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Abstract: The increasingly widespread diffusion of wearable devices makes possible the continuous
monitoring of vital signs, such as heart rate (HR), heart rate variability (HRV), and breath signal.
However, these devices usually do not record the “gold-standard” signals, namely the electrocardiog-
raphy (ECG) and respiratory activity, but a single photoplethysmographic (PPG) signal, which can be
exploited to estimate HR and respiratory activity. In addition, these devices employ low sampling
rates to limit power consumption. Hence, proper methods should be adopted to compensate for the
resulting increased discretization error, while diverse breath-extraction algorithms may be differently
sensitive to PPG sampling rate. Here, we assessed the efficacy of parabola interpolation, cubic-spline,
and linear regression methods to improve the accuracy of the inter-beat intervals (IBIs) extracted from
PPG sampled at decreasing rates from 64 to 8 Hz. PPG-derived IBIs and HRV indices were compared
with those extracted from a standard ECG. In addition, breath signals extracted from PPG using
three different techniques were compared with the gold-standard signal from a thoracic belt. Signals
were recorded from eight healthy volunteers during an experimental protocol comprising sitting
and standing postures and a controlled respiration task. Parabola and cubic-spline interpolation
significantly increased IBIs accuracy at 32, 16, and 8 Hz sampling rates. Concerning breath signal
extraction, the method holding higher accuracy was based on PPG bandpass filtering. Our results
support the efficacy of parabola and spline interpolations to improve the accuracy of the IBIs obtained
from low-sampling rate PPG signals, and also indicate a robust method for breath signal extraction.

Keywords: photoplethysmography; inter-beat intervals; interpolation; heart rate variability; breath;
sampling rate

1. Introduction

In recent years, the increasing availability of wearable devices for mobile and smart
healthcare monitoring, both in clinical (e.g., [1,2]) and wellness applications [3,4], has
promoted the photoplethysmography (PPG) as a valid alternative to electrocardiography
(ECQG) for heart rate (HR) and heart rate variability (HRV) monitoring [5]. HRV features are
established markers of the autonomic nervous system (ANS) activity. Specifically, heart
beating is regulated by the action of the sympathovagal balance [6], and its monitoring is
useful for the management of chronic cardiovascular disorders and for the identification
and prevention of acute episodes [7,8]. At the same time, it can serve as daily monitoring for
healthy subjects to assess stress levels, physical activity, sleep quality, or emotions [9-11].

Traditionally, HRV analysis is conducted using the ECG signal, from which the se-
quence of the RR intervals (RR], i.e., the time distance between consecutive R-peaks) over
time can be precisely derived. However, daily monitoring of HRV through ECG requires
proper placement of the electrodes or the adoption of sensorized devices, such as smart
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shirts [12], whose long-time usage might be uncomfortable, while durability is limited to a
certain number of washes [13]. On the contrary, PPG sensors mounted on wearable devices
(such as wristbands or rings [14]) can detect blood volume changes in peripheral vessels
caused by cardiac beats without the inconvenience of wearing electrodes. Hence, PPG can
provide a convenient alternative to measure HRV (or pulse rate variability, PRV, as it has
sometimes been named). In addition, like ECG [15], PPG signal also carries information
about breathing activity, which modulates specific waveform characteristics (amplitude,
frequency, and baseline wander). For this reason, such signal can also be exploited to derive
respiratory measures of clinical interest [16], as well as a breath signal that can be used, for
instance, to improve respiratory sinus arrhythmia (RSA) estimates from HRV by means of
bivariate approaches [17-20] or for sleep apnea detection [21].

Given the notable amount of information that this signal can provide, many studies
have focused on improving HRV parameters extraction from PPG (e.g., see [22-24]), and
several others deal with the derivation of respiratory signal surrogates [21,25-27]. However,
only a few studies have systematically investigated the quality of HRV and respiratory
features derived from low-sampling-rate PPG signals [28-30]. PPG has a much lower
frequency content (generally, lying within the range 0.01-20 Hz [31,32]) than ECG (mostly
0-70 Hz in healthy subjects, with the need to reach at least 150-300 Hz for accurate charac-
terization of the QRS complex [33]); thus, the identification of the fiduciary points in time is
intrinsically affected by higher errors.

In addition, the need for reducing power consumption in wearable devices, to increase
battery life, brings to the adoption of low sampling rates. This operation has the following
two main downsides: a further reduction in the PPG bandwidth and an increased sampling
(or discretization) error. Both can substantially reduce the accuracy of fiduciary points
detection, leading to biased computation of the inter beat intervals (IBIs) and inaccurate
estimates of the derived HRV parameters [34,35]. In a recent study, Choi et al. [28] measured
the PPG signal in resting state for 20 min and computed several time- and frequency-
domain HRYV indices from the original and subsampled PPGs. They reported no statistical
differences for any of the examined HRYV indices if the PPG sampling frequency was higher
than 25 Hz. However, their study did not take into account different protocol conditions nor
the effect of PPG interpolation, which has been suggested to improve the accuracy of the
extracted IBIs [36,37]. Sun et al. [37] demonstrated the efficacy of cubic-spline interpolation
in reducing the sampling error produced by PPG subsampling. Specifically, HRV indices
computed from PPG sampled at 100, 50, and 20 Hz, and processed with cubic-spline
interpolation, were comparable to those extracted from the original PPG signal (collected
at 200 Hz). In another study, Béres and colleagues [30] analyzed PPG signals recorded from
participants at rest and concluded that sampling frequencies of at least 20 Hz and 50 Hz
were required, respectively, with and without interpolation, to achieve accurate measures
of time-domain and Poincaré plot indices. To reduce the computational cost required by
spline interpolation, Baek et al. [36] proposed the parabola approximation to interpolate
PPG peaks and demonstrated its efficacy in PPG signals recorded at 20 Hz, compared
to the spline approach. However, these studies examined the efficacy of the respective
interpolation techniques considering either a few sampling frequencies or participants in
resting-state only. Thus, the effect of different PPG interpolation strategies on the minimal
adequate sampling rate for accurate HRV analysis still needs to be further investigated.

Moreover, low sampling rates can affect the quality of PPG-derived respiratory signals.
For example, Charlton and colleagues [29] compared several respiratory signals extracted
from PPG with a reference one, and found evident decreases in quality characterizing
PPG signals below 16 Hz. Their assessment focused on the temporal correlation between
PPG-derived and reference respiratory signals, and was conducted with participants at
rest, in a supine position.

In this study, we analyzed beat-to-beat IBI estimates, and time- and frequency-domain
HRYV indices, extracted from low-resolution PPG signals (i.e., lowering the sampling rate
from 64 Hz down to 8 Hz), during an experimental protocol comprising three different tasks
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(rest, stand, and controlled respiration). In fact, subjects” position and administered tasks
are known to influence the characteristics of the PPG waveform [38], possibly affecting the
derived HRV indices. We assessed the efficacy of three interpolation techniques to compen-
sate for the discretization error introduced by subsampling. Specifically, (1) we compared
the performance of parabola approximation, spline interpolation, and an approach based
on linear regression to evaluate the sampling frequency at which the use of interpolation
becomes essential to improve HRV estimates; (2) we contrasted the accuracy achieved with
the original PPG with the one of the subsampled interpolated PPG to understand in which
conditions interpolation can effectively restore the accuracy of the original signal. The accu-
racy of PPG-derived IBIs and HRV indices was evaluated through the absolute difference
with the HRV extracted from a concurrent ECG (gold-standard). We complemented this
part of the study by analyzing the accuracy of two different strategies of fiduciary points
detection. Furthermore, (3) we explored the possibility of obtaining breath rate information
from PPG signals sampled at different frequencies to understand the minimal sampling rate
that allows for the extraction of a reliable respiratory signal. In particular, we estimated the
spectral coherence to compare the frequency content similarity of the surrogates extracted
from PPG with the respiratory signal collected through a thoracic belt.

2. Materials and Methods
2.1. Data Collection and Processing

Data were collected at the PHEEL laboratory of Politecnico di Milano (Milano, Italy).
Eight healthy volunteers (age 26.4 &= 2.3, 4 males and 4 females) were informed about the
study and asked to sign a written consent before data acquisition. The study was approved by
the university Ethics Committee. During the experiment, ECG, PPG, and a breathing signal
were recorded. ECG was collected with two electrodes positioned under the collarbones
and one slightly above the navel. PPG was obtained through a sensor placed on the second
phalanx of the middle finger (left hand), and the reference respiratory signal was recorded
with a thoracic belt. The PPG sensor we employed (BVP-Flex/Pro, Thought Technology,
Montreal, Canada) uses an infra-red LED and measures the amount of light reflected by the
skin, which varies with the blood volume present in the underlying vessels. All signals were
collected at 256 Hz using the commercial polygraph ProComp Infiniti (Thought Technology,
Montreal, Canada). During data acquisition, the preserved signal bandwidth was 0.05-120 Hz
for the ECG; for the PPG and respiratory signal, it was 0-64 Hz. Participants were tested
while performing a three-phased protocol for a total of 15 min, divided as follows: 0-5 min
in a seated position (Sit phase); 5-10 min in a standing position (Stand phase); 10-15 min in
which the subject is again in a sitting position and performs controlled respiration (CR phase),
with cycles lasting 5 s (respiratory rate = 0.2 Hz).

Raw data were imported into MATLAB (The Mathworks Inc., Natick, MA, USA)
and processed with custom scripts. Each subject’s RRIs were derived from the ECG by
means of the Pan-Tompkins algorithm [39], which applies specific filters to reduce baseline
wander, muscle artifacts, and other high-frequency noise components and performs R peak
detection. After being processed with appropriate anti-aliasing finite impulse response
(FIR) filters, the original PPG signals were subsampled at 64, 32, 16, and 8 Hz.

Since power consumption is a concern only when signals are collected with wearable
devices, we focused on sampling rates up to 64 Hz, which is the frequency used for PPG
recording by many current research-grade wearables, such as the E4 (Empatica, Boston,
MA, USA) [40].

2.1.1. PPG-Derived IBIs

Two beat detection algorithms were implemented for the PPG signal. A pseudo-code
explanation of both algorithms is provided in Appendix A.

The ENVELOPE method (Figure 1a) implements a modified version of the algorithm
described in [5]. Once the first derivative of the PPG signal is computed (x'(t)), the superior
(emax(t)) and inferior (e, (t)) envelopes are calculated from its local maxima and local
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minima, respectively. These envelopes are used in the following min-max normalization to
limit the signal amplitude between 0 and 1:

x'(t) = epin(t)
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Figure 1. Application of the ENVELOPE (a) and SLOPE (b) beat detection methods to the respective
signals of interest. (a) On the left, derivative of the PPG signal (grey) and relative superior and
inferior envelopes (black); on the right, PPG derivative after subtraction of the inferior and superior
envelopes (grey), threshold for peak detection (black line), and detected peaks (red circles). (b) On
the left, the original PPG signal (light blue) and the computed adaptive threshold (black); on the right,
detected peaks (red circles).

This method eliminates signal amplitude variations caused by the different protocol
stages (e.g., in the Stand phase, signal amplitude is lower than during Sit) and fluctuations
due to breath. Then, candidate heartbeats are identified as the local maxima exceeding
an amplitude of 0.8. Local maxima of the PPG derivative correspond to the point of
maximum slope on the ascending segments of the PPG signal. The 0.8 threshold was
selected empirically, as it allowed us to detect almost all the true heartbeats, while avoiding
slopes following dicrotic notches to be disguised as heartbeats. However, the local maxima
detected with this threshold sometimes do not correspond to true heartbeats, as they can
also arise from motion artifacts or dicrotic notches followed by particularly sharp peaks. In
order to reduce such false positives, a procedure has been implemented that retains only
those peaks producing the closest peak-to-peak distance to a weighted average calculated
on the preceding beats (IBI). Specifically, at each iteration, a valid peak (j) is selected as the
one that minimizes the vector d:

d:‘t_ti—l‘:’[tl’tz""’tN]_ti—l L ie[1,N) @)
IBI IBI

— d 3

] argkrr(ur;]] k ( )

In the equations, t; is the occurrence time of the currently processed peak, t is the
vector of the occurrence times of all the detected peaks, and N is their total number. At each
iteration, all the peaks included between i and the selected one (j), if any, are labeled as
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false positives; thus, during the next iteration, d is computed considering i = j. At the end
of each iteration, IBI is updated as in (4), where m,,m, refers to the value of IBI during
the previous iteration, and t; — t; is the IBI of the last accepted beat. For the first iteration,
IBI initializes to the median IBI computed from all the N peaks.

The second approach we employed, SLOPE (Figure 1b), makes use of an adaptive
threshold detection algorithm to compensate for PPG waveform variations caused by
respiration and vasoconstriction or dilation [41]. A virtual threshold is firstly defined based
on the original PPG waveform amplitude. To detect the following peak position, the value
of this threshold is decreased over time till it intercepts the signal. Then, the threshold
accompanies the signal waveform until it reaches the inflection point (i.e., the peak). After
the adaptive threshold finds the peak, it decreases again with a slope parameter that is
modified according to the last peak amplitude, the standard deviation of the PPG signal,
and its sampling frequency [41]. Since PPG waveform could vary due to different factors,
an adaptive refractory period was defined as 0.6 times the previous average pulse interval.
If a new peak is found within the refractory period, that peak is ignored. Such a value was
selected for our data as the one improving true heartbeat identifications while minimizing
erroneous detections, especially due to dicrotic peaks.

These beat detection algorithms were applied to the original and subsampled PPG
signals. First, the detected peaks were used to calculate the IBIs from the non-interpolated
signals (hereafter ORIGINAL IBIs). Then, the position of the identified peaks was refined
using the three strategies described below.

Three different PPG interpolation techniques were tested to reduce the discretization
error introduced by subsampling. The spline interpolation (SPLINE, Figure 2a) and parabola
approximation (PARABOLA, Figure 2b) methods have been adopted and illustrated exten-
sively in previous works [36,37]. In the former, samples around each peak are interpolated
through cubic-spline, and the position of the original peak is replaced by the local maximum
of the interpolated signal. In the latter, each peak is refined using the parabola defined by
the three points closer to the detected peak; the original peak is replaced by the vertex of this
parabola. The third method we tested (REG, Figure 2c) is based on linear regression. Each
fiduciary point detected on the signal is replaced with the intersection of two distinct linear
regression curves, as follows: the first curve is estimated on the ascending segment of the peak
and the other one on the descending part. In this case, only the occurrence time is considered,
as the amplitude is not a good estimation of the actual signal. Linear regression curves were
computed after applying a lowpass filter with a cut-off frequency of 5 Hz, as commonly done
in the literature, to reduce the effect of motion artifacts and high-frequency noise [42]. This
operation systematically improved the accuracy of the estimated fiduciary points at every
examined sampling rate. The number of points used for the regression was varied according
to the sampling frequency in order to consider a time window of approximately 0.07 s, both
for the ascending and descending segments.

The intersection of the two linear curves in the REG method, the occurrence time of
the maximum of the spline interpolation and of the vertex of the parabola were calculated
with a resolution of 1 ms.

2.1.2. Extracted HRV Indices

Time- and frequency-domain features were computed from the extracted IBI series
and reference HRYV signals, considering each protocol phase separately. Time-domain
indices included the average, standard deviation (SD), and root mean square of successive
differences (RMSSD) of the IBIs and RRIs. As for the frequency-domain features, spectral
powers in the low frequency (LF, 0.04-0.15 Hz) and high frequency (HF, 0.15-0.4 Hz) bands
were computed in absolute and normalized units (n.u.), dividing each band power by
the sum of LF and HF powers [43]. We adopted the autoregressive (AR) analysis [44,45]
to estimate power spectral densities (PSDs) from the IBI and RRI series and the spectral
decomposition method [46] to calculate LF and HF spectral powers. All the parameters were
calculated in the central 4 min time interval of each protocol condition, thus considering



Sensors 2022, 22, 1428

6 of 24

at least 200 heartbeats for each segment; the first and last 30 s were excluded to avoid
transients between consecutive protocol phases. Transients were removed to exclude non-
stationary IBI and RRI epochs from the evaluation of the HRV indices of interest, which is
particularly important for frequency-domain features.
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Figure 2. Application of the described interpolation strategies (a: SPLINE; b: PARABOLA; ¢: REG) to
the peaks identified through the ENVELOPE method. The first derivative of a PPG signal sampled at
32 Hz is shown (blue dots). The following is in red: spline-interpolated first derivative (a), parabola
approximation (b), regression curves estimated on the ascending and descending segments (c). The plots
show the peaks detected on the subsampled signal (O) and those identified through interpolation (X).

2.1.3. PPG-Derived Breath Signals

A more robust estimate of the RSA from HRV requires respiratory rate information.
In fact, knowing the frequency content of respiration allows us to refine the frequency
range for HF power calculation [47] and enables the quantification of cardiorespiratory
interactions through bivariate models [17-20]. The respirogram, i.e., the breath signal
sampled at the occurrence of each heartbeat, carries all the respiratory information needed
for such analyses.

We examined three methods to extract breath signals from PPG, from which the respirograms

were then derived. In the first one (FILT, Figure 3a), the PPG signal is filtered with a fourth-
order Butterworth bandpass filter with cut-off frequencies of 0.13 and 0.48 Hz [48,49]; this
method extracts respiratory-induced amplitude modulations in the PPG by removing frequen-
cies outside the expected range of respiratory frequencies [50]. The second method builds
on the assumption that respiration induces changes in arterial stiffness and intrathoracic
pressure, affecting pulse wave velocity, blood flow, and blood velocity [51-53]. The first
derivative of the PPG is largely adopted as an indicator of blood velocity [54]; hence, the
fluctuations of its local maxima over time can be analyzed to extract respiratory information.
Following this rationale, the second method comprises computing the first derivative of the
PPG signal and extracting its superior envelope (ENVL, Figure 3b). Starting from the first
derivative peaks, the third method estimates the cubic-spline interpolation curve from the
corresponding points positioned on the original PPG signal (INTR, Figure 3c). This method
performs feature-based extraction of a surrogate respiratory signal by tracking PPG amplitude
variations of the maximum slope points during systole; cubic-spline interpolation is used to
obtain a fixed-rate breath signal from such points [50]. To reduce noise on the breath signals
derived through the last two strategies, noise frequencies were removed by filtering in the
range 0.05-0.6 Hz (i.e., 3-36 breaths per minute) [21,29].
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Figure 3. Application of the FILT (a), ENVL (b), and INTR (c) methods to the respective signals
of interest. On the first column, input signals and main features are: (a) PPG signal (light blue);
(b) derivative of the PPG signal (grey) and relative superior envelope (black); (c) PPG signal (light
blue) and points of maximum slope (red). Second column: breath signals obtained with each method.

Respirograms were obtained from these surrogate breath signals by retaining only
those samples corresponding to the R peaks of the ECG acquired simultaneously. The refer-
ence respirogram was derived in the same way from the respiratory signal collected through
the thoracic belt. To assess frequency content similarity between the reference respirogram
and the three PPG-extracted ones, we calculated the average magnitude-squared coherence
around the modal respiratory rate of each phase. Specifically, the frequency band of interest
was selected for each participant and protocol condition by descending from the peak of
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the reference spectrum until 20% of the maximum spectral power component was reached,
as previously done in [21]. The magnitude-squared coherence was calculated as follows:

Py ()
Pe(f)-Pyy (f)

where Pyy(f) is the cross-spectrum between the reference respirogram (x) and the one
derived from PPG with each of the three estimation methods (y); Pxx(f) and Pyy(f ) represent
the power spectral densities of the two respirograms. Coherence values range from 0 to 1,
where the closer they are to 1, the higher is the coherence between x and y signals.

In one of the female participants, changing from the sitting to the standing posture
caused the thoracic belt to move downwards (i.e., towards the abdomen), critically reducing
the amplitude of the respiratory signal for the remainder of the session. Given the poor
quality of the reference respiratory signal recorded in such a case, the analyses described
in this section were carried out on 7 participants. This sample size was comparable to
those adopted in several studies analyzing the accuracy of PPG- or ECG-derived breathing
signals in healthy participants, as it can be inferred from the supplementary material of [50].
Moreover, the effect sizes computed for the pairwise comparisons discussed in Section 3.5
were always larger than 0.8, further proving low inter-subject variability in the indication
of the preferable breath-extraction techniques.

Cxy(f) = ©)

2.2. Statistical Analysis

The principal statistical assessments presented in this paper are schematized in Table 1.

Table 1. Main statistical evaluations reported in the Results section. Each assessment was conducted
for every sampling rate and protocol condition. The number of participants considered for each
evaluation is reported.

Performances of Beat-to-Beat Accuracy of the Comparison of the Accuracy of the
Assessment ENVELOPE and SLOPE  Accuracy of the IBIs HRYV Indices IBIs Extracted from Res ir(z’ rams
Algorithms for Beat Derived from the Computed from the the Original and Es timati d f%om PPG
Detection Interpolated PPGs Interpolated PPGs Interpolated PPGs
To investigate at
To analyze To compare the HRV . ; .
To select the best beat differences across indices computed vlvrilecrh Zfli:tli}()) lrina%II;t/ess Tsogljsltc iitilj dn;;):t
Aim detection strategy for the interpolation with different us tori'ecover the IBI respirogram
subsequent analyses methods on a interpolation _ Tespiros
beat-to-beat basis methods accuracy of the estimation from PPG
original PPGs
Assessment FNR, .FDR’ and accuracy Bland—-Altman; error . AEs testing; Power Magnitude-squared
metrics; Bland—-Altman; . . AEs testing Spectral
methods . variance; AEs testing ) coherence
AEs testing Density plots
Subjects No. 8 8 8 8 7
Section 3.1 3.2 3.3 34 35

First, the performances of the examined beat detection algorithms (ENVELOPE and
SLOPE) were evaluated considering the number of missing (false negatives, FN) and extra
beats (false positives, FP) observed with each detection method with respect to the beats
detected through the gold-standard (true positives, TP). In particular, we compared three
percentage measures, namely the false negative rate (FNR), the false discovery rate (FDR),
and the overall accuracy, defined as follows:

FN FP

TP
~ TP+ FN’ FDR = TP + FP’

FNR TP+ FP+FN "~

Accuracy = 6)

TP + EN represents the total number of beats detected on the ECG signal; TP + FP
is the number of beats detected by each method, either correctly or not; TP + FP + FN
represents the total number of detected and non-detected beats.
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Moreover, a Bland—Altman analysis was conducted to assess the stability of the fidu-
ciary points detected through the ENVELOPE and SLOPE algorithms by comparing the
corresponding IBIs with the RRIs computed on the ECG. In particular, we focused on the
95% limits of agreement (LOA, i.e., the average of the difference +-1.96 times the standard
deviation of the difference) [55]. To improve table readability with minimal loss of accuracy,
we reported 95% LOA as just £1.96 times the standard deviation of the difference since the
average of the difference was always below 0.3 ms.

We adopted the Bland—Altman analysis also to assess the beat-to-beat accuracy of
the original and refined IBIs compared to the ECG-extracted RRIs. In addition, to assess
statistical differences between the original IBIs and those refined using the three tested
interpolation methods, regardless of the sign of such differences, we evaluated the absolute
errors (AEs) of the IBI series with respect to the RRI series. AEs were also computed between
the HRV indices extracted from the different IBI series and those derived from the RRIs. A
Friedman’s test was then conducted for each protocol condition and sampling frequency to
investigate the presence of statistically significant differences in the AEs calculated with
the various PPG interpolation methods, followed by the appropriate Bonferroni-corrected
post hoc tests.

To compare the accuracy of the three estimated respiratory signals, we performed mul-
tiple Friedman’s tests on the magnitude-squared coherence computed with each method
with respect to the reference respirogram. Specifically, an independent test was conducted
for each phase of the experimental protocol and sampling frequency of the PPG signal.

The significance level was set to o« = 0.05 for all the statistical tests. In addition, non-
parametric effect size measures, namely Cohen'’s r for Wilcoxon’s signed-rank test [56] and
Kendall’s W for Friedman’s test [57], were employed to assess the robustness of specific
findings. Statistical analyses were conducted in MATLAB.

3. Results
3.1. Comparison of Beat Detection Approaches

Table 2 reports the FNR, FDR, and overall accuracy obtained with each beat detection
method on all the subjects involved in the study, considering PPG signals sampled at
64 Hz. The ENVELOPE method resulted in the lowest FNR and was able to detect all
the beats recognized on the ECG. On the contrary, the SLOPE approach minimized the
FDR in all protocol phases except Stand. The ENVELOPE accuracy was higher during
the Stand phase, pretty close to SLOPE in CR, and slightly lower during Sit, indicating
better overall performances of the first method compared to the second. In particular, the
evident FNR increase and accuracy decrease in the SLOPE method during Stand suggest
reduced ability to detect fiduciary points with the lower-amplitude and less-clean PPG
signals characterizing this phase. This tendency was even emphasized in PPGs subsampled
at 8 Hz (Table S1 in the Supplementary Materials), for which the SLOPE method reported a
dramatic increase in FNR in the Stand condition. The accuracy of the ENVELOPE method,
instead, remained relatively stable across the different sampling rates and protocol phases.

Table 2. FNR, FDR, and accuracy observed with each method, grouped by protocol phases. Assess-
ment performed with PPG signals sampled at 64 Hz.

FNR (%) FDR (%) Accuracy (%)
SLOPE ENVELOPE SLOPE ENVELOPE SLOPE ENVELOPE
Sit 0.17 0 0.04 0.33 99.79 99.67
Stand 0.46 0 0.07 0.04 99.47 99.97
CR 0.29 0 0.04 0.29 99.67 99.71

Lowering the sampling rates from 64 to 8 Hz, we notice a detriment of the FNR and
accuracy obtained with the ENVELOPE and SLOPE approaches (Table S1). Indeed, reduc-
ing the temporal resolution of the PPG waveform affected the ability of both algorithms to
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perform heartbeat detection. Nevertheless, the performances of ENVELOPE were always
found superior to those of SLOPE for every sampling frequency.

To assess the stability of the fiduciary points sought by each method, we conducted a
first beat-to-beat comparison of the IBIs measured through the ENVELOPE and SLOPE
approaches with the RRIs computed on the ECG. Table 3 shows the results from this
comparison, which was conducted using only those beats detected by both methods, in
order to consider the same number of reference beats for the computation of the relevant
statistics. With both the beat detection techniques, the average of the IBIs was the same
as that computed on the RRIs, whereas the standard deviation was higher in all protocol
phases. The 95% LOA values were lower for ENVELOPE than for SLOPE during the Stand
condition and comparable during Sit and CR.

Table 3. Mean and standard deviation of the IBIs derived through ENVELOPE and SLOPE ap-
proaches; 95% limits of agreement (LOA) calculated between RRIs and each series of IBIs. Assessment
performed with PPG signals sampled at 64 Hz.

RRI IBI SLOPE IBI ENVELOPE
i Mean + SD (ms) 795.0 + 90.3 795.0 + 91.4 795.0 + 91.9
! 95% LOA (ms) - +154 +15.6
Stand Mean + SD (ms) 681.4 + 67.8 681.4 + 69.2 681.4 + 69.4
tan 95% LOA (ms) - +17.0 +15.9
R Mean =+ SD (ms) 797.8 + 98.9 797.8 £ 99.9 797.8 £ 100.5
95% LOA (ms) ] +17.1 +16.7

In summary, the IBIs computed with the ENVELOPE and SLOPE methods reported
similar mean and standard deviation. However, the smaller 95% LOA, the lower FNR,
and the higher beat detection accuracy shown in the Stand phase brought to the choice of
considering only the ENVELOPE approach for the subsequent analyses. To further support
this choice, we conducted a Wilcoxon's signed-rank test between the AEs of IBI SLOPE and
those of IBI ENVELOPE, both computed taking RRI as a reference and using PPGs sampled
at 64 Hz. Test results show that the AEs related to the first pair (i.e., [IBlsrope — RRI|)
were larger than those calculated on the second (i.e., |IBlenveLope — RRI|) for the Stand
condition (z = 1.904, p = 0.057), though not significantly, whereas they were very close
during Sit (z = —0.489, p = 0.625) and CR conditions (z = 0.770, p = 0.441). These results
support our choice of the ENVELOPE approach over the SLOPE one for further analyses.

3.2. Comparison of Interpolation Techniques: Beat-to-Beat

Table 4 shows the results of the beat-to-beat comparison performed between the RRIs,
the original IBIs (derived through the ENVELOPE detection algorithm), and those extracted
after applying the SPLINE, PARABOLA, and REG interpolation methods. Looking at the
95% LOA, we notice that SPLINE interpolation and PARABOLA approximation have IBI
estimates closer to the RRIs than the original and REG IBIs. In particular, compared to
the original IBIs, decreases in SPLINE and PARABOLA 95% LOA started to be visible
already at 64 Hz and became more apparent from 32 Hz down. SPLINE and PARABOLA
performances are similar at all the considered sampling frequencies, even if lower 95%
LOA can be observed, in the Stand condition, at 16 and 8 Hz for the SPLINE method.

As regards the REG approach, the 95% LOA in Table 4 shows that IBIs more accurate
than the original ones can be achieved at frequencies ranging from 64 to 32 Hz. Nevertheless,
the accuracy achieved with REG was always comparable to or lower than that of SPLINE
and PARABOLA approaches. Moreover, at 16 Hz, the IBIs computed through REG showed
considerably lower accuracy than the original ones. Indeed, at such a low sampling frequency,
the small number of samples available for each ascending and descending part of the PPG
peaks limits the accuracy with which their morphology can be modeled using regression
curves. Consequently, the REG method was not feasible with PPG sampled at 8 Hz.
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Table 4. Mean and standard deviation of the RRIs and of the IBIs directly computed after beat detection
(ORIGINAL) or refined through REG, SPLINE, and PARABOLA approaches; 95% LOA computed
between the RRIs and each series of IBIs. The best performances in terms of 95% LOA are highlighted
(green) for each sampling rate and protocol phase. The REG method was not appliable at 8 Hz.

1BI
RRI ORIGINAL REG SPLINE  PARABOLA
, Mean & SD (ms) 7947 +90.8 7948 4+ 92.4 7948+ 923 7948 +£922 7948 - 922

St 95% LOA (ms) - +15.8 +10.8 +10.2 +10.2
Mean £ 5D (ms) 6813 £67.6 6813 £ 693 6813 £ 691 6813 £ 689 6813 £ 69.0

FS=64Hz  Stand 950 71OA (m) - +16.0 +11.1 +96 496
cn  Mean£SD(ms) 7972E£ %93 7973 L1007 79731006 7973 £ 1005 7973 £ 1005

95% LOA (ms) - +17.9 +133 +12.8 +12.8
) Mean £ 5D (ms) 7949 £ 910 7949 £ 933 7950 £ 925 7949+ 925 7949 &+ 92.4

Sit 95% LOA (ms) - +27.0 +11.3 +10.4 4105
Mean £5D (ms) 6813 £676 I3 L7027 BI3L 691 6813 EF690 6813 £ 690

FS=32Hz  Stand 950 710 (m) - +26.9 +115 4938 499
Mean £ 5D (ms) 7975 £997 7975 £ 1019 7976 £ 1011 797.6 £ 1010 _797.6 & 101.0

CR 95% LOA (ms) - 4280 +13.6 +12.8 +12.8
) Mean £ 5D (ms) 7949 £91.0 7949 £ 958 7950 £ 965 7949 £ 925 7949 £ 92.5

Sit 95% LOA (ms) - 4509 +54.8 +14.6 +14.6
Mean £5D (ms) 6815 £676 GBI5E733 BI5E781  6815F691 6815 F69.1

FS=16Hz  Stand 950,10 (ms) - +50.7 +71.7 +145 +15.4
Mean £ 5D (ms) 7979 £ 1008 798.0 £ 1051 798.0 £ 1058 798.0 & 102.1 798.0 & 102.1

CR 95% LOA (ms) ; +52.1 +54.1 +15.7 +15.7
) Mean £ SD (ms) 7967 £ 939  796.8 & 107.6 - 7968 £ 958  796.8 & 95.6

St 95% LOA (ms) - +101.1 ; +31.2 +30.8
Mean £ 5D (ms) 6853 £ 658 6856 £ 833 - 6855 £ 684 6855 £ 684

FS =8 Hz Stand 950, 1 OA (ms) ] +99.3 ; +31.4 +32.6
cp  Mean £5D(ms) 7983 £ 1007 7983 £ 1141 - 7984 £ 1025 7984 £ 1024

95% LOA (ms) ; +102.6 - +30.6 +30.7

According to Merri and colleagues [34], the error variance of the IBIs without interpo-
lation should increase as the sampling period increases, following a power law relationship
(i.e., At?/6, where At is the sampling period), as shown in Figure 4. In our experiment, the
error variance of the original IBls (which can be easily derived from the 95% LOA reported
in Table 4) shows exactly this behavior, with high adherence to the expected power law
relationship (R-squared = 0.999). On the contrary, the error variance of the IBIs derived from
the interpolated PPGs shows slight variations across sampling rates down to 32 Hz for all
three methods and down to 16 Hz for SPLINE and PARABOLA. In particular, down to 16 Hz,
the use of either SPLINE or PARABOLA approaches allows achieving error variance (Figure 4)
and 95% LOA (Table 4) comparable with the original IBIs computed from 64 Hz PPG.

To further investigate the advantages provided by the two best performing interpo-
lation techniques, for each PPG sampling frequency and protocol phase, a Friedman'’s
test was conducted to compare the AEs related to the original IBIs with those computed
through SPLINE and PARABOLA interpolations. The Friedman's test reported p < 0.001
for all the sampling frequencies and protocol phases, indicating statistically significant
AFEs differences were always present among the evaluated methods. Yet, very different
effect sizes (Cohen’s r [56], Table 5) were observed for post hoc tests (Figure 5). Specifically,
significant differences between the original IBIs and those obtained through interpolation
were found in post hoc tests conducted at 64 Hz, with effect sizes ranging from 0.397 to
0.471 depending on the specific protocol phase and interpolation method. Such effect
sizes are typically interpreted as medium (i.e., r between 0.3 and 0.5 [56]), which suggests
the application of interpolation methods already improves IBIs calculation starting from
64 Hz. The effect size of the difference between the original IBls and those computed
through interpolation becomes large (i.e., r higher than 0.5 [56]) at 32 Hz, indicating that the
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major advantages of using an interpolation approach, on a beat-to-beat basis, start at this
sampling rate.

3 X1073 T T T T
Expected power law
—_ 2.5+ @® Measured Err.Var. (original IBIs) | 7
Np A Measured Err.Var. (reg IBls)
'6' 2+ O  Measured Err.Var. (parabola IBIs) |
e X Measured Err.Var. (spline IBIs)
8 15+ i
S
= 1k -
o
Wost i
oL

8 ®
32 64
Sampling Frequency [Hz]

Figure 4. Comparison of the error variance measured on the IBls with the theoretical one as a function of
the sampling frequency. Without PPG interpolation (black points), the measured error variance resembles
the expected power law. With interpolation (triangles, circles, and crosses), the error variance measured
with the different methods almost overlaps from 64 to 32 Hz; at 16 Hz, an increase in error variance is
observed with the REG method, whereas PARABOLA and SPLINE values remain overlapped.

Table 5. Effect sizes (Cohen’s r) of the investigated differences. ORIG: beat-to-beat AEs of the original
IBIs; SPL and PAR: beat-to-beat AEs of the IBIs derived from PPG signals interpolated through
SPLINE and PARABOLA approaches, respectively.

Sit Stand CR
FS r r r r r r r r r
ORIG-SPL ORIG-PAR  PAR-SPL ORIG-SPL ORIG-PAR  PAR-SPL  ORIG-SPL ORIG-PAR  PAR-SPL
64 Hz 0.449 0.451 —0.019 0.470 0.471 —0.002 0.397 0.400 —0.021
32 Hz 0.698 0.701 0.029 0.700 0.698 0.057 0.660 0.663 0.010
16 Hz 0.808 0.811 —0.023 0.793 0.797 0.105 0.796 0.799 0.003
8 Hz 0.841 0.843 —0.061 0.830 0.831 0.219 0.840 0.844 0.035

Regarding the comparison between SPLINE and PARABOLA approaches, a statisti-
cally significant difference with at least small (i.e., r between 0.1 and 0.3 [56]) effect size
(Table 5) was found only in the post hoc test for the sampling rate of 8 Hz, limited to the
Stand condition. This result statistically confirms that, for sampling rates higher than 8 Hz,
SPLINE and PARABOLA provide IBIs with similar accuracies. However, at extremely
low sampling rates (equal to 8 Hz, in our experiment), the SPLINE method might offer
more accurate beat-to-beat measures, at least during the Stand condition, when PPG signal
quality is generally lower than in the other protocol phases.
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Figure 5. Boxplots of the beat-to-beat AEs computed with the original IBIs and with those ob-
tained through SPLINE and PARABOLA interpolations. Significant differences (Bonferroni-corrected
comparisons, p < 0.05) are highlighted between AEs within each sampling frequency and protocol
condition. a: AEs related to SPLINE (S) or PARABOLA (P) are significantly different from the original;
b: AEs related to SPLINE (S) are significantly different from PARABOLA.

3.3. Comparison of Interpolation Techniques: HRV Indices

First, we explored HRV indices patterns per participant (supplementary Figures S1-57)
to assess if the variations imposed by the different sampling rates and interpolations were
consistent. Since we found no notable disparities across subjects, subsequent analyses were
run on the aggregated data.

Figure 6 and the supplementary Tables S2 and S3 show the median absolute errors
(MAES) and error interquartile range of the examined HRV time- and frequency-domain
parameters. Statistical analysis focused on the AEs to highlight accuracy differences
among the considered IBI estimates, independent of the sign of the underlying variations.
Specifically, one Friedman'’s test for each combination of sampling frequency and protocol
phase was conducted to assess whether statistically significant differences emerge in the
HRYV indices estimated using different PPG interpolation approaches. Table 6 reports the
main statistics related to each test; as the AEs computed from the normalized LF and HF
powers are equal by definition, so are the related test statistics. Apart from Mean IBI and
Power LF, showing a single statistically significant difference (Friedman p < 0.05) in the
Stand condition at 8 Hz, the other HRV indices reported significant differences among
interpolation methods at several sampling rates and protocol phases. In particular, larger
effect sizes (Kendall’s W [57]), thus more substantial differences, are visible at 16 and 8 Hz,
especially in the Stand condition. Among time-domain parameters, Mean IBI was the only
one showing little to no variation of the AEs among interpolation methods as the sampling
rate decreased. This result finds confirmation in previous empirical work, such as [30],
where interpolated and non-interpolated PPGs showed comparable accuracy in Mean IBI
computation down to a sampling rate of 5 Hz. Further, it is supported by the theory since
the discretization error is assumed as a zero-mean uniformly distributed white noise [34].
As regards frequency-domain indices, Power HF demonstrated higher sensitivity than
Power LF to sampling rate reduction. Indeed, the HF frequency band tends to be more
influenced by an increasing sampling error, and this finding was expected from the theory
as well [34].

The AEs of several HRV indices significantly decreased after PPG interpolation, com-
pared to the ones computed from the original IBls, as confirmed by the Bonferroni-corrected
post hoc tests (see Figure 6). For this analysis, given the limited number of observations,
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we reported only those differences that presented p < 0.05 in the post hoc test and large
effect size (i.e., Cohen’s r above 0.5) to make our interpretation more robust.

First of all, SPLINE and PARABOLA interpolations allowed us to estimate HRV
parameters that always improved or, at least, maintained the accuracy of the original IBIs.
Considering these two approaches together, statistically significant AEs improvements
started at 64 Hz sampling frequency. HRV indices benefiting from interpolation at such a
high sampling rate were SD IBI, RMSSD, and Power HE.

Significant improvements became more frequent and consistent at 32 Hz, especially for
RMSSD and Power HE, showing a significant reduction in AEs for SPLINE and PARABOLA
in every protocol condition. At 8 Hz, all the examined HRV indices, except for Power
LF (reporting a significant improvement only during Stand) and Mean IBI (showing no
significant differences at all), exhibited significant decreases in the AEs with SPLINE and
PARABOLA approaches, with a notable effect size (r > 0.8).

Regarding the comparison between SPLINE and PARABOLA, very similar AEs, hence
accuracy, can be noted for both time- and frequency-domain parameters. However, the
PARABOLA approximation produced the largest number of statistically significant de-
creases in AEs. In particular, at 8 Hz, this technique produced all the statistically significant
AEs decreases also detected through the SPLINE approach and more. Overall, this result
may indicate higher reliability of the PARABOLA approach in respect of SPLINE, showing
higher consistency in the attribution of the lowest rank to the AEs of the former method
compared to the latter.

The absence of a statistically significant difference at 16 Hz for those indices where
the same was detected at the immediately preceding (32 Hz) and/or following (8 Hz)
sampling rates could be due to the inclusion of the REG method in the comparison, acting
as a confounding factor. In fact, the drop in accuracy that this method exhibited at 16 Hz
for many indices prevents the highest rank from being consistently assigned to the AEs of
the original IBIs, as generally happens at higher sampling frequencies. As a consequence,
higher dispersion in ranks can be observed. In fact, in many of those cases, removing the
REG method from the comparison, significant differences also emerged at 16 Hz between
the AEs of the original and interpolated IBIs (Figure 6).

As in the beat-to-beat analysis (Section 3.2), the REG method exhibited comparable or
reduced accuracy compared to the other interpolation techniques. At 16 Hz, in particular,
this method showed significantly higher AEs than the original IBIs for several HRV indices.

Lastly, at 8 Hz, all the HRV indices showed larger MAEs during Stand compared to
the other protocol conditions. The PPG collected in standing posture might include higher
frequency components that were not preserved at such a low sampling rate, as will be
illustrated in the subsequent section.

3.4. Comparison of the 1BIs from 256 Hz PPG and Interpolated Ones

To investigate if SPLINE and PARABOLA interpolations effectively compensated for
the discretization error introduced by subsampling, we contrasted the AEs calculated on the
IBI series extracted from the original PPG (sampled at 256 Hz) with those computed on the
IBIs derived from the interpolated PPG. We employed the original PPG for this evaluation
to maximize the bandwidth and minimize the discretization error in the reference signal.
Specifically, the following AEs were computed for each protocol phase:

AEoRIGINAL, 256Hz = |IBIoRriGINAL256Hz — RRI|, ()

AEspring,rs = |IBIspring,rs — RRI| , AEparaBora,rs = |IBlparaBora,rs — RRI|,
8)
with FS decreasing from 64 Hz to 8 Hz.
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Figure 6. MAE (bars), upper, and lower quartiles (error bars) of the considered time- and frequency-
domain features. R, S, and P indicate frequencies at which significant differences (Bonferroni-
corrected, p < 0.05) were found between the original IBIs and REG (R), SPLINE (S), or PARABOLA (P)
interpolations. All the reported differences show effect size (Cohen’s r) > 0.5. *: Significant difference
revealed after excluding REG.
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Table 6. Comparison of the HRV indices estimated with the different PPG interpolation techniques.
p-values and effect sizes (Kendall’s W) of Friedman'’s tests conducted on the AEs of the considered
HRYV indices for each PPG sampling frequency (FS) and protocol phase. Test degrees of freedom were
(3, 21) for all the FS except 8 Hz (2, 14) due to the inapplicability of REG at this FS.

Mean SD IBI RMSSD Power LF  Power HF Power LF Power HF
1BI (n.u.) (n.u.)
. p-value 0.795 0.002 ** 0.012* 0.415 0.041 * 0.047 * 0.047 *
it w 0.043 0.606 0.456 0.119 0.344 0.331 0.331
B pvalue 0.861 0.092 0.041 * 0.861 0.005 ** 0.036 * 0.036 *
FS =64 Hz Stand W 0.031 0.269 0.344 0.031 0.531 0.356 0.356
R pvalue 0.736 0.041 * 0.199 0.583 0.440 0.272 0.272
W 0.053 0.344 0.194 0.081 0.112 0.163 0.163
it p-value 0.920 0.019* 0.012 * 0.682 0.029 * 0.050 0.050
i w 0.021 0.413 0.456 0.062 0.375 0.325 0.325
B p-value 0.717 0.041 * 0.034* 0.415 0.006 ** 0.001 ** 0.001 **
FS =32 Hz Stand w 0.056 0.344 0.362 0.119 0.512 0.656 0.656
x p-value 0.927 0.241 0.034 * 0.615 0.034* 0.018* 0.018 *
w 0.019 0.175 0.362 0.075 0.362 0.419 0.419
it p-value 0.868 0.004 ** 0.004 ** 0.583 0.006 ** 0.011 * 0.011 *
i w 0.030 0.562 0.562 0.081 0.512 0.462 0.462
B p-value 0.930 <0.001**  <0.001 *** 0.199 <0.001**  <0.001*** <0.001 ***
FS =16 Hz Stand w 0.019 0.775 0.825 0.194 0.900 0.900 0.900
R p-value 0.811 0.011 * 0.013 * 0.369 <0.001 *** 0.002 % 0.002 %
W 0.040 0.462 0.450 0.131 0.850 0.619 0.619
it p-value 0.197 <0.001**  0.002* 0.325 0.002 % 0.002 % 0.002 %
i W 0.203 1.000 0.766 0.141 0.812 0.750 0.750
B pvalue  0.030* 0.001 ** 0.002 ** 0.021 * 0.001 * 0.002 % 0.002 %
FS=8Hz Stand W 0.438 0.891 0.766 0.484 0.891 0.812 0.812
. pvalue 0.095 0.021 * 0.021* 0.607 0.011* 0.011 * 0.011 *
w 0.294 0.484 0.484 0.062 0.562 0.562 0.562

The number of asterisks highlights test significance: * p < 0.05; ** p < 0.01; *** p < 0.001.

The AEs of the original IBIs were pairwise compared with the AEs of the SPLINE and
PARABOLA approaches using Wilcoxon’s signed-rank tests. Table 7 shows the p-values
of each test and the related effect sizes (Cohen’s r). Significant increases in AEs (p < 0.05)
showing at least small effect sizes (r > 0.1) were detected for both the interpolation methods
at 16 and 8 Hz. This result indicates that the IBIs extracted from the 256 Hz PPGs and those
derived from the interpolated ones are substantially equivalent down to a sampling rate of
32 Hz. Concerning lower rates, the statistically significant difference observed at 16 Hz was
characterized by medium effect size, ranging from 0.306 to 0.383. Therefore, beat-to-beat IBls
extracted from 16 Hz PPGs processed with SPLINE and PARABOLA interpolations already
appear quite different from those derived through 256 Hz PPGs. When PPG is subsampled
at 8 Hz, the effect size markedly increases and becomes large for both the interpolation
methods (0.665 < r < 0.688), suggesting that, at this sampling rate, the compensation
provided by SPLINE and PARABOLA does not suffice to recover the information carried
by the original signal. In fact, interpolation strategies only allow researchers to reduce the
discretization error caused by subsampling, but they have no effects on the reduction in PPG
bandwidth that comes with this operation. Overall, these results show that subsampling
produces no substantial changes in the derived IBIs up to 32 Hz if SPLINE or PARABOLA
interpolations are applied. Consequently, a PPG bandwidth of approximately 16 Hz is
more than enough to achieve the highest accuracy in beat detection enabled by the PPG
signal. In contrast, with PPG bandwidths of approximately 8 or 4 Hz—which relate to 16
and 8 Hz sampling rates, respectively—suboptimal accuracies are achieved, whose severity
should be determined based on the specific application.
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Table 7. p-value (p) of the Wilcoxon’s signed-rank test conducted on SPLINE vs. ORIGINAL and
PARABOLA vs. ORIGINAL pairs of beat-to-beat AEs, for each PPG sampling frequency (FS) and
protocol phase (in this case, ORIGINAL IBIs are derived from PPG signals sampled at 256 Hz).
Additionally, the effect size of each pairwise comparison (Cohen’s r) is reported.

FS =64 Hz FS=32Hz FS =16 Hz FS=8Hz

p ¥ p ¥ p r p r
Si SPLINE 0.088 0.035 0.633 0.010 <0.001 0.383 <0.001 0.688
it PARABOLA  0.022 0.047 0.454 0.015 <0.001 0.374 <0.001 0.686
Stand SPLINE <0.001 0.095 0.005 0.054 <0.001 0.351 <0.001 0.685
tan PARABOLA <0.001 0.097 0.044 0.038 <0.001 0.362 <0.001 0.696
CR SPLINE 0.215 0.025 0.883 0.003 <0.001 0.310 <0.001 0.665
PARABOLA  0.062 0.038 0.675 0.009 <0.001 0.306 <0.001 0.672

These considerations find support in Figure 7a, where the PSDs clearly show that
most information content of the acquired PPGs lies below 8 Hz (see also, e.g., [28,41]),
though less evident components are still present at higher frequencies, between 8 and
16 Hz. This explains why PPGs sampled at 32 Hz (preserving frequency components up to
16 Hz) and processed with SPLINE or PARABOLA interpolations produced IBIs that closely
resembled those computed from the original PPG. In particular, Sit and CR phases reported
cumulative power contributions (Figure 7b) of approximately 4.44%, 0.12%, and <0.01%
for frequency components higher than 4, 8, and 16 Hz, respectively, implying a negligible
loss of information with a sampling rate of 32 Hz. For the Stand phase, comparable values
(0.27% and <0.01%) were reported for frequency components higher than 8 and 16 Hz,
whereas a cumulative power contribution of 10.4% was found for frequency components
higher than 4 Hz. This last finding might explain the MAE differences observed among
protocol phases in Section 3.3. In fact, with a sampling rate of 8 Hz, the loss of information
content due to subsampling is more than twice in the Stand condition compared to the rest
of the protocol.

3.5. Comparison of the Respirograms Estimated from PPG

Table 8 reports the magnitude-squared coherence between the reference respirogram
and those estimated from PPG, averaged in the relevant band of the spectrum (Figure 8).
This evaluation was performed separately for all the protocol phases and PPG sampling
frequencies considered in the study. The coherence values shown in Table 8 are the median
of the values obtained for all the subjects.

Although the ENVL method shows the highest values of magnitude-squared coher-
ence for sampling rates of 64 and 32 Hz, a decline in its performance is observed at 16 Hz
and 8 Hz. FILT, instead, shows a more stable performance, with similar values for all
the considered sampling frequencies, revealing higher stability compared to the other
methods. Finally, INTR systematically shows the lowest magnitude-squared coherence,
demonstrating poor performances compared to the other two techniques.

To further investigate the advantages provided by each of the three methods and
highlight possible differences between them, a Friedman'’s test was conducted for each
PPG sampling rate and protocol phase to compare their magnitude-squared coherences.
Significant differences (p < 0.05) were detected mainly in the Sit and CR phases. The
subsequent post hoc tests indicate that, concerning a sampling frequency of 64 Hz, a
statistically significant difference (p < 0.05) is evident between the method that performs the
best (ENVL) and the one that performs the worst (INTR); besides, a significant difference
was detected between the latter and FILT, limited to the Sit condition. This result implicitly
indicates that, at 64 Hz, ENVL and FILT perform in a similar way (since no significant
difference arises between them). On the contrary, from 32 Hz below, statistical differences
occurred between FILT and INTR methods, suggesting that FILT behaves better than INTR
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and, at the same time, FILT is comparable to ENVL, as well, due to the absence of statistical
difference. In particular, concerning the PPGs sampled at 8 Hz, a significant difference
occurs between FILT and ENVL during Stand, showing that, for lower sampling rates,
ENVL performs poorly compared to FILT.
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Figure 7. (a): average PSDs of the original PPGs (sampling frequency: 256 Hz, bandwidth: 0-64 Hz)
collected from all the participants; (b): cumulative contribution of the different frequency components
to total power (y-axis starts at 85% to highlight differences among phases). Columns represent
different protocol phases. Each participant’s PSD was computed through Welch’s periodogram after
standardizing the PPG signal with z-score to reduce inter-subject variability.
Table 8. Median and interquartile range of the magnitude-squared coherence between the original
breathing signal and each of the three estimation methods, grouped by protocol phases.
SIT STAND CR
FS FILT ENVL INTR FILT ENVL INTR FILT ENVL INTR
64Hz  074+018  0.80+0.26 048 £ 0.1220 055+047  070+029 057038  080+£017 0864012 072 £024"
32 Hz 0.74 +£0.18 0.77 £ 0.27 0.38 +0.12° 0.54 & 0.46 0.68 + 0.29 0.48 +0.27 0.80 £ 0.17 0.82 +0.11 057 +£0.152
16 Hz 0.74 £0.18 0.61 £ 0.30 0.324+0252 0.55 £ 0.46 0.56 £ 0.21 0.48 £0.18 0.81 £0.17 0.72 £0.12 043 £0.34°
8Hz  074+018  034+016 0.14 £0.152 054+047  038+£020° 0494025  080+£017  06540.16 037 £039°

a Sjgnificantly different from FILT (Bonferroni-corrected comparisons, p < 0.05). ? Significantly different from ENVL
(Bonferroni-corrected comparisons, p < 0.05). All the reported differences show effect size (Cohen’s r) > 0.8.
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Figure 8. Example of PSD and magnitude-squared coherence computed for a single subject with the
examined breathing signal estimation methods from a 64 Hz PPG signal. The shaded area in the
coherence charts indicates the relevant frequency band selected for the participant.

4. Discussion and Conclusions

In this paper, we have systematically studied the effect of decreasing sampling rate
in PPG signal on time- and frequency-domain HRV parameters. We have tested the per-
formances of two peaks detection methods (i.e., ENVELOPE and SLOPE) for the IBI time
series construction and assessed the efficacy of three interpolation strategies (SPLINE,
PARABOLA, and REG) in the refinement of peaks detection while decreasing the PPG
sampling rate. In the same framework, we have explored the application of three simple
algorithms to extract breath information from PPG (FILT, ENVL, and INTR), again with
decreasing time resolution. To the best of our knowledge, the current study is the first to
assess all the aspects above in the following three different conditions: sitting, standing,
and controlled respiration. Because of this, we were able to identify the ENVELOPE de-
tection method not only as the one performing better but also as the most stable across
these protocol phases. Results also confirm the usefulness of interpolation procedures
for peak detection when the sampling rate drops to 32 Hz, with similar performance for
SPLINE and PARABOLA, while the REG method showed a lower performance. A conse-
quent improvement was also observed in several HRV indices both in time and frequency
domains. The beat-to-beat IBls computed after SPLINE and PARABOLA interpolations
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were found to resemble those derived from the original 256 Hz PPG down to a sampling
rate of 32 Hz, with moderate performance detriment observed at 16 Hz. In general, the
accuracy improvements generated by SPLINE and PARABOLA approaches were consistent
across the three protocol conditions. However, at 8 Hz sampling rate, the consequent
PPG bandwidth reduction affected the accuracy of the computed HRV indices more in the
Stand phase than in the other conditions. This finding suggests that our considerations
should not be generalized to any task demand. Our results should be considered valid
only for PPG collected during tasks requiring minimal (Sit phase) or mild (Stand and CR
phases) physical effort. The effectiveness of PPG interpolation strategies and the minimum
sampling rate required with higher physical loads should be further assessed.

Concerning the breathing signal estimation methods from PPG, the results indicate
that ENVL is preferable at 64 Hz. Below that frequency, FILT should be preferred due to the
higher stability of its performances across different sampling rates, especially considering
Sit and CR phases. Thanks to its simplicity and the notable values of quadratic coherence
achieved even with low sampling frequencies, FILT seems a convenient and accurate
method to estimate respirograms from PPG.

In conclusion, our results suggest that PPG should not be collected with sampling
rates lower than 16 Hz. PPG interpolation strategies are recommended with sampling rates
below or equal to 32 Hz. However, at 16 Hz sampling frequency, none of the interpolations
allow us to achieve the beat-to-beat accuracy of the 256 Hz PPG, indicating that a signal
bandwidth of 8 Hz might already be too low for applications requiring highly reliable
IBIs. SPLINE and PARABOLA methods provided comparable performances in all the
considered conditions. Among the breath signal extraction techniques, ENVL performs
better at 64 Hz sampling rate; FILT should be favored with lower sampling frequencies.

Given the increasingly widespread diffusion of PPG-based wearable devices for HRV
monitoring, future extensions of this work are highly encouraged. In particular, since the
rationale for choosing low sampling rates is to reduce power consumption, the additional
power required by compensating techniques should be evaluated to ensure an actual
reduction compared with the use of higher rates. Alternatively, strategies that do not
require real-time processing, such as the interpolation methods we examined, may be
offloaded to a separate device (e.g., a smartphone) to extend battery life in wearable
PPG devices.

Further studies should validate our findings using PPG signals extracted from different
body sites (e.g., PPG wristbands, rings, arm straps, or ankle straps) [58,59], possibly in
various conditions, and considering a larger cohort of participants. In fact, site- and device-
specific differences in performance can be expected for PPG interpolation and breathing
signal extraction techniques.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22041428 /51, Figures S1-S7: Line charts of the time- and frequency-domain HRV indices
estimated for each subject with the considered PPG interpolation methods, grouped by protocol phase
and sampling frequency. Table S1: FNR, FDR and accuracy observed with each method, assessed
with PPG sampling rates ranging from 32 to 8 Hz. Tables S2 and S3: Median absolute error (MAE)
and error interquartile range (IQR) of the time- and frequency-domain HRV indices estimated for
each PPG sampling frequency, interpolation method, and protocol condition.
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Appendix A

Table Al illustrates a pseudo-code explanation of the ENVELOPE and SLOPE algorithms.
Detailed description of the steps involved in the SLOPE algorithm can be found in [41].

Table Al. Pseudo-code of the ENVELOPE and SLOPE beat detection algorithms. Bold type in

variable names indicates arrays.

ENVELOPE

SLOPE

# PPG PROCESSING
Compute:
x’(t) = first derivative of the PPG signal
i (t) = inferior envelope of x'(t)
emax(t) = superior envelope of x”(£)
X norm (£) = min-max normalization of x’(t) as in
Equation (4)
# HEARTBEAT DETECTION
Define:
theny = threshold for the identification of
heartbeats from x’,,074, (1); set to 0.8
Find:
tpeaks = occurrence time of the local maxima of
Xnorm () exceeding thenv
# FALSE POSITIVES REDUCTION
Define:
IBI= median peak-to-peak distance between all
the elements in tpeaks
N =number of peaks in tpeaks
i=1
Whilei <N
1. Take the occurrence time of the i-th peak (t;)
2. Calculate the difference between t; and the occurrence time of all
the other elements in ty.aks: t; — t1, t; — t2, ..., t; — N
3. Compare these differences to IBI by using Equation (2), from
which d = [dq, ds, ..., dy] is obtained
4. For each i < k < N, find the lowestdj and define: j = k-th peak
that minimizes d
5. Discard all the peaks included between i and j-1 from #,eaxs, if
any, as they are false positives
6.  Update IBI as in Equation (4) and set i = j for the next iteration

End
# IBI CALCULATION
Compute:
IBIgnv = difference between consecutive elements
of the remaining occurrence times in tpeaks

# PPG PROCESSING
Define:
x(t) = PPG signal
N = number of samples in x(t)
# HEARTBEAT DETECTION
Define:
RP = refractory period; initialized to 0.6 s
RP jiange = multiplier for RP updates; set to 0.6
slope = slope coefficient for the adaptive threshold;
initialized to 0.2*max(x(t))
tinit = occurrence time of the first increasing
segment found in x(f)
th(t) = adaptive threshold, initialized to x(t;,;)
i = sample of x(t) corresponding to ;s
Whilei <N

1. Increase i until a peak is found on x(f); define j as the sample of
x(t) corresponding to this peak
2. Add ¢ (occurrence time of the peak) to the array of the peaks
found so far (tpeaks)
3. Make th(t) = x(t) until thej-th sample is reached
4. Update the slope parameter as shown in Equation (2) of [41]
5. Linearly decrease th(t) starting from the peak found on x(t), using
the updated slope
6. When th(t) intersects x(#):
If RP has passed
Proceed to step 7
Else
Continue to linearly decrease th(t) and
repeat this check at the next point of
intersection
End

7. Compute the average IBI (IBI) from the tpeaks found so far and
update RP for the next iteration: RP = RPcpange * IBI

8. Update i to the sample where th(t) intersected x(t) and proceed
with the next iteration

End
# IBI CALCULATION
Compute:
IBIgi opg = difference between consecutive
elements of t,eqxs
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