IMGG in terms of DEG, we performed the same
experiments on NK and DC cells, as well as CD8 T cells and monocyte-CD14 cells in the
PBMC dataset, and the Venn diagram (Figure A4) demonstrates that the differentially
expressed genes obtained using IMGG-corrected data combine two batch characteristics.
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Figure A4. (a) Venn diagram of changes in the number of differentially expressed genes of NK cells
and DC cells in the PBMC dataset before and after IMGG correction. (b) Venn diagram of changes in
the number of differentially expressed genes of CD8 T cells and monocyte-CD14 cells in the PBMC
dataset before and after IMGG correction. The original data with ‘pbmc_3p’ batch was colored in
blue and ‘pbmc_5p’ in red. The IMGG-corrected data no longer distinguished between batches and
used lime green coloring.

Appendix A.7. Detailed Evaluation Index Score Data

All assessment index scores were averaged five times and retained two decimal places.
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Table A5. Details of quantitative assessment metric scores on the PBMC dataset.

Method
ASW|Rank ARI|Rank LISI|Rank

Total Ranking Score
1−ASWbatch ASWcelltype 1−ARIbatch ARIcelltype iLISI 1−cLISI

Raw 0.93|2 0.15|5 0.99|1 0.52|6 1.02|7 −0.17|3 24
IMGG 0.99|1 0.23|2 0.99|1 0.60|3 1.71|1 −0.12|1 9

Harmony 0.99|1 0.19|3 0.99|1 0.60|3 1.68|2 −0.17|3 13
iMAP 0.99|1 0.17|4 0.99|1 0.56|5 1.51|4 −0.22|5 20
MNN 0.99|1 0.19|3 0.99|1 0.61|2 1.18|6 −0.17|3 16

SCALEX 0.99|1 0.26|1 0.99|1 0.57|4 1.57|3 −0.13|2 12
Scanorama 0.99|1 0.15|5 0.99|1 0.64|1 1.50|5 −0.21|4 17

Table A6. Details of quantitative assessment metric scores on the Pancreas dataset.

Method
ASW|Rank ARI|Rank LISI|Rank

Total Ranking Score
1−ASWbatch ASWcelltype 1−ARIbatch ARIcelltype iLISI 1−cLISI

Raw 1.01|7 0.17|7 0.99|2 0.54|7 1.06|7 −0.05|1 31
IMGG 1.15|1 0.42|1 0.99|2 0.89|1 2.38|1 −0.05|1 7

Harmony 1.14|2 0.26|3 0.99|2 0.74|3 2.00|3 −0.05|1 14
iMAP 1.06|5 0.21|4 1.00|1 0.77|2 2.16|2 −0.07|3 17
MNN 1.11|3 0.18|6 0.99|2 0.55|6 1.38|6 −0.05|1 24

SCALEX 1.04|6 0.29|2 0.99|2 0.59|5 1.67|5 −0.06|2 22
Scanorama 1.09|4 0.19|5 0.99|2 0.64|4 1.85|4 −0.05|1 20

Table A7. Details of quantitative assessment metric scores on the DC dataset.

Method
ASW|Rank ARI|Rank LISI|Rank

Total Ranking Score
1−ASWbatch ASWcelltype 1−ARIbatch ARIcelltype iLISI 1−cLISI

Raw 0.99|2 0.50|4 1.00|1 0.98|1 1.64|5 −0.02|1 14
IMGG 1.00|1 0.56|2 1.00|1 0.98|1 1.77|2 −0.02|1 8

Harmony 1.00|1 0.51|3 1.00|1 0.98|1 1.85|1 −0.02|1 8
iMAP 1.00|1 0.48|5 1.00|1 0.91|4 1.72|4 −0.04|3 18
MNN 0.99|2 0.50|4 1.00|1 0.96|2 1.63|6 −0.03|2 17

SCALEX 0.99|2 0.63|1 1.00|1 0.90|5 1.74|3 −0.03|2 14
Scanorama 1.00|1 0.44|6 1.00|1 0.92|3 1.55|7 −0.02|1 19

Table A8. Details of quantitative assessment metric scores on the Panc_rm dataset.

Method
ASW|Rank ARI|Rank LISI|Rank

Total Ranking Score
1−ASWbatch ASWcelltype 1−ARIbatch ARIcelltype iLISI 1−cLISI

Raw 0.95|6 0.15|5 0.74|6 0.33|5 1.07|7 −0.05|2 31
IMGG 1.09|2 0.29|1 1.03|2 0.53|1 2.07|2 −0.05|2 10

Harmony 1.11|1 0.21|3 1.04|1 0.47|2 2.00|3 −0.04|1 11
iMAP 1.06|3 0.20|4 1.02|3 0.47|3 2.43|1 −0.07|3 17
MNN 1.04|5 0.13|6 0.99|5 0.25|7 1.41|6 −0.04|1 30

SCALEX 1.04|5 0.25|2 1.03|2 0.42|4 1.63|5 −0.07|3 21
Scanorama 1.05|4 0.12|7 1.00|4 0.28|6 1.81|4 −0.04|1 26
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