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Abstract: Many cold-acclimated insects accumulate high concentrations of low molecular weight
cryoprotectants (CPs) in order to tolerate low subzero temperatures or internal freezing. The sources
from which carbon skeletons for CP biosynthesis are driven, and the metabolic reprogramming
linked to cold acclimation, are not sufficiently understood. Here we aim to resolve the metabolism
of putative CPs by mapping relative changes in concentration of 56 metabolites and expression of
95 relevant genes as larvae of the drosophilid fly, Chymomyza costata transition from a freeze sensitive
to a freeze tolerant phenotype during gradual cold acclimation. We found that C. costata larvae may
directly assimilate amino acids proline and glutamate from diet to acquire at least half of their large
proline stocks (up to 55 µg per average 2 mg larva). Metabolic conversion of internal glutamine
reserves that build up in early diapause may explain the second half of proline accumulation, while
the metabolic conversion of ornithine and the degradation of larval collagens and other proteins
might be two additional minor sources. Next, we confirm that glycogen reserves represent the
major source of glucose units for trehalose synthesis and accumulation (up to 27 µg per larva),
while the diet may serve as an additional source. Finally, we suggest that interconversions of
phospholipids may release accumulated glycero-phosphocholine (GPC) and -ethanolamine (GPE).
Choline is a source of accumulated methylamines: glycine-betaine and sarcosine. The sum of
methylamines together with GPE and GPC represents approximately 2 µg per larva. In conclusion,
we found that food ingestion may be an important source of carbon skeletons for direct assimilation
of, and/or metabolic conversions to, CPs in a diapausing and cold-acclimated insect. So far, the
cold-acclimation- linked accumulation of CPs in insects was considered to be sourced mainly from
internal macromolecular reserves.

Keywords: cryoprotectant metabolites; metabolic pathways; transcriptomics; metabolomics; proline;
trehalose; betaine

1. Introduction

Convergent evolution repeatedly ‘discovered’ benefits of accumulation of a stereo-
typic family of cytoprotectant molecules (sugars and polyols, amino acids and derivatives,
methylamines) in various organisms from archaea and bacteria to animals responding
to different environmental stressors such as heat, cold, freezing, drought, hypersalinity,
or high hydrostatic pressure [1–4]. For instance, the insects that invaded temperate and
polar habitats have evolved accumulation of low molecular weight cryoprotectants (CPs)
as one of principal tenets of their complex adaptive strategies for survival at subzero tem-
peratures [5–8]. Some insects avoid internal freezing by extensive supercooling of their
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body liquids, others tolerate extracellular ice formation, and still others avoid freezing
by losing most of their body water [5,9–12]. Whatever strategy the insect uses, the ac-
cumulation of CPs is considered to be one of the major mechanisms that protects insect
cells against damage exerted by low temperatures (supercooling), growing ice crystals and
freeze-dehydration (freeze tolerance), or evaporative loss of body water (cryoprotective
dehydration) [5–8]. The metabolic origin of insect CPs is relatively well understood for the
class of sugars and polyols [13–18] but was not sufficiently studied for the classes of amino
acids and methylamines. Here we contribute by tracing the sources of carbon skeletons
and the pathways for biosynthesis of all three CP classes in the extremely freeze-tolerant
drosophilid fly, Chymomyza costata. The larvae of this fly survive winter in cold-temperate
and sub-arctic climate zones in a state of deep dormancy (diapause), during which they
acquire extremely high levels of freeze tolerance. In the laboratory, the diapause cold
acclimated larvae can even survive long-term cryopreservation in liquid nitrogen (LN2),
which makes them an interesting model for cryobiology [19–22].

Most insects accumulate CPs seasonally. Their metabolic pathways are hormonally
diverted from support of active life toward preparation for winter dormancy during the
relatively warm end of summer or autumn [23–26]. In autumn, insects start to accumulate
macromolecular substrates such as glycogen, proteins and lipids [27]. Later in the season,
usually upon cold acclimation during the coming winter, the macromolecular substrates
may serve as sources for CP biosynthesis [28,29]. This general mechanism is best exempli-
fied by degrading glycogen reserves in order to produce various sugars and polyols such as
glucose, trehalose, glycerol, sorbitol and ribitol in different cold-hardy animals, including
insects [13–18]. Primary control over this process is at the level of glycogen breakdown
via direct triggering of glycogen phosphorylase activity by a drop of temperature below
5 ◦C [28,30]. Cold-activation of glycogen phosphorylase goes hand in hand with concerted
changes in expression and allosteric modulation of activity in many other enzymes of inter-
mediary metabolism, which finally results in accumulation of sugars and polyols [31–34].
Similarly to animals, cold-hardy plants also accumulate soluble sugars [35] by degrading
their macromolecular reserves of starch [36].

Some insects seasonally accumulate high concentrations of free amino acids, especially
proline [37–40]. The cryoprotective effects of proline are well documented [19,20,41–45]
but the metabolic origin of proline in cold-hardy insects was not previously studied. We
speculated that collagens in the extracellular matrix (ECM) may represent macromolecular
depots of relatively ‘dispensable’ proteins from which proline, and other amino acids,
can be obtained upon need [20,40]. Collagens are known to make up a large part of total
proteins in animals, and are characterized by a high content of proline and hydroxyproline
in their structure [46,47]. For example, massive degradation of ECM collagens is known
to supply proline as an alternative energy source for rapid metabolism of proliferating
or cancerous animal cells [48]. Proline appears to be one of the most widely distributed
cytoprotectants accumulated under various stress conditions not only in insects and marine
invertebrates [3] but also in eubacteria, protozoa, algae and plants [49,50]. The strong
evidence for the role of proline in plant freeze tolerance comes from genetic manipulations
of Arabidopsis [51]. Plants and eubacteria synthesize proline from glutamate and ornithine
precursors in response to stress [49].

In addition, we found recently that cold-acclimated larvae of C. costata accumulate
glycerophosphocholine (GPC), glycerophosphoethanolamine (GPE) and methylamines
such as glycine betaine (betaine henceforth), and sarcosine [22]. Accumulation of betaine is
well documented in plants and halophilic prokaryotes under various types of environmen-
tal stress [52,53], and genetic proofs for betaine contributing to freeze tolerance exist [54,55].
Betaine and GPC also provide osmoprotection of mammalian kidney cells exposed to
high salt concentrations [56,57]. Animals, plants, and bacteria synthesize betaine from
choline via a two-step oxidation pathway [56,58] and may further convert betaine to DMG
(dimethylglycine) and sarcosine. Some halophilic prokaryotes, however, can synthesize
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betaine from glycine via a three-step methylation, which requires activity of two specific
methyltransferases [59].

Here, we explore adaptive adjustments in metabolism as the larvae of C. costata
transit from freeze-sensitive to freeze-tolerant phenotype during entry into winter dia-
pause and subsequent cold acclimation. We map onto metabolic pathways the changes
in relative quantities of 56 metabolites (analyzed using liquid chromatography and high
resolution mass spectrometry, LC-HRMS), and relative expression of 95 key genes coding
key metabolic enzymes and transport systems (analyzed using reverse transcription quanti-
tative PCR, RT-qPCR). We cover metabolic pathways representing all three major chemical
groups of putative CPs. We focus on distinguishing between alternative sources of carbon
skeletons for the CPs’ biosynthesis, as follows. (i) Proline (and also other amino acids): is it
derived from stored macromolecular reserves such as collagens and total proteins or from
metabolic precursors such as glutamine, glutamate and ornithine, or rather assimilated
from diet as an external source? (ii) Trehalose (and other sugars and polyols): derived from
glycogen reserves or dietary starch and glucose? (iii) Methylamines: choline coming from
interconversions of phospholipids or glycine which can be massively released during the
breakdown of collagens?

2. Results and Discussion

We conducted experiments using four acclimation/phenotypic variants of 3rd instar
C. costata larvae that were generated according to previously published acclimation pro-
tocols [19–21] and widely differed in freeze tolerance and cryopreservability in LN2. All
acclimation variants are described in detail in the Materials and Methods and presented in
Table 1. Briefly, the variants SD3, SD6, and SD11 represent successive stages of diapause
maintenance (3, 6, and 11 weeks old larvae, respectively) under constant warm conditions
(18 ◦C). During diapause maintenance, relatively weak freeze tolerance gradually develops.
The variant SDA represents the 11 weeks old larvae that undergo a gradual cold-acclimation
process (11 ◦C for 1 week, followed by 4 ◦C for 4 weeks), which results in development of a
maximal level of freeze tolerance.

Table 1. Freeze-tolerance phenotypes of Chymomyza costata larvae.

Phenotype Acclimation Variant/
Phenotype

Freeze Tolerance at −30 ◦C *
[% Larvae Surviving to Adulthood]

Survival in LN2 *
[% Larvae Surviving to Adulthood]

SD3 Diapause entry 0 0
SD6 Early diapause maintenance 65.0 7.7
SD11 Late diapause maintenance 41.5 10.1
SDA Diapause, cold-acclimated 75.9 42.5

* Data taken from [19–21].

We restricted analyses to changes occurring within diapause larval phenotypes, focus-
ing on the transition from freeze sensitivity (SD3) to extreme freeze tolerance including
the ability to survive long-term cryopreservation in LN2 (SDA). We omit metabolic recon-
structions for non-diapause larvae as they exhibit intense locomotive activity, voracious
feeding, and rapid growth and development; a stark contrast to diapausing larvae which
are characterized by metabolic suppression and hormonally arrested development [26,60].
Such deep phenotypic differences between non-diapause and diapause could overwhelm
or obscure the metabolic changes associated with cold acclimation and the acquisition of
freeze tolerance. We mapped changes in 56 metabolites (Table S1) and 95 genes (Table S2)
onto three schematic pathways (proline, trehalose, betaine) and will discuss them one
by one. It is important to note that our schematic maps do not represent any specific
cell type though they show plasmatic membranes and distinguish between cytosolic and
extracellular spaces. As the metabolomic analyses were conducted using whole larvae,
resolution to tissue level is not possible. The metabolomics results presented in this study
are based on relative quantification (comparing chromatographic peak areas). We will refer
to our earlier studies [20,22] for absolute quantities of select metabolites.
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2.1. Proline and Other Amino Acids

Complete results of metabolomics and transcript analysis are presented in Table S3
while the differences between diapause maintenance (transition from SD6 to SD11) and cold
acclimation-linked metabolisms (transition from SD6 to SDA) are graphically presented
in Figure 1.

Figure 1. Changes in metabolism of proline during diapause maintenance vs. cold acclimation
in C. costata larvae. The maps show log2-fold changes in relative concentrations of metabolites
(circles) and gene expression (arrows) according to numerical results (Table S4) during diapause
maintenance (a) and gradual cold acclimation (b). Three different thresholds for change were
reflected in the size of symbols used (circles and arrows): absolute log2-fold change >0.58 (1.5-fold
change); >1.00 (2-fold change); and >2.00 (4-fold change). Red indicates upregulation, blue indicates
downregulation, grey indicates log2-fold changes between−0.58 to 0.58. Genes are coded by numbers
(see Table S3). Thick grey double lines symbolize the plasma membrane with embedded transport
systems. α-KG, ketoglutarate; GSA (glutamate-5-semialdehyde) and pyrroline 5C are tautomers and
their interconversions are spontaneous.

Larvae undergoing cold acclimation exhibited more intense up- or down-regulations
of proline-associated metabolites and transcripts compared to those in diapause main-
tenance (compare Figure 1a vs. Figure 1b). The chromatographic peak area of proline
increased 1.6-fold during cold acclimation, and we observed concomitant peak area in-
creases for glycine (2.2-fold) and hydroxyproline (2.1-fold) (Figure 1b, Table S3). The
synchronous accumulation of glycine, proline, and hydroxyproline suggests that degra-
dation of collagens—which are characterized by a high content of just these three amino
acids [46]—is a potential source of accumulated proline. For example, the C. costata col-
lagen IVα1 (Seq33535, Table S2) contains approximately twice as many glycine residues
as proline residues (it has 1782 aa-residues and a molecular mass of 174,993 kDa; 497
residues (27.9%) are glycines; 244 residues (13.7%) are prolines and hydroxyprolines in
an unknown ratio). Hydroxyproline is synthesized by proline hydroxylases (genes no. 1
and 2 in Figure 1) as a post-translational modification of proline residues bound to nascent
collagen chains [61], so it is unlikely that the accumulated hydroxyproline originated from
sources other than collagen-like proteins. However, other pieces of evidence speak clearly
against the probability that collagens are the major source of accumulated proline, which
we discuss in detail below.

First, the absolute concentration of glycine in SDA larvae is at least two orders lower
than the concentration of proline [20,22]. Degradation of collagens, however, should release
approximately twice as many glycine residues as proline residues. Should the proline be
released from collagens, the massive flow of concomitantly released glycine would have
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to be catabolized or, potentially, converted to betaine (we discuss this possibility later).
Second, a stoichiometric calculation shows that C. costata larvae do not carry stores of
degradable protein sufficient to account for the amount of free proline accumulated by the
SDA phenotype. We may consider that: (i) the average SDA-larva accumulates proline at
a concentration of 339 mmol.kg−1 of body water while an average SD11-larva has only
162 mmol.kg−1 of proline [20], which corresponds to a total pool of 475 nmoles (54.6 µg)
or 227 nmoles (26.1 µg) of proline per larva, respectively (considering larval FM as 2 mg
and water content as 1.4 mg); (ii) in order to produce 475 − 227 = 248 nmoles of proline,
the average larva would need to degrade at least 178 µg of collagen IVα1 (considering
that degradation of 1 mole, i.e., almost 175 kg, of collagen IVα1 produces 244 moles of
proline and hydroxyproline residues); (iii) the average SD6-larva, however, carries only
ca. 270 µg of total protein (450 µg mg−1 DM), and only 38 µg of total protein is depleted
during cold acclimation (Figure 2a). Third, the overall content of collagens increased
during cold acclimation (Figure 2b), while a decrease would be expected if proline was
released by degradation of collagens. Paradoxically, the activity of collagen-degradation
enzymes (matrix metalloproteinases; MMPs) increased significantly (albeit slightly) during
cold acclimation as well (Figure 2c). Fourth, using analysis of total proteins on PAGE,
we verified that dominant protein bands show stable patterns across phenotypic variants
suggesting that proteins are not massively degraded (Figure S1). Fifth, transcriptomic
analysis suggested that proline transport is bolstered in SDA larvae as we observed sig-
nificant (1.9-fold) increase in the relative expression of the gene coding for amino acid
nutrient transporter NAAT1 (no. 11, Figure 1b, Table S3) which shows high specificity
for proline [62]. Nevertheless, the origin of proline from collagen was not supported by
transcriptomics as there were: (i) 3.3-fold decrease in relative expression of the gene coding
for collagen IVα1 (no. 3, Figure 1b, Table S3); (ii) 1.8-fold decrease in one of two genes
coding for MMPs (MMP2, no. 6, Figure 1b, Table S3); countered by (iii) 1.7-fold increase in
Timp (no. 4, Figure 1b, Table S3) which is coding for an inhibitor of MMPs [63].

Figure 2. Total protein, collagens and MMPs. Changes in (a) total protein content, (b) total content
of collagens estimated based on 4-hydroxyproline released upon acidic hydrolysis of larval total
proteins, and (c) activity of general metalloproteinases (MMPs, collagenases). All analyses were
performed on extracts of whole body larvae of different variants (diapause maintenance: SD3,
SD6, SD1 (red columns); cold acclimation: SDA (blue column); see Table 1)) and each column is
a mean of 3 biological replicates. Means were compared using one-way ANOVAs followed by
Bonnferoni’s multiple comparison tests (different letters indicate significantly different means). Note
that nanomolar amounts of hydroxyproline were released from collagens upon acidic hydrolysis (c),
while the total pool of free hydroxyproline in larval tissues is three orders lower—approximately
4–8 femtomoles [22].

Similarly as in plants under stress [49], proline in C. costata may be sourced from
its nearest metabolic precursors, glutamine, glutamate and ornithine. We found that
relatively large reserves of glutamine build up in early diapause (transition from SD3
to SD6), while they are partially depleted during subsequent cold acclimation (Figure 1b,
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Table S3). In absolute terms, total glutamine content may reach up to 180 nmoles in
the average SD11-larva while only 38 nmoles are found in the average SDA-larva [20].
Hence, the conversion of 180 − 38 = 142 nmoles of glutamine may help to explain the
origin of almost one half of the proline molecules accumulated in SDA-larvae, while the
second half remains unexplained. The activation of glutamine conversion via the glutamate
pathway is supported by upregulated glutamate synthetase (no. 30) and P5C reductase
(no. 24) expressions during cold acclimation (Figure 1b). The glutamate synthetase activity,
however, requires a supply of additional carbon skeletons from ketoglutarate, which might
be limited due to general suppression of glycolysis and TCA metabolism in diapausing,
cold-acclimated larvae (see discussion on trehalose metabolism). Stimulation of ornithine
conversion via upregulated expression of ornithine aminotransferase (no. 35) may also
contribute to accumulation of proline (Figure 1b). However, the total pools of glutamate
(ca. 8 nmoles) and ornithine (ca. 0.5 nmoles) are relatively low throughout the acclimation
variants [20], which suggests that these compounds are metabolic intermediates rather than
sources from which the accumulation of proline would drive the carbon skeletons.

Since internal sources (either proteins or metabolic precursors) are obviously not
sufficient to fully explain a massive accumulation of proline, the larval diet should be
another source. Previously, we had not considered the diet as a source of proline be-
cause diapausing insects are known to drastically suppress their feeding, digestion, and
metabolic rates [27,64]. The larvae of C. costata, for instance, gradually lose weight during
diapause [65]. However, examining the feeding activity of diapausing C. costata larvae, we
found that they consume food not only during diapause maintenance at a relatively high
temperature of 18 ◦C but also during cold acclimation to 4 ◦C (Figure 3).

Figure 3. Diet consumption in diapause, of cold-acclimated larvae of C. costata. (a) shows the times
when larvae were transferred to BB-augmented diets (grey triangles) and for how many days (grey
font). Each column in (b) shows the percentage of larvae (n = 20 each) with blue gut contents. SD6
larvae exposed to BB diet for 3 d (all guts blue-colored) were returned to a standard diet to show
that the blue coloration disappears in 80% of individuals within 1 d, and in all individuals within
2 d (gut evacuation). Most of the diapausing, cold-acclimated larvae (SDA7 and SDA9) exhibit blue
guts within a few days of exposure to the BB diet. (c) shows examples of BB diet-fed larvae: left, an
SDA9 larva exposed to BB diet for 14 d at 4 ◦C; right, a non-diapause (LD) larva exposed to BB diet
for 1 h at 18 ◦C. (d) shows a gut dissected from an SDA larva exposed to the BB diet. Gut segments
are described according to the gut morphology of D. melanogaster larvae: pv, proventriculus; A, M, P,
anterior, middle, and posterior midgut; Iron, iron cells segment; py, pylorus; mt, Malpighian tubules;
il, ileum; re, rectum.
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Next, we analyzed the composition of the larval diet (Table S4) and found that
proline was the highest in concentration of all the amino acids (2.7 mmol.kg−1 FM or
25.6 mmol.kg−1 DM). The amount of dietary proline that is directly ‘assimilated’ from food
depends on the amount of food ingested and the food assimilation efficiency, both un-
known for C. costata larvae. At 100% assimilation efficiency, the average larva of C. costata
would need to ingest 37 mg of diet FM in order to accumulate 100 nmoles of proline.
At a more realistic assimilation efficiency of 16% as demonstrated for larvae of the black
soldier fly Hermetia illucens [66] this amount would increase to 231 mg of diet FM. Be-
cause the fresh mass of C. costata larvae gradually decreases during diapause at low
temperatures [65], the calculations suggest that larvae must be able to absorb proline
from the ingested diet without assimilating many of the other nutrients. The high ability
of C. costata larvae to ‘harvest’ dietary proline is supported by two earlier observations:
(i) the non-diapause larvae were able to increase their whole body concentration of proline
almost 7-fold (from 39 to 268 mmol.kg−1 FM) within just three days of feeding on proline
augmented diet [22]; (ii) when feeding Drosophila melanogaster larvae the same proline-
augmented diet as C. costata, we found that D. melanogaster accumulated about one order
less proline relative to C. costata [41]. In addition, glutamate is the second most concen-
trated amino acid in larval food (2.6 mmol.kg−1 FM or 24.9 mmol.kg−1 DM) (Table S4) and,
hence, may serve as additional dietary precursor for biosynthesis of proline.

Overall, our results suggest that high concentrations of proline in SDA larvae of
C. costata originate from different sources: (i) direct assimilation of ingested dietary proline,
together with metabolic conversion of dietary glutamate (a proline precursor), can explain
about one half of the proline accumulation; (ii) metabolic conversion of larval glutamine
reserves formed in early diapause can explain the second half of proline accumulation;
(iii) two other minor sources can be the metabolic conversion of ornithine and the degrada-
tion of larval ECM collagens and other proteins.

2.2. Trehalose and Other Sugars and Polyols

Complete results of metabolomics and transcript analysis are presented in Table S5, while
the differences between diapause maintenance and cold-acclimation-linked metabolisms are
graphically presented in Figure 4. Trehalose consists of two glucose molecules [67] and its
non-reducing nature allows for safe ‘storage’ in large amounts in larval hemolymph. No
trehalose accumulation was observed in C. costata during diapause maintenance (Figure 4a,
Table S5) but the chromatographic peak area of trehalose increased 2.2-fold during cold accli-
mation (Figure 4b, Table S5). In support of upregulated trehalose biosynthesis in SDA larvae,
the expression of a gene coding for two synthetic enzymes, trehalose 6-phosphate synthase
(gene no. 20) and phosphatase (no. 21) increased substantially (4.1- and 10.1-fold, respec-
tively), while the expression of a gene coding for the catabolic enzyme trehalase (no. 23)
decreased 4.1-fold during cold acclimation (Table S5).

The metabolic map of trehalose further suggests that the glycolytic flux toward TCA
was suppressed during late diapause maintenance and especially during cold acclimation
(Figure 4, Table S5). In SDA-larvae, the genes coding for glycolytic enzymes nos. 5, 6, 7,
and 8 were downregulated as were intermediates of the fermentation and TCA cycle:
pyruvate, lactate, citrate, ketoglutarate, and fumarate. In addition, ATP concentrations
increased whereas the concentrations of ADP and AMP decreased (Figure 4b), which is
consistent with a relatively low demand for energy turnover during diapause and even
less at low temperatures [27,64]. Glucose metabolism was redirected from glycolysis to:
(i) trehalose biosynthesis (discussed above); (ii) sorbitol biosynthesis (no. 9 aldoketoreduc-
tase was upregulated 4.2-fold, resulting in a 2.1-fold increase in sorbitol); (iii) conversion
to gluconolactone (no. 11 glucose 6-phosphate dehydrogenase was upregulated 3.5-fold,
resulting in a 5.1-fold higher accumulation of 6-P gluconate). The conversion in (iii) is
associated with the production of reducing equivalents in the form of NADPH. This re-
ducing power is required, for example, for syntheses of proline from P5C and sorbitol
from glucose.
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Figure 4. Changes in metabolism of trehalose during diapause maintenance vs. cold acclimation in
C. costata larvae. The maps show log2-fold changes in relative concentrations of metabolites (circles)
and gene expressions (arrows) during diapause maintenance (a) and gradual cold acclimation (b) (see
Table S5). Other descriptions are as in Figure 2. TCA, tricarboxylic acid cycle; α-KG, ketoglutarate.

The map of trehalose metabolism shows that glucose was also accumulated during
cold acclimation (Figure 4b). Note, however, that glucose reached absolute molar concen-
trations two orders lower than trehalose [20]. Glycogen might be an important source
of glucose units as suggested by a trend of total glycogen accumulation during early di-
apause, followed by its partial depletion during cold acclimation (Figure 5a). A similar
depletion trend has been stereotypically observed in many diapausing insects, and glyco-
gen is thought to be the major source for accumulation of various sugar-derived CPs in
insects [13,28,30]. The total pool of trehalose is approximately 79 nmoles (27 µg) in an
average SDA-larva, while only 34 nmoles 9 (11.6 µg) are found in an SD11-larva [20]. The
accumulation of 79 − 34 = 45 nmoles of trehalose can be explained if only breakdown of
glycogen is considered. We may assume that: (i) the cold-acclimation-linked depletion of
glycogen represents 34.3 µg.mg−1 DM (Figure 5a i.e., 17.1 µg per larva); (ii) this amount of
glycogen can release about 145 nmoles of glucose, from which about 72 nmoles of trehalose
can be synthesized. The gene coding for a key enzyme of glycogen degradation, glycogen
phosphorylase (no. 17) showed little change in expression upon cold acclimation (a 1.3-fold
decrease, Table S5) and the total enzymatic activity of glycogen phosphorylase was sig-
nificantly lower in SDA-larvae compared to other phenotypes. At least, we observed a
relatively high contribution of the active ‘a’ form to total glycogen phosphorylase activity in
cold-acclimated SDA larvae (Figure 5b). This is in accordance with the well-described pro-
cess of cold activation of glycogen phosphorylase that initiates synthesis of sugar-derived
CPs in insects [32].

In addition to the internal source of glucose units (glycogen), large amounts of glucose
are available in the larval diet (11.6 mmol.kg−1 FM or 109.9 mmol.kg−1 DM; Table S4).
Thus, the ingested diet may serve as an additional source of glucose for diapausing, cold-
acclimated larvae. The diet also contains starch and maltose (maltose in concentration of
3.6 mmol.kg−1 FM or 33.9 mmol.kg−1 DM; Table S4), and the transcriptomic data suggest
that digestion of starch and maltose might be enhanced in SDA larvae (see the increasing
expression of amylases and maltase, nos. 1 and 3 in Figure 4b). However, this was not
confirmed by direct assay of enzyme activities; the combined activity of general amylases
and maltases decreased sharply during cold acclimation (Figure 5c). Overall, our results
suggest that glycogen is the main source of glucose units for trehalose synthesis and
accumulation, whereas the diet may serve as an additional source.
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Figure 5. Glycogen, glycogen phosphorylase, amylases and maltases. Changes in (a) the total
glycogen content, and the activities of (b) glycogen phosphorylase (white portions of the columns
represent active form ‘a’ and colored portions inactive form ‘b’), and (c) amylases and maltases. All
analyses were performed in extracts of whole body larvae of different acclimation variants (diapause
maintenance: SD3, SD6, SD1 (red columns); cold acclimation: SDA (blue column); see Table 1)). Each
column is a mean of 3 biological replicates. Means were compared using one-way ANOVAs followed
by Bonnferoni’s multiple comparison tests (different letters indicate significantly different means; in
panel b: the capital letters show differences between total activities, while the lower-case letters show
differences between activities of the inactive (red font) and active (black font) forms of the glycogen
phosphorylase).

2.3. Betaine, Other Methylamines and Related Compounds

Complete results of metabolomics and transcript analysis are presented in Table S6,
while the differences between diapause maintenance and cold acclimation-linked metabolisms
are graphically presented in Figure 6. During cold acclimation, the chromatographic peak
area of betaine increased 1.6-fold and the gene coding for betaine transporter (no. 12) was
upregulated 2-fold (Figure 6b, Table S6). In contrast, betaine decreased slightly (by 1.3-fold)
and no change in transporter expression was observed during diapause maintenance
(Figure 6a, Table S6). The absolute concentration of betaine in hemolymph of SDA-larvae
(6 mmol.L−1, [22] ) was relatively low compared to that observed in plants under various
types of environmental stress: tens to hundreds of mmol.kg−1 [52]; or halophilic prokary-
otes: over 1 mol.kg−1 [53]. Nevertheless, genetic manipulations of Arabidopsis metabolism
show that accumulations of just millimolar concentrations of betaine significantly improve
plant tolerance to various stresses including cold and freezing [54,55].

Animals, plants, and bacteria synthesize betaine from choline via a two-step oxi-
dation pathway [56,58] and may further convert betaine to DMG (dimethylglycine) and
sarcosine (methylglycine) by activities of BHMT and DMGDH enzymes (see Figure 6 for
more details). Only some halophilic prokaryotes can synthesize betaine from glycine via
a three-step methylation, which requires specific activity of two methyltransferases (EC
2.1.1.156 and EC 2.1.1.161) [57]. Because the potential degradation of collagens would
produce a large excess of glycine (discussed above) and because cold acclimation is accom-
panied by concerted increases in sarcosine (methylglycine), dimethylglycine, and betaine
(trimethylglycine) concentrations (Figure 6b), we investigated whether a ‘halophile-like’
three-step methylation pathway contributes to betaine biosynthesis in C. costata larvae.
Using fluxomics LC-HRMS analysis of 13C-labelled compounds, we found no support for a
halophile pathway in C. costata i.e., conversion of 13C-glycine beyond sarcosine was not
possible in whole non-diapause (LD) larvae (Figure 7) or in isolated fat body and muscle
dissected from non-diapause and diapause (SDA) larvae (Figure S2). In contrast, we found
good support for the classical animal pathway; i.e., 13C-choline was converted not only to
betaine but also to DMG, sarcosine, and glycine (Figure 7 and Figure S2).
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Figure 6. Changes in metabolism of betaine during diapause maintenance and cold acclimation.
The maps show log2-fold changes in relative concentrations of metabolites (circles) and gene ex-
pressions (arrows) during diapause maintenance (a) and gradual cold acclimation (b) (see Table S6).
Other descriptions are as in Figure 2. TCA, tricarboxylic acid cycle; DMG, dimethylglycine; SAM,
S-adenosylmethionine; SAH, S-adenosylhomocysteine; (m)THF, (methyl-) tetrahydrofolate; (lyso)PC,
(lyso) phosphatidylcholine; GPC, glycerol 3-phosphocholine; BHMT (EC 2.1.1.5), betaine homocys-
teine methyltransferase; DMGDH (EC 1.5.8.4), DMG dehydrogenase; EC 2.1.1.156, sarcosine DMG
methyltransferase; EC 2.1.1.161, DMG betaine methyltransferase.

Figure 7. Fluxomics of potential metabolic precursors of betain in C. costata larvae. The map shows
the metabolic destiny of two 13C-labelled compounds (13C-glycine, brown circles; 1,2-13C2 choline
chloride, green circles) added to the diet of 15 d-old non-diapause (LD) larvae. The larvae were fed
on these diets for 6 h, 24 h, or 48 h (6 h is the smallest and lightest circle on the left of the triplet) after
which they were processed and analyzed using LC-HRMS metabolomic platform (for more detail,
see Materials and Methods). The results are expressed for each metabolite as a percentage of the peak
area of 13C-form (subtracting the native occurrence of 13C-carbon) relative to 12C-form (100% is the
0 h small circle in the legend). The size of circles is proportional to the percentage of the 13C-form.
For reference to enzymes (arrows), see Figure 6.
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The origin of choline itself, however, remains unclear. It was shown that insects cannot
synthesize choline and this must be supplied by the diet [68,69]. Nevertheless, the presence
of an ortholog of GPC phosphodiesterase gene in genomes of D. melanogaster (CG2818) or
C. costata (no. 9 in Figure 6, Table S6) suggests that flies can release choline from GPC,
similarly to its release in mammals [70].

The consistently increasing concentrations of GPC and GPE during diapause mainte-
nance and cold acclimation (Table S6) are likely related to the remodeling of membrane
phospholipids that accompanies the entry into diapause and cold acclimation of C. costata
larvae [71]. The increases in GPC an d GPE concentrations were consistent during transition
from SD3 to SDA but often <0.58 log2-fold (Table S6) during each step of acclimation, which
is why they do not appear in red symbols in the metabolic map (Figure 6b). GPC together
with sorbitol, betaine, and myo-inositol are believed to play a role as compatible osmolytes
in kidney medulla cells, counteracting the high interstitial concentrations of perturbing
Na+ ions and urea [70,72,73]. The GPC concentrations in the inner kidney medulla of
various mammals reach tens of mmol.kg−1 FM [74]. The absolute concentrations of GPC
(2.9 mmol.L−1) and GPE (4.0 mmol.L−1) in SDA-larval hemolymph [22] are much lower
than in mammalian kidney.

We have not measured the absolute concentrations of GPC, GPE and methylamines in
larval whole body in our earlier work [20]. Based on hemolymph and tissue concentrations,
however, we can estimate sum mass of accumulated GPC, GPE, betaine, and sarcosine
as representing approximately 10 moles per SDA larva (corresponding to approximately
2 µg). Though these absolute amounts are relatively low compared to proline or trehalose,
the role of GPC, GPE and methylamines in cryoprotective mixtures deserves further inves-
tigation in future. Collectively, our results suggest that GPC and GPE are metabolized and
accumulated in C. costata larvae in association with membrane phospholipid conversions.
Betaine is synthesized, as in other animals, from choline via a two-step oxidation pathway.

3. Materials and Methods
3.1. Insects

A colony of C. costata, Sapporo strain (Riihimaa and Kimura, 1988) was reared on
an artificial diet in MIR 154 incubators (Sanyo Electric, Osaka, Japan) as described previ-
ously [75,76]. Four phenotypic variants (SD3, SD6, SD11, and SDA, Table 1) of the 3rd instar
larvae were generated according to our earlier acclimation protocols [19,20] as described
in Figure 8.

3.2. Extraction of Metabolites and LC-HRMS Platform

Analyses were performed for whole C. costata larvae (pools of 5 larvae taken in
4 replicates). The larvae were weighed to obtain fresh mass, plunged into LN2, and
stored at −80 ◦C until analysis. Frozen samples were melted on ice and homogenized in
400 µL of extraction buffer: methanol:acetonitrile:deionized water mixture (2:2:1, v/v/v).
The methanol and acetonitrile (Optima™ LC/MS) were purchased from Fisher Scientific
(Pardubice, Czech Republic) and the deionized water was prepared using Direct Q 3UV
(Merck, Prague, Czech Republic). Internal standards, p-fluoro-DL-phenylalanine, methyl
α-D-glucopyranoside (both from Sigma-Aldrich, Saint Luis, MI, USA) were added to
the extraction buffer, both at a final concentration of 200 nmol.mL−1. Samples were
homogenized using a TissueLyser LT (Qiagen, Hilden, Germany) set to 50 Hz for 5 min
(with a rotor pre-chilled to −20 ◦C). Homogenization and centrifugation (at 20,000× g for
5 min at 4 ◦C) was repeated twice and the two supernatants were combined.
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Figure 8. Phenotypic/acclimation variants of Chymomyza costata. C. costata flies were reared from eggs
(time 0) to 3rd larval instars (time 3 weeks) at 18 ◦C under long-day photoperiod (LD; L16h:D8h, which
allows direct non-diapause development to pupa and adult; orange line) or short-day photoperiod
(SD; L12h:D12h, which induces diapause). Diapausing larvae then either remained at 18 ◦C and
SD to maintain diapause (SD3, SD6, SD11; red line) or were transferred to constant darkness and
progressively cold acclimated over five weeks (SDA; blue line). Note that non-diapause larvae (LD)
were not used in this study except as controls for BB-food intake experiments and for 13C-precursor
fluxomics. Filled circles indicate sample points for LC-HRMS metabolomics analyses and RNA
extraction for RT-qPCR analysis of relative gene expression.

In the whole-body extracts, we performed relative quantification analyses of 56 select
metabolites (listed in Table S1) using the LC-HRMS platform on the Q Exactive Plus high
resolution Orbitrap mass spectrometer coupled to a Dionex Ultimate 3000 liquid chro-
matograph and a Dionex open autosampler (all from ThermoFisher Scientific, Waltham,
MA, USA). Full scan LC-HRMS positive and negative ion mass spectra were recorded in
separate runs with a mass range of 70–1000 Da at 70,000 resolution (at mass m/z 200). The
LC-HRMS settings were: scan rate at ±3 Hz, 3 × 106 automatic gain control (AGC) target,
and maximum ion injection time (IT) 100 ms. Source ionization parameters were as follows:
(±) 3000 kV spray voltage, 350 ◦C capillary temperature, sheath gas at 60 au, aux gas at
20 au, spare gas at 1 au, probe temperature 350 ◦C, and S-Lens level at 60 au. For accurate
mass identification, we used lock masses of 622.0290 Da for the positive ion mode and
301.9981 Da for the negative ion mode. Chromatographic separation of metabolites was
carried out on the SeQuant ZIC-pHILIC (150 mm × 4.6 mm i.d., 5 µm, Merck, Darmstadt,
Germany), the mobile phase flow rate was 450 µL/min; the injection volume, 5 µL; column
temperature, 35 ◦C. The mobile phase: A = acetonitrile (ThermoFisher Scientific, Waltham,
MA, USA). B = 20 mM aqueous ammonium carbonate (pH = 9.2 adjusted by NH4OH,
Sigma-Aldrich); gradient: 0 min, 20% B; 20 min, 80% B; 20.1 min, 95% B; 23.3 min, 95% B;
23.4 min, 20% B; 30.0 min 20% B. Data were acquired and metabolites identified using an
in-house Metabolite Mapper platform equipped with an internal metabolite database in con-
junction with Xcalibur™ software (v2.1, ThermoFisher Scientific, Waltham, MA, USA). All
56 metabolites were quantified relatively using the areas under respective chromatographic
peaks normalized to fresh mass of larval samples.

3.3. Target Gene Sequences and Gene Expression Analysis

Sequences putatively coding for 95 target genes (listed in Table S2) involved in CP
metabolism, and five reference genes, were retrieved from a C. costata Illumina RNAseq
database (ArrayExpress accession E-MTAB-3620) published earlier [77]. Using the Geneious
R9.1.8 platform (Biomatters Ltd., Auckland, New Zealand), we used the BLASTn tool
to align the C. costata target gene sequences with those most similar to sequences of
D. melanogaster (Table S2). Next, we designed optimal oligonucleotide PCR primer pairs for
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all sequences using Geneious, observing uniform criteria such as small PCR product size
(70–200 bp), optimal size of primer (20 bp), optimal primer Tm (61 ◦C), optimal percentage
of GC (50%), etc. (all primer pairs given Table S2).

We used RT-qPCR to compare the relative gene expressions of four diapause larval
phenotypes (SD3, SD6, SD11, SDA) as described earlier [77]. LD larvae were excluded
from these comparisons, as substantial differences in their gene expression relative to SD
larvae [26] would obscure our ability to detect differences among SD variants. We extracted
total RNA from larvae (pools of 30 larvae were taken in 3 biological replicates) using RNA
Blue (Top-Bio, Vestec, Czech Republic), levelled to exactly 1 µg.µL−1 sterile water and
treated with DNase I (Invitrogen, ThermoFisher Sci., Prague, Czech Republic). We then
converted 5 µg of total RNA to cDNA using Superscript III (Invitrogen, Carlsbad, CA, USA).
The cDNA products (20 µL) were diluted 25 times with sterile water. We performed qPCR
with a CFX Connect PCR Cycler (BioRad, Philadelphia, PA, USA), using the oligonucleotide
primers shown in Table S3 [21]. Relative ratios of the target gene mRNA to the geometric
mean of the levels of five reference gene mRNAs were calculated as ddCT [26,78].

3.4. Supplementary Assays to Clarify the Metabolism of CPs
3.4.1. A Brilliant Blue Larval Food Intake Assay

A Brilliant Blue Larval Food Intake Assay [79] was used to assess whether larvae in
diapause ingest food. In a preliminary assay, we verified that 100% of non-diapause (LD)
larvae (n = 25) will intake larval diet mixed with 0.1% Brilliant Blue R dye (Sigma) (BB diet).
The LD larvae were transferred to BB diet for 1 h at constant 18 ◦C, after which they were
observed and photographed under a dissecting microscope. Food intake was apparent as
blue coloration of the gut. Next, the larvae of different diapause acclimation variants (SD6,
SDA7, and SDA9) were used for the BB assay as shown in Figure 3a.

3.4.2. Total Proteins

Whole C. costata larvae (pools of 5 larvae taken in 3 replicates) were homogenized
and total proteins were extracted twice in 400 µL of 50 mM Tris buffer, pH 7.2, contain-
ing 100 mM NaCl, 1% deoxycholate, 0.2% SDS, and 1% Nonidet. Total proteins were
determined by bicinchoninic acid assay (BCA) [80].

3.4.3. PAGE

The extracts of total proteins (see above) were levelled to equal protein concentration
of 1 mg.mL−1, mixed with 4× Loading buffer (LB) in a volume ratio 1:3, and heated at
95 ◦C for 10 min (the LB contained: 2 mL 1M Tris-HCl, pH 6.8; 4 mL 1M dithiothreitol;
0.8 g sodium dodecylsulphate (SDS); 40 mg bromphenol blue (BPB); and 3.2 mL glycerol
in 10 mL of distilled water). Aliquots were loaded (20 µL per lane) onto precast 12%
MiniProtean TGX gels (BioRad, Hercules, CA, USA) and separated by polyacrylamide gel
electrophoresis (PAGE) using Mini-Protean Tetra Cell apparatus (Biorad). The gels were run
in a classical Tris-Glycine-SDS buffer, pH 8.3 at a constant voltage of 150 V until BPB left the
gel. Protein bands were stained with Coommassie Brilliant Blue and band densities were
measured using Gel Analyzer function of ImageJ software (https://imagej.nih.gov/ij/;
accessed on 15 November 2021) (for more information, see Figure S1).

3.4.4. Total Collagen

Total collagen in larvae was estimated based on the release of 4-hydroxyproline upon
acidic hydrolysis of total larval proteins according to [81]. Whole C. costata larvae (pools of
5 larvae taken in 3 replicates) were homogenized in 100 µL of distilled water. Next, 100 µL
of concentrated HCl (12 M) was added to the homogenate in a glass tube caped tightly
with a Teflon insert. The sample was hydrolyzed at 120 ◦C for 3 h, after which 5 mg of
activated charcoal was added and the sample was centrifuged at 3000 g for 5 min. Then,
50 µL of supernatant was moved to a clean vial and dried at 60 ◦C under stream nitrogen
and stored at −80 ◦C until LC-HRMS analysis of 4-hydroxyproline was performed.

https://imagej.nih.gov/ij/
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3.4.5. Collagenase

Collagenase activity was assayed using the fluorimetric MMP Activity Assay Kit
(ab112147, Abcam, Cambridge, UK) according to the manufacturer’s manual. Whole
C. costata larvae (pools of 5 larvae taken in 3 replicates) were homogenized and total proteins
were extracted in 500 µL of 100 mM Tris buffer, pH 7.2. A 25 µL aliquot of supernatant
was used as a source of enzymatic activity. We measured the increase in fluorescence over
time (15 min at constant 25 ◦C) at 540/590 nm (Ex/Em) using the microplate reader Infinite
200Pro (Tecan) and normalized the slopes of linear regressions to mg of total protein (BCA
assay, see above) in the sample aliquot.

3.4.6. Glycogen

Whole C. costata larvae (pools of 5 larvae taken in 3 replicates) were homogenized
twice in 400 µL of a methanol:acetonitrile:water mixture. After centrifugation at 20,000× g
for 10 min at 4 ◦C, glycogen was extracted from the pellet in hot alkali [82] and quantified
by colorimetric assay with phenol and concentrated sulphuric acid [83].

3.4.7. Glycogen Phosphorylase

Whole C. costata larvae (pools of 10 larvae taken in 3 replicates) were homogenized
in 600 µL of 100 mM Tris-HCl buffer, pH 8.0 containing 15 mM mercaptoethanol and
1 mM EDTA. The activity of active (‘a’) and inactive forms (‘b’) of the enzyme were
measured in 70 µL aliquots of supernatant as described by [84] and normalized to mg of
total protein (BCA assay, see above) in the sample aliquot. The reaction mixture contained
50 mM potassium phosphate buffer, pH 6.8; 5 mg mL−1 glycogen (omitted from control),
5 µM glucose-1,6-diphosphate, 0.6 mM NADP, 2 mM 5′AMP, 15 mM MgCl2, 2 U mL−1

phosphoglucomutase, and 2 U mL−1 glucose 6-P dehydrogenase. The active form of the
enzyme was measured in the absence of 5′AMP.

3.4.8. Amylases and Maltases

Whole C. costata larvae (pools of 10 larvae taken in 3 replicates) were homogenized in
1 mL of Assay Buffer supplied in the Amylase Assay Kit (ab102523, Abcam, Cambridge,
UK) and 50 µL aliquots of supernatant were used as sources of enzymatic activity. We
measured the increase of absorbance over time (15 min at constant 25 ◦C) at 405 nm
using the microplate reader Infinite 200Pro (Tecan, Männedorf, Switzerland), converted
this to nmoles of released nitrophenol (using the calibration nitrophenol standards), and
normalized the results to mg of total protein (BCA assay, see above) in the sample aliquot.

3.4.9. Fluxomics of 13C-Labelled Metabolic Precursors of Betaine

We performed assays for (i) whole non-diapause (LD) larvae fed a standard diet
augmented with 13C-labelled metabolic precursors and (ii) tissues dissected from non-
diapause (LD) and diapause (SDA) larvae. The examination of the tissues allowed us
to rule out possible contribution of microbes to metabolic conversions in the larval diet
or inside the larval gut. The tissues were incubated in Schneider’s Drosophila medium
(Biosera, Nuaille, France) augmented with 13C-labelled metabolic precursors purchased
from Cambridge Isotope Laboratories (Tewksbury, MA, USA). The 13C-glycine had both
carbons labelled (item no. CLM-1017, m.w. 77.05) and the 13C-choline chloride had two
carbons labelled (1,2-13C2 choline chloride, item no. CLM-548, m.w. 141.61).

(i) Whole larvae: suitable doses of 13C-labelled precursors in larval diets (13C-glycine,
15 mg per g of diet; 13C-choline chloride, 20 mg per g of diet) were derived from preliminary
experiments showing that lower doses have no effect on the timing of larval development,
a ‘suitable’ dose causes a small (2–3 d) delay in timing of pupariation but no mortality,
and higher doses cause longer developmental delays and mortality. Third instar LD larvae
(15–16 d old) were transferred from a standard diet to a 13C-precursor-augmented diet
for 6, 24, or 48 h at constant 18 ◦C (20 larvae per vial with 1 g of diet). Next, larvae were
processed for LC-HRMS analysis.
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(ii) Dissected tissues: larval fat body and muscle tissues were dissected from a group
of 50 larvae (either LD- or SDA-larvae) into the wells of a 12-well tissue culture plate
(TRP, Switzerland) containing 650 µL of Schneider’s medium supplemented with 100 mM
of either 13C-glycine or 13C-choline chloride. After 3 h (LD) or 6 h (SDA) incubation at
22 ◦C, the tissues were rinsed in Schneider’s medium and processed for LC-HRMS analysis.
Results of LC-HRMS analyses were expressed for each target metabolite as a percentage
of the peak area of 13C-form (subtracting the native occurrence of 13C-carbon) relative to
the 12C-form.

4. Conclusions

Here we show that diapausing and cold-acclimated larvae of C. costata continue with
food ingestion and the diet serves as important source of direct assimilation of, and/or
metabolic conversions to, cryoprotective molecules. We show that even the complete
degradation of larval reserves of total protein, including collagens, would not suffice to
explain accumulation of proline. Moreover, total protein or collagen reserves are depleted
only moderately or not at all, respectively, during cold acclimation. We identified direct
assimilation of dietary amino acids proline and glutamate, plus metabolic conversion of
glutamine reserves, as two major sources of proline accumulation. In agreement with gen-
eral consensus on metabolic origin of sugar-based CPs, we show that trehalose is sourced
mainly from internal glycogen depots that are filled during early diapause and partially
depleted during subsequent cold acclimation. Lastly, we suggest that the accumulations of
GPC and GPE result from cold-acclimation-linked remodeling of phospholipids. Choline,
either released from GPC or assimilated from diet, serves as a source for accumulation of
methylamines betaine and sarcosine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo12020163/s1, Supplementary figures.pdf: Figure S1: PAGE, Figure S2: Fluxomics of
13C-labelled metabolic precursors of betain. Supplementary table. xlsx: Table S1: List of metabolites
analyzed by LC-HRMS and mapped on metabolic pathways, Table S2: Sequences quantified by
RT-qPCR and mapped on metabolic pathways, Table S3: Relative quantification of metabolites and
transcripts for proline metabolism, Table S4: Results of absolute quantitation of select compounds in
larval diet, Table S5: Relative quantification of metabolites and transcripts for trehalose metabolism,
Table S6: Relative quantification of metabolites and transcripts for betaine metabolism.
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