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Abstract: A new kind of temperature sensor based on a vacuum diode was proposed and numerically
studied in this paper. This device operated under different electron emission mechanisms according
to the electron density in the vacuum channel. The temperature determination ability of this device
was only empowered when working in the electric-field-assisted thermionic emission regime (barrier-
lowering effect). The simulated results indicated that the temperature-sensing range of this device
was around 273 K–325 K with a supply current of 1 µA. To obtain a linear dependency of voltage on
temperature, we designed a proportional-to-absolute-temperature (PTAT) circuit. The mathematic
derivation of the PTAT voltage is presented in this study. The temperature-sensing sensitivity was
calculated as 7.6 mV/K according to the measured I-U (current versus voltage) characteristic. The
structure and principle of the device presented in this paper might provide an alternative method for
the study of temperature sensors.

Keywords: vacuum diode; electric field assisted thermionic emission; temperature sensor

1. Introduction

Temperature sensors play an important role in many fields, such as industrial au-
tomation, medical monitoring, food safety, and portable electronic devices [1–4]. In the
continuous pursuit of miniaturization, temperature sensors with the merits of low cost, low
power consumption and compatibility with integrated circuits, attract much attention [5–7].
Among these different types of temperature sensors, semiconductor-based diodes or transis-
tor sensors are the most common devices due to their high sensitivity and full compatibility
with complementary metal oxide semiconductor (CMOS) technology [8]. To achieve a high
sensitivity and wider temperature range, extensive studies were conducted, focusing on the
Schottky diode [8–14], p-n junction diode [15,16] and p-i-n diode [17–19]. The sensitivity of
these sensors varied from 0.61 mV/K [18] to 5.11 mV/K [8] and the operating temperature
limit reached 440 K [10].

Recently, many studies on vacuum electronic devices were conducted, involving
vacuum diodes and triodes [20–22], where the vacuum channel length was designed at the
nanometer scale. Thus, these devices can operate in air without performance degradation.
As is known to all, a vacuum is the superior media for carrier transportation, as opposed
to semiconductor materials, where electrons travel ballistically without being scattered by
a lattice or captured by defects. Vacuum electronics are generally considered to be more
suitable for harsh environments [20–22] or faster detecting [23] than solid-state electronics.
The existing vacuum devices are used for photon detection [23] or signal modulation [24,25].
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To the best of our knowledge, the application of vacuum diodes or triodes for temperature
sensing has not yet been studied.

In this work, we proposed a nanoscale vacuum diode temperature sensor based on
electric-field-assisted thermionic emission. The sensitivity reached 7.6 mV/K (calculated
according to the I-V curve measured in [26]), which is higher than 5.11 mV/K, as reported
in [8]. The finite integration technique was adopted to numerically study the performance
of the diode on temperature-sensing ability. Moreover, a PTAT circuitry based on this
vacuum diode was also proposed, and the corresponding mathematical analytic scheme
was elaborated. The temperature detecting sensitivity of a single diode and the PTAT
circuitry was calculated.

2. Methods
2.1. Device Structure and Working Principle

The proposed temperature-sensing element is a vertically aligned MIS diode with a
void channel in the center, as illustrated in Figure 1a. The cathode material is aluminum.
Silicon substrate (boron-doped, resistivity = 10 Ωcm, (100)-oriented) acts as anode. The
dielectric layer material is silicon nitride (Si3N4), and the thickness is 80 nm (comparable
to the mean free path of electrons in air). The radius of the vacuum channel is set as
30 µm. Electrons accumulate at the cathode–dielectric interface forming the so-called
quasi-two-dimensional electron system (2DES) (width <1 nm) [24,27] in the cathode side
under negative voltage bias, as shown in Figure 1b. In the 2DES, electrons can travel
freely in the lateral dimension but can hardly move in the vertical dimension. Electrons
near the cleaved edge of the void channel suffer asymmetrical Coulombic repulsion from
surrounding electrons and are readily injected into the vacuum channel. Thus, the surface
vacuum barrier height of the 2DES is much lower than the work function of Al (4.28 eV).
Moreover, the height of surface barrier will further decrease under external electric field
bias, as depicted in Figure 1c. When the voltage bias was relatively low (<1 V), emission
current I of this device was subjected to space-charge limitation (SCL) regime, where the
current exhibited a 3/2 power dependency of voltage and was irrelevant to temperature, as
demonstrated in our former work [28]. As the voltage bias increased, the electron emission
mechanism then turned into the barrier-lowering effect regime (field-assisted thermionic
emission), where lg I showed a linear relationship with U1/2/T, U refers to bias voltage and
T refers to temperature, as shown in Figure 2c and Equation (1) which will be discussed later.
The experimental fabrication details and verification of the electron emission mechanism
can be seen in the Supplementary Materials in our former work [26,28].

2.2. Simulation Technique

To investigate the temperature-sensing ability of the vacuum diode, CST PARTICLE
STUDIOTM, an electromagnetic field and particle-tracking simulation software based on
finite integration technique (FIT), was used. The current density of the emission was
calculated by Richardson–Dushman equation, j = AT2exp(−Φ/kT), where A is the emission
constant and set as the default value of 1.2 × 106 A·m−2·K−2, Φ is the equivalent work
function of cathode, and k is Boltzmann’s constant. The width of the emission surface was
set as 1 nm according to [24]. Due to the barrier-lowering effect, Φ decreases as the external
electric field increases. The equivalent work function Φ under a different voltage bias will
be determined in advance using the data measured under room temperature by Keithley
4200. Notably, the measurement data mentioned in the following article are all derived
from [28].
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Figure 1. The vacuum diode temperature-sensing element. (a) Schematic of the proposed tempera-
ture-sensing diode; (b) Schematic illustration of electrons emission and transportation in the vac-
uum channel. Electrons will be ejected from the edge of 2DES, travelling from metal to silicon via 
vacuum channel; (c) Diagram of electron distribution by energy in cathode and surface barrier dis-
tribution. W is the height of surface vacuum barrier. EF is the Fermi level of cathode. Line a is normal 
electron distribution in metal, which we deliberately show here as a reference. Line b is electron 
distribution in metal, where 2DES developed under certain bias. Line c is surface barrier distribution 
of electrons without external electric field. Line d is surface barrier distribution of electrons under 
external electric field. 
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the virtual cathode. As the voltage bias increased, the virtual cathode was pushed towards 
the cathode and eventually landed on it. Meanwhile, the barrier-lowering effect emerged, 
as shown in Figure 2c. The equivalent work function of the cathode decreased continu-
ously with the increase in voltage bias. Thus, the emission current increased correspond-
ingly. The inflection point of the current in the I-U curve was related to the equivalent 
work function as shown in Figure 2a. As Φ was a constant in the space-charge limited 
regime; we could easily calculate it by a tentative simulation. By comparing the simulated 
results and measured data, as shown in Figure 2a,b, Φ in the space-charge limited regime 

Figure 1. The vacuum diode temperature-sensing element. (a) Schematic of the proposed temperature-
sensing diode; (b) Schematic illustration of electrons emission and transportation in the vacuum
channel. Electrons will be ejected from the edge of 2DES, travelling from metal to silicon via vacuum
channel; (c) Diagram of electron distribution by energy in cathode and surface barrier distribution. W
is the height of surface vacuum barrier. EF is the Fermi level of cathode. Line a is normal electron
distribution in metal, which we deliberately show here as a reference. Line b is electron distribution
in metal, where 2DES developed under certain bias. Line c is surface barrier distribution of electrons
without external electric field. Line d is surface barrier distribution of electrons under external
electric field.

3. Results and Discussion

Two different electron emission mechanism were observed, as shown in Figure 2.
Under a relatively low voltage bias, the electron emission mechanism was subjected to the
space-charge limited current regime, as shown in Figure 2a,b, which was dominated by the
virtual cathode. As the voltage bias increased, the virtual cathode was pushed towards the
cathode and eventually landed on it. Meanwhile, the barrier-lowering effect emerged, as
shown in Figure 2c. The equivalent work function of the cathode decreased continuously
with the increase in voltage bias. Thus, the emission current increased correspondingly.
The inflection point of the current in the I-U curve was related to the equivalent work
function as shown in Figure 2a. As Φ was a constant in the space-charge limited regime;
we could easily calculate it by a tentative simulation. By comparing the simulated results
and measured data, as shown in Figure 2a,b, Φ in the space-charge limited regime was
determined as 0.29 eV, where the voltage bias corresponding to the inflection point of the
current was around 1 V. The barrier-lowering effect was intentionally ignored in Figure 2a
for simplification.
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electron emission surface was not ideal as the simulating model. Additionally, the actual 
emission surface might be speckled, and the area would be smaller than the calculated 
value of the model. The effective electron emission area was then calibrated with a coeffi-
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Figure 2. I−U curve of the proposed vacuum diode under room temperature. (a) Simulated results
of I−U characteristics with different equivalent work functions. (b) Measured I−U characteristics in
a lg−lg plot. (c) Measured I−U characteristics in a lg I−U1/2 plot. The inset is a picture of the diode
taken by metallographic microscope. The linear relationship indicated the barrier−lowering effect
mechanism.

As for the barrier-lowering effect regime, the surface barrier of the cathode decreased
as the voltage bias increased, as mentioned above. The work function in the Richardson–
Dushman equation could be treated as equivalently decreased during the calculation of
the emission current. Hence, the equivalent work function corresponding to the applied
voltage bias could be calculated from the measured data, considering that the practical
electron emission surface was not ideal as the simulating model. Additionally, the actual
emission surface might be speckled, and the area would be smaller than the calculated value
of the model. The effective electron emission area was then calibrated with a coefficient
of 1.74 according to the measured data. The equivalent work function could be uniquely
determined when the simulated results fitted the experimental results measured at room
temperature, as depicted in Figure 3. If a constant current source was applied to the diode,
then temperature was a function of Φ according to the Richardson–Dushman equation. In
other words, the voltage bias was related to temperature. Therefore, this diode could be
used as a temperature sensor.

Figure 4 showed the simulated temperature response characteristics of the diode under
two different constant current values. In the barrier-lowering effect regime, voltage was
negatively related to temperature. Meanwhile, voltage was irrelevant to temperature if the
diode was operated in the space-charge limited current regime, in which the electric field
was too weak to attract the emitted electrons to the anode in time, forming the so-called
virtual cathode in the vacuum channel. Hereby, the current was governed by voltage rather
than temperature. In order to ensure that this diode was working in the barrier-lowering
effect regime, the upper limit of the temperature-sensing range was confined, as shown in
Figure 4. Considering the power consumption issue, the lower limit of the temperature-
sensing range was also confined. The effective sensing range could be modified by the
constant current source, as depicted in Figure 4. According to Figure 4, the temperature-
sensing sensitivity of a single diode could be estimated to be 200 mV/K.
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However, according to Figure 4 an Equation (1), the relationship between the voltage
and temperature of the diode is nonlinear. To achieve a linear dependency of voltage on
temperature, a PTAT circuitry was proposed, as shown in Figure 5. Transistors T1 and
T2 form a current mirror, supplying exactly same current to vacuum diodes D1 and D2.
The emission area of D1 and D2 met the relationship of D1 = ρD2 (ρ > 1). The stack layer
materials and vacuum channel length of the two diodes are exactly the same. The current
emission of the diodes satisfies the following equations:

lgI1 = lgI01 + β
√

U0/T (1)

lgI2 = lgI02 + β
√

U1/T (2)

where I1 and I2 are current through the diodes, β is a constant related to the material and
geometric dimensions of the diodes, I01 and I02 are the emission current at zero electric
field. According to the relationship of lg I and U1/2 in Figure 1c, the value of β reflects the
slope of the curve and can be calculated as 125, where T = 300 K. In the equations, I1 = I2
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and I01 = ρI02. Subtracting Equation (1) from Equation (2) and expressing it in terms of
temperature T, we obtain Equation (3) in the form:

T =
β
(√

U1 −
√

U0
)

lgρ
(3)

where absolute temperature T is proportional to
√

U1 −
√

U0. According to Figure 5, the
following equations are obtained as:

U2 = U0

U3 = U1

U4 =
√

1
K ·
√

U2

U5 =
√

1
K ·
√

U3

Uout = U5 −U4

(4)

where K is the gain coefficient of multiplier (typical value is 0.1 V−1). Then, Uout can be
expressed as:

Uout =

√
1
K
·
(√

U1 −
√

U0

)
(5)

Substituting Equation (5) into Equation (3) and expressing T, we obtain:

T =
β·
√

K
lgρ
·Uout (6)

where Uout is the PTAT voltage. By adjusting the value of ρ, the temperature-sensing
sensitivity seems to be adjustable. However, in order to make the working range of the
two diodes close, so as to lower the supply voltage (<15 V) and maximize the temperature
measurement range, the value of ρ should not be too large. Here, we set it to 2 as a
typical value. Then, the temperature-sensing sensitivity of this device can be calculated as
7.6 mV/K.
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4. Conclusions

A novel vacuum diode working in the barrier-lowering effect regime was demon-
strated to have a temperature-sensing ability. In this device, the temperature and external
voltage both affect the emission current density. When a constant current source is used as
a power supply, the voltage and temperature of the device have a unique correspondence.
However, if the voltage is not high enough, the current and voltage satisfy the space-charge
current-limiting mechanism. The vacuum diode will no longer have a temperature-sensing
ability. Therefore, the temperature detection range is limited to below 325 K, although
it could be slightly adjusted by the current source. To achieve a linear dependency of
temperature on voltage, a PTAT circuit was proposed. The mathematical derivation of the
PTAT voltage was also demonstrated. The temperature-sensing sensitivity of this device
was calculated to be 7.6 mV/K. As a vacuum diode, electrons are transported in a vacuum
rather than semiconductor layers, which allows to become a high-quality temperature
sensor. This work provided a new direction for the research on novel temperature sensors.
Further study on widening the temperature-sensing range and device fabrication will be
carried out in our later work.
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