Skip to main content
. 2022 Feb 15;23(4):2141. doi: 10.3390/ijms23042141

Table 4.

Performances with LRs using DeepSnap_python system of the three MIE targets.

PubChem 720725_GR_Ant 1347030_TRHR 1347032_TGF_Beta
Assay AID Train:Valid:Test = 7:1:2 Train:Valid:Test = 3:1:2 Train:Valid:Test = 7:1:2
ROC_AUC average 0.884 ± 0.053 0.897 ± 0.016 0.909 ± 0.011
max_ROC_AUC 0.930 0.911 0.922
max_LR 0.00009 0.000002 0.000021
BAC average 0.817 ± 0.053 0.844 ± 0.012 0.839 ± 0.010
max_BAC 0.865 0.865 0.853
max_LR 0.0007 0.000001 0.000029
MCC average 0.354 ± 0.090 0.171 ± 0.015 0.361 ± 0.016
max_MCC 0.466 0.191 0.387
max_LR 0.00007 0.0048 0.000029
Acc average 0.859 ± 0.060 0.811 ± 0.025 0.807 ± 0.028
max_Acc 0.928 0.848 0.855
max_LR 0.00007 0.000005 0.00002
loss_train average 0.215 ± 0.231 0.098 ± 0.062 0.125 ± 0.110
min_loss 0.022 0.020 0.038
min_LR 0.00003 0.00002 0.00003
loss_val average 0.263 ± 0.186 0.122 ± 0.058 0.236 ± 0.062
min_loss 0.124 0.066 0.170
min_LR 0.00003 0.0008 0.000021
PR_AUC average 0.502 ± 0.177 0.155 ± 0.045 0.410 ± 0.064
max_PR_AUC 0.789 0.213 0.472
max_LR 0.00007 0.0042 0.00003
F average 0.898 ± 0.039 0.886 ± 0.015 0.858 ± 0.019
max_F 0.942 0.909 0.890
max_LR 0.00007 0.000005 0.00002