Skip to main content
. 2022 Feb 15;23(4):2141. doi: 10.3390/ijms23042141

Table 5.

Performances with LRs using DeepSnap_python system of the three MIE targets.

PubChem 720725_GR_Ant 1347030_TRHR 1347032_TGF_Beta
Assay AID Train:Valid:Test = 7:1:2 Train:Valid:Test = 3:1:2 Train:Valid:Test = 7:1:2
ROC_AUC average 0.983 ± 0.032 0.929 ± 0.003 0.918 ± 0.005
max_ROC_AUC 0.983 0.934 0.925
max_BS 125 14 28
BAC average 0.866 ± 0.033 0.877 ± 0.004 0.848 ± 0.007
max_BAC 0.930 0.881 0.862
max_BS 125 22 44
MCC average 0.444 ± 0.056 0.194 ± 0.004 0.368 ± 0.011
max_MCC 0.604 0.200 0.390
max_BS 200 14 28
Acc average 0.908 ± 0.021 0.855 ± 0.005 0.810 ± 0.011
max_Acc 0.954 0.863 0.835
max_BS 200 14 20
loss_train average 0.045 ± 0.033 0.322 ± 0.013 0.097 ± 0.047
min_loss 0.019 0.301 0.037
min_BS 48 14 20
loss_test average 0.119 ± 0.025 0.314 ± 0.022 0.203 ± 0.023
min_loss 0.073 0.255 0.172
min_BS 120 2 34
PR_AUC average 0.654 ± 0.087 0.136 ± 0.011 0.431 ± 0.032
max_PR_AUC 0.800 0.154 0.476
max_BS 290 14 28
F average 0.930 ± 0.014 0.914 ± 0.003 0.860 ± 0.008
max_F 0.961 0.919 0.877
max_BS 200 14 20