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Abstract: Over the past decade, the use of probiotics as feed supplements in animal production
has increased considerably due to the ban on antibiotic growth promoters in livestock. This review
provides an overview of the current situation, limitation, and prospects for probiotic formulations
applied to livestock. Recently, the use of probiotics in livestock has been suggested to significantly
improve their health, immunity, growth performance, nutritional digestibility, and intestinal mi-
crobial balance. Furthermore, it was reported that the use of probiotics in animals was helpful in
equilibrating their beneficial microbial population and microbial turnover via stimulating the host
immune response through specific secretions and competitive exclusion of potentially pathogenic
bacteria in the digestive tract. Recently, there has been great interest in the understanding of probiotics
targeted diet and its ability to compete with harmful microbes and acquire their niches. Therefore,
the present review explores the most commonly used probiotic formulations in livestock feed and
their effect on animal health. In summary, this article provides an in-depth knowledge about the
formulation of probiotics as a step toward a better alternative to antibiotic healthy growth strategies.

Keywords: antimicrobial; livestock; healthy growth strategy; probiotics; immunoregulatory effects
of probiotics

1. Introduction

Antimicrobial resistance represents a global health problem that contributes to tens
of thousands of deaths per year. Furthermore, the global demand for meat and dairy
consumption is increasing at a rapid and unprecedented rate [1]. To fulfill this demand,
many countries are shifting to intensive livestock production systems that use antimicrobial
(AM) drugs to keep animals healthy and increase their development and productivity [2,3].
For example, Van Boeckel et al. (2015) found that between 2010 and 2030, the global
consumption of AM agent for livestock industry increased by 67%, while on the other
hand, the increase in AM agent consumption in the BRICS countries (Brazil, Russia, In-
dia, China, South Africa) will be 67%. Furthermore, Denmark was the foremost nation
to report authorized antimicrobial agent manufacturing/sales data in 1996, under the
name of Danish Integrated Additive Manufacturing Resistance Monitoring and Research
Program (DANMAP). In 2011, the European Medicines Agency Surveillance of Veterinary
Consumption group (ESVAC) published the first report on veterinary AM sales in eight
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countries (Czech Republic, Denmark, Finland, France, Netherlands, Norway, Sweden, UK)
since 2005. The latest 2017 report provides an overview of AM sales across all EU countries.
Furthermore, North American countries and Canada began collecting sales data for AM
resistance monitoring in 2008 for the Canadian Comprehensive Program (CIPARS), which
reports AM resistance and AM use. In Asia, Japan was the first country to launch the
Japan Veterinary AM Monitoring System (JVARM) to report AM agent use [4]. In addition,
current global trends in the use of AM agents in livestock animal feeds were represented
in Figure 1. Therefore, the establishment of AM-free feeding system by using probiotics
has been required for secure and healthy livestock production. The most commonly used
probiotics in livestock are the strains of lactic acid bacteria (LAB) and Bifidobacterium [5].
In addition, gastrointestinal tract (GI) infections in livestock are considered a major global
problem, with a negative economic impact on livestock farmers [6]. In this regard, the
likelihood of using feed supplements to attain a healthier animal, welfare, and yield by
manipulating the gut microbiota has received considerable attention over the past 30 years.
Antibiotics have been applied widely to prevent and treat GI infection in livestock; however,
the random uses of antibiotics in livestock are responsible for the development of antibiotic
resistance, which has a long-lasting effect on the human body, as well as the destruction of
gut microflora [7–9]. Probiotics might be used as a potential alternative therapy to treat
gastrointestinal tract disorders and to enhance the endogenous immune function of the
host (Figure 1).
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Figure 1. Role of probiotics in livestock healthy growth strategy. Global consumption of AM (AM)
in livestock production was estimated in 2010 and is projected to rise by 67%, by 2030. Global
increase (67%) in AM consumption is due to the growing number of animals raised for meat and milk
production. Probiotics used as a safer alternative to conventional antibiotic drug therapy.

Numerous probiotics might be used to improve the performance of ruminant and pig
(Tables 1–3) animals. Numerous studies have demonstrated that probiotics can exert an
AM effect against pathogens and improve animal health, as well as productivity [10,11].
Earlier, our group established a porcine intestinal epithelial (PIE) cell line and demonstrated
that PIE cells are a useful in vitro tool for the selection of immunomodulatory LAB (im-
munobiotic LAB). Furthermore, our group has demonstrated that the in vitro and in vivo
immunobiotic LAB is a good alternative to improve resistance against GI pathogens in the
porcine host. Additionally, our laboratory has shown that the probiotic Lactobacillus with
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immunoregulatory functions can beneficially modulate the immune response in the gut
through controlling the functions of PIE cells (Tables 2 and 3) [10–15]. This contrasts with
previous studies that recommend the modulation of gut microbiota and piglet immunity
via appropriate probiotic strains, which will lead to better growth performance. Therefore,
it is necessary to establish a non-toxic feeding system and a food safety system to ensure
the safe and healthy production of animal husbandry. A recent study suggested that the
probiotic-supplemented diet significantly improved the health status, growth performance,
and intestinal morphology in pigs [16]. Similarly, it was suggested that the multi-species
probiotic diet has excellent potential to endorse the growth performance and healthy status
of pigs via modulation of gut microbiota [17].

Therefore, this review brings forward a summary of recent scientific literature, as well
as its implications in terms of animal health and productivity of the main species of farm
animals, such as pigs, cattle, goats, and sheep. This review also explores the mechanism
of actions of immunomodulation by probiotic LAB in intestinal epithelial cells (IECs) in
in vitro animal model.
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Table 1. Summary of current pig trials (in vivo) measuring the effects of probiotics on health and productivity.

Genus Species/Strains Age Group
Probiotic Effects in Respect to

Ref.Weight Gain/Feed
Intake Feed Efficiency Health Immunity Others

Bacillus/Clostridium B. subtilis and C. butyricum Growing-finishing pigs (GFP) ↑ ↑ ↑ - ↑Meat qua [18]

Lactobacillus/Enterococcus L. plantarum ATCC 4336, L. fermentum
DSM 20016 and E. faecium ATCC 19434 Weaned piglets (WP) ↑ ↑ - - - [19]

Bacillus/Saccharomyces B. subtilis and S. boulardi GFP ↑ - ↓ E. coli [20]

Lactobacillus L. plantarum ZJ316 GFP ↑ - ↑ ↑ ↑Meat qua [21]

Bifidobacterium B. longum (AH1206) Neonatal piglets ↔ ↔ ↑ ↑ ↑Mucosal immune [22]

Lactobacillus L. fermentum Suckling/nursery piglets ↑ ↑ ↑ ↑ ↓ Diarrhea [23]

Lactobacillus L. reuteri, B. subtillis and B. licheniformis WP ↑ - ↑ ↑ ↓ Salmonella and E. coli [24]

Lactobacillus L.jensenii TL2937 (LjTL2937) GFP ↑ ↑ ↑ ↑ ↑Meat qua [11]

Bacillus B. toyonensis WP ↑ ↑ ↑ - ↓ Enteric pathogens [25]

Bacillus/Clostridium B. coagulans, B.licheniformis, B. subtilis and
C. butyricum WP ↑ ↓ ↑ ↑ ↓ Fecal noxious gas emission [26]

Bifidobacterium B. longum WP ↑ ↑ ↑ ↑ ↓ Intestinal colonization by pathogens [27]

Lactobacillus/Bifidobacterium L. spp., B. spp. GFP ↑ ↑ ↑ - ↓ Post-weaning mortality [28]

Lactobacillus L. salivarius FFIG71 L. salivarius FFIG131 GFP - - ↑ ↑ - [29]

Bacillus B. subtilis PB6 WP ↑ ↔ ↑ ↑ ↓ Fecal ammonia and diarrhea [30]

Lactiplantibacillus L. plantarum N14 GFP ↑ ↑ - ↑ ↑Meat qua [31]

Lactobacillus delbrueckii subsp. Delbrueckii TUA4408L WP ↑ ↑ ↑ ↑ ↑Meat qua [32]

Lactobacillus L. reuteri 1 (LR1) GFP ↑ ↑ - - ↑Meat qua [33]

Lactobacillus L. plantarum BG0001 WP ↑ ↑ - - ↓ Fecal E. coli [34]

Abbreviations: ↑, increased; ↓, decreased;↔, no significant difference between groups; -, not studied; qua, quality.
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Table 2. Summary of current ruminant trials (in vivo) measuring the effects of probiotics on health and production.

Genus Species/Strains Source

Probiotic Effects in Respect to

Ref.Weight Gain/Feed
Intake Feed Efficiency Health Immunity Others

- Multi-species probiotic Cattle ↑ ↔ ↑ - [35]

Enterococcus E. faecium M74 Calf ↑ - ↑ ↑ - [36]

Bacillus/Saccharomyces B. cereus S. boulardii Sheep ↑ [37]

Kluyveromyces/Saccharomyces K. marximanus NRRL3234, S. cerevisiae
NCDC42, S. uvarum ATCC9080 Sheep ↑ ↑ - - - [38]

- Multi-species probiotic Calf ↔ ↔ ↔ - - [35]

- Multi-species probiotic Cattle ↑ ↔ - - - [39]

Saccharomyces S. cerevisiae or combination of S. cerevisiae
and L. sporogenes Sheep ↔ - - - - [40]

- Multi-species probiotic LAB Calves ↑ ↑ - ↓Weaning time [39]

Lactobacillus L.animalis SB310, L.paracasei subsp. Paracasei
SB137 and B.coagulans SB117 Calves ↑ ↑ ↑ - Improved gut microbiota [41]

Faecalibacterium F. prausnitzii Calves ↑ ↑ - ↑ - [42]

Lactobacillus L. plantarum Calves ↑ ↑ ↑ ↑ ↓Weaning stress [43]

Pediococcus P. pentosaceus Sheep ↑ ↑ ↑ - ↑ Digestibility [44]

Lactobacillus L. acidophilus, S. cerevisiae, E. faecium, A. oryza,
and B. subtilis Cattle - - ↑ ↑ - [45]

Lactobacillus L. acidophilus Buffalo calves ↑ ↑ - - ↓ Fecal coliform [46]

Lactobacillus
L. murinus CRL1695, L. mucosae CRL1696, L.

johnsonii CRL1693,
L. salivarius CRL1702

Calves ↑ ↑ - - ↓ Diarrhea and calf mortality [47]

Ruminococcus R. flavefaciens Sheep ↑ ↑ - - - [48]

Lactobacillus L. sporogenes Calves ↑ ↑ - - - [49]

Abbreviations: ↑, increased; ↓, decreased;↔, no significant difference between groups; -, not assessed.
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Table 3. Summary of current trials in cell line as livestock animal model (in vitro) measuring the immunoregulatory effects of probiotics.

Genus Species/Strains Source Expt. Mode Time

Probiotic Effects in Respect to

Ref.Anti-
Inflammation

Pro-
Inflammation

Immune-
Health Others

Lactobacillus L. acidophilus (LA) or L. rhamnosus GG (LGG) Dairy products IPEC-J2 24 h ↓ ↑ ↑ ↓ RVs titers [50]

Lactobacillus L. casei MEP221106 Korean food PIE 48 h ↓ ↑ ↑ ↑ AV immune [51]

Bifidobacterium B. breve MCC-117 Human gut PIE 48 h ↓ ↑ ↑ ↓ Intestinal inflammation [12]

Lactobacillus L. casei OLL2768 Dairy products BIE 48 h ↓ ↑ ↑ ↑ APP [52]

Lactobacillus L. delbrueckii Yogurt Caco-2 Overnight - - ↑ ↓ E. coli infection [53]

Bifidobacterium B. longum BB536 and B. breve M-16V Infant PIE 48 h ↑ ↓ ↑ ↑ APP [10]

Lactobacillus L. jensenii TL2937 Human feces PIE 48 h ↑ ↓ ↑ ↑ APP [11,54]

Bifidobacterium B. thermophilum and B. infantis/B. brevis Feed PIE 48 h ↓ ↑ ↑ - [14,55]

Lactobacillus L. rhamnosus CRL1506 Goat milk PIE 48 h ↓ ↑ ↑ ↑ AV [56]

Lactobacillus/Bifidobacterium L. ruminis SPM0211, B. longum SPM1205 and
SPM1206 Human Caco-2 ↓ ↑ ↑ ↑ AV immune [57]

Lactobacillus L. salivarius FFIG53 Pig intestine PIE 48 h ↑ ↓ ↑ ↑ APP [29]

Lactobacillus L. plantarum N14 and L. delbrueckii
TUA4408L Fermented pickle PIE 48 h ↑ ↓ ↑ - [58]

Bifidobacterium B. infantis MCC12 or B. breve MCC1274 - BIE 48 h ↓ ↑ ↑ ↓ RVs titers [15]

Lactobacillus L. delbrueckii OLL1073R-1 Yogurt PIE ↑ ↓ ↑ ↑ AV [59]

Bifidobacterium B. longum BB536 and B. breve M-16V Human feces PIE 120 h ↑ ↓ ↑ - [60]

Lactobacillus L. plantarum CRL1506 Goat milk PIE 72 h ↑ ↓ ↑ - [61]

Lactobacillus Lactobacillus spp. Manure Caco-2 cells 7–10 D - - - ↓ Infections [62]

Abbreviations: ↑, increased; ↓, decreased; -, not assessed/provided; APP, anti-pathogenic potential; AV, antiviral; RVs, rotavirus.
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2. Global Trends of Antimicrobial Uses in Livestock

The growing global demand for animal protein consumption is putting increasing
pressure on bacteria to develop AM resistance. It was recently reported that the average
annual global consumption per kilogram of animal AM agents utilized was within the
range of 45 mg and 172 mg in cattle and swine, respectively [63]. Additionally, it has
been estimated that the global AM consumption will increase by 67% (from 63,151 tons to
105,596 tons) in between 2010 and 2030, respectively (Figure 1). In between 2010 and 2030,
the rapidly increasing trends for consumption of livestock have put pressure on shifting
the production practices in developing nations, where extensive agribusiness systems
will be replaced by extensive agricultural procedures [4]. For BRICS countries, the AM
consumption trends will increase by 99%, which is higher than the projected citizen income
growth in these nations. In India, for example, the consumption proportion of AM agents
(30 kg per square kilometer) is likely to upsurge to 312% by 2030. Strangely, almost 70%
of AM agents, considered medically important for human health by the FDA, were used
in livestock in US, ultimately threatening human health and animal welfare [64]. Hence,
many countries, such as the EU and Japan, have banned the use of AM agents as growth
promoters. In addition, other countries, including China and the US, are planning to ban
the addition of antibiotics to animal feed, and research will focus on growth promoters that
do not affect human health [65]. A potential alternative solution to these problems is the
addition of naturally derived dietary additives, such as probiotics, that have enhancing
effects on livestock health and productivity (Tables 1–3). Recent research with probiotic LAB
in livestock suggested that the LAB might be used as an alternative strategy to antibiotic
growth promoters [11,18,32,59–62].

3. Application of Probiotics in In Vivo Studies for Pig Production

The microorganisms most commonly used as probiotics in pigs are presented in Ta-
bles 1 and 2. The genus Lactobacillus might be considered one of the most prominent
components of the host gut. Furthermore, to date, no such report on safety precautions
linked to the use of Lactobacillus in swine had been compiled. In growing-finishing pigs, the
supplementation of probiotics has shown beneficial effects on the intake of feed alongside
animal average weight. Furthermore, the addition of probiotics significantly reduced the
activity of blood complement, while no alterations have been noted in antibody levels,
macrophages, and leukocytes activities [18,19]. On the other hand, the probiotic treat-
ment might be helpful in enhancing the growth performance, quality, and productivity in
livestock [11,20,21] (Table 3).

Oral supplementation of probiotics to neonates alters early mucosa-associated colo-
nization patterns in preterm piglets and, hence, reducing the mucosal atrophy and gut
dysfunction, including diarrhea, which is one of the most serious gastrointestinal disorders
disturbing preterm piglet neonates [22,23]. Furthermore, piglets are very susceptible to
colonization of the gut by pathogenic microorganisms that cause growth retardation and di-
arrhea, starting from birth to post-weaning. Therefore, probiotics are suggested throughout
this time period, and many studies have shown the effectiveness of such products [11]. It
was suggested that the probiotic (L. reuteri, B. subtillis, and B. Licheniformis) supplementation
of pigs after weaning enhances the performance of animals [24]. It was concluded that
the probiotic supplementation was helpful in promoting a healthy intestine by improving
the digestibility of the nutrient, reducing the fecal Salmonella, as well as E. coli contents,
improving serum IgG level and probably also resistance to local infection. It was also
reported that dietary supplementation with 0.1% (1.5× 109 CFU/g) probiotics (B. coagulans,
B. licheniformis, B. subtilis and C. butyricum) can improve growth performance, nutrient
digestibility, blood profiles, and it can modulate the concentrations of Lactobacillus and E.
coli and decrease fecal noxious gas emission in weaning pigs [66].

Kantas et al. (2015) reported that B. toyonensis improved health, as well as growth
performance, and could protect against enteric pathogens in post-weaning piglets [25].
Multi-strain probiotics at 0.1% concentration might be used as an alternative to a growth-
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promoting strategy [26]. The probiotic LAB demonstrated excellent ability in decreasing
the pathogen microbe intestinal colonization, as well as exciting local immune response
and enhancing intestinal architecture [27,67] in piglets. On the other hand, the origin of
probiotic strains, the dose of probiotics in different husbandry enhances, piglet age, and
feed system might present contrasting outcomes with the same probiotic strains [68]. The
results of Masumizu et al. (2019) suggest that L. salivarius FFIG131 and L. salivarius FFIG71
might be used as immunobiotic candidates for the development of new immunological
feed in the future, which in turn enhance pay to enlightening immune health status in the
porcine host [29]. B. subtilis PB6 feeding in weaning pigs increased feed efficiency and
boosted immunity, along with reducing fecal ammonia and diarrhea [30].

The in vivo study by Islam et al. (2021) revealed that immunobiotic feeding resulted
in significant positive health benefits when using rakkyo pickled juice fermented with
L. plantarum N14 in pigs, thus increasing feed intake, efficiency, and carcass quality [31]. In
addition, another study by Suda et al. (2021) suggested that the immunobiotic L. delbrueckii
subsp. Delbrueckii TUA4408L okara feed significantly improved growth performance
and meat quality in piglets [32]. Tian et al. (2021) investigated the influence of diet
supplemented with L. reuteri 1 (LR1) or antibiotics (olaquindox and aureomycin) on the
longissimus thoracis (LT) and concluded that the probiotic might enhance health condition
and carcass quality of treated pigs as compared with the control group [33]. Diet supple-
mentation with probiotics B. subtilis PB6 enhanced growth performance and immunity,
alongside lowering ammonia emissions and diarrhea incidence [30]. Furthermore, the
L. plantarum supplemented diet significantly enhanced growth performance, increased
Lactobacillus fecal contents, and decreased E. coli counts in weaning pigs [34,69].

4. Application of Probiotics in In Vivo Studies for Ruminant Production

Probiotics for mature ruminant animals have primarily been chosen for targeting the
rumen compartment, which would be the primary site of feed digestion [70]. A wide variety
of strictly anaerobic bacteria, ciliate protozoa, anaerobic fungi, and archaea constitute the
rumen microbial ecosystem, which is responsible for the breakdown and fermentation of
70–75% of food components [71,72]. Live yeast (Saccharomyces) formulations are by far the
most commonly marketed products for ruminants [73,74]. Live yeasts have been proven to
boost performance in dairy ruminants by improving their immunity [75].

Daily live yeast supplementation has also been shown to increase growth metrics (such
as average daily weight gain, final weight, and food intake) in beef cattle [39,76]. Most of
these effects have been linked to increasing overall culturable ruminal microbial population
concentration, which leads to an enhanced activity of cellulolytic microorganism growth
and increased fiber digestibility. Numerous previous studies indicated that probiotics in
ruminants increased their performance [77,78], although some studies [79] found little or
no changes. Furthermore, a recent study suggested that the symbiotic supplementation of
a yeast-derived prebiotic and a B. subtilis significantly improved the health conditions and
overall productivity during feedlot receiving period [80]. Additionally, it was demonstrated
that the supplementation of probiotic yeast products improved the inflammatory response
of cattle on these diets. In conclusion, overall benefits of Saccharomyces-based products
on animal performance may be linked to improved cattle health and increased nutrient
digestibility [81].

The probiotic was given to calves throughout their first month of life, and it enhanced
their gut microbiota and growth performance, as well as some biometric parameters [41].
Hence, a high quantity of compound probiotics is suggested to progress rumen devel-
opment and health status of Holstein calves [82]. It has been reported that probiotics
containing Bacillus spores and nucleotides had no synergistic impact on calves’ develop-
ment, welfare, or fecal bacteria; however, nucleotide supplementation reduces Lactobacillus
feces levels [83].

Lambs that received probiotics in a post-weaning nourishment seemed to exhibit a
better performance in terms of feed conversion ratio, growth performance, and nutrient



Microorganisms 2022, 10, 388 9 of 20

digestibility [44]. Probiotics administered orally to dairy cows exhibited a systemic effect on
gene expression, including genes involved in immunity and homeostasis [45]. Zhang et al.
(2016) aimed to develop a diet enriched with L. plantarum and B. subtilis on Holstein
calves, and the developed diet with L. plantarum improved growth performance, nutrient
digestibility, and relieved weaning stress in calves [43]. In the case of buffalo calves, the
supplementation with L. acidophilus increased body weight gain and feed efficiency [46,84].
The study suggests that the fermented milk containing LAB can be beneficial for young
calves because of its positive impacts on health and growth [46,84]. Ruminococcus flavefaciens
supplementation in feed increased production performance in sheep [48]. It has also been
stated by Izadi et al. (2020) that the probiotic B. coagulans can be used as an improving
factor to increase the quality of milk and of dairy foodstuffs [79,85].

5. Application of Probiotics Using Cell Lines as Livestock Animal Model (In
Vitro Study)

The in vivo studies indicate that probiotics have been successfully used to improve
growth performance, nutrient utilization, intestinal microbiota, and gut health of the main
species of farm animals, such as pigs, cattle, goats and sheep (Tables 1 and 2). Some
functional feeds that contain probiotics are thought to improve intestinal immunity via
inspiration of epithelial cells, as well as immunocompetent cells, through pattern recog-
nition receptor and induction of cytokine in the GIT [86,87]. However, in the field of feed
immunology, due to the unavailability of an adequate intestinal immunoassay system for
farm animals, much about the underlying mechanisms of intestinal immunity in cattle
remains unknown. As a result, developing a probiotics/immunobiotic evaluation system
for probiotic supplementation of functional food to a farm animal model is critical. In these
circumstances, our group developed porcine and bovine intestinal epitheliocyte (PIE and
BIE) cell lines for the evaluation of probiotics/immunobiotics and immunogenicity using
anti-inflammatory responses in PIE cell monolayers and a co-culture system with porcine
Peyer’s patch immune cells as a Peyer’s patch culture model (Figure 2) [12,54,88–90].
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Our work demonstrated that the intestinal epitheliocytes (PIE, BIE) are useful in vitro
model systems for the assessment of relations between pathogens and porcine/bovine
intestinal epithelial cells (IECs), for the selection of probiotic/immunobiotic microorgan-
isms, and for the evaluation of underlying immunomodulatory mechanisms by probiotic
LAB in IECs. Currently, our study and a few other in vitro studies focused on describ-
ing the “health-improving” activities of probiotics in farm animals, along with effects of
immune-health promoting factor (Table 3).

Treatment with L. acidophilus (LA) before rotavirus infection boosted PRV replication
and IL-6 response to PRV infection, indicating that LA had an adjuvant effect. Follow-
ing rotavirus infection, LGG therapy reduced the IL-6 response, indicating LGG’s anti-
inflammatory properties in an IPEC-J2 cell line [50]. It was reported that L. casei MEP221106
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significantly regulate the antiviral immune response in PIE cells via TLR3-mediated im-
mune response [90].

Fujie et al. (2011) found that in a PIE cell line, B. breve MCC-117 has the ability to
effectively control the inflammatory response produced by enterotoxigenic E. coli (ETEC).
They also found that MCC-117 has excellent immunoregulatory activity, which was linked
to strain ability to alter PIE and the interaction of immunological cells, resulting in the
stimulation of regulatory T cells and prevention of ETEC-induced intestinal inflamma-
tion [12]. On the other hand, another study indicated that L. jensenii TL2937 significantly
reduced pro-inflammatory cytokines and chemokine expression caused by ETEC, leading
to prevention of inflammatory intestinal disorders [54]. Subsequently, Tomosada et al.
(2013) showed that B. longum BB536 and B. breve M-16V strains reduced the expression of
intereleukin-8, interleukin-6, and MCP-1 in PIE cells treated with heat-killed ETEC [10].

Similarly, Takanashi et al. (2013) showed that L. casei OLL2768 reduced inflammation
in PIE cells by reducing the production of pro-inflammatory cytokines [52]. Furthermore,
Abedi et al. (2013) demonstrated that L. delbrueckii exhibited excellent ability to inhibit
E. coli infection in the gut by using Caco-2 cells [51]. Furthermore, L. jensenii TL2937 was
reported to be able to stimulate the production of immunoregulatory factors, such as TGF-
in EICs, and functionally modulate IECs to improve infection resistance and minimize
non-protective inflammation [11]. Our study suggests that feed supplemented with B.
thermophilum stimulates immune cells to exert immunoregulation, which indicates that
this feed is likely to contribute to enhancing the health of piglets without using AM feed
materials [55].

Kang et al. (2015) indicated that L. ruminis SPM0211, B. Longum SPM1205, and
B. longum 1206 are proficient in preventing the in vitro and in vivo rotavirus replication.
Additionally, it was suggested that the antiviral effects of probiotics are to be expected ow-
ing to their modulation of the immune response via regulation of type I IFNs [57]. Another
study reported the ability of LAB to beneficially modulate the inflammatory response in
PIE cells after being challenged with pathogenic bacteria ETEC and virus (poly (I:C)) and
to modulate gut immunity in the porcine host [29]. Another recent study demonstrated
that the L. delbruecki TUA4408L attenuate ETEC-induced inflammatory response in PIE via
TLR-2 and ETEC-induced inflammatory cytokines were downregulated when PIE cells
were pre-stimulated with TUA4408L [91]. A recent study by Kobayashi et al. (2017) proved
that the B. infantis MCC12 or B. breve MCC1274 have the ability to lower RV titers in BIE cells
and differentially control the innate immune response. Furthermore, it was indicated that
the bacterial strains enhanced the antiviral factor production, such as IFN-β in RV-infected
BIE cells. In addition, recently we reported that L. rhamnosus CRL1505 and L. plantarum
CRL1506 are immunobiotic strains with the ability to enhance the fortification against viral
intestinal infections, as demonstrated in PIE [15].

The PIE cell stimulation with poly (I:C) enhanced the production of IFN-α and IFN-
β, chemokines, adhesion molecules, cytokines, and prostaglandin biosynthesis genes.
CRL1505 and CRL1506 modulate the innate antiviral immune response in PIE cells and
protect against viral infection and inflammatory damage in vivo [92]. Another recent study
by Kanmani et al. (2018) demonstrated that L. delbrueckii OLL1073R-1 modulate the innate
antiviral immune response in porcine intestinal epithelial cells [59]. A recent study by
Iida et al. (2019) demonstrated that paraimmunobiotic Bifidobacteria (B. longum BB536 and
B. breve M-16V) can be used as a substitute to enhance intestinal infection resistance or as
therapeutic gears for decreasing the inflammation [60]. Mizuno et al. (2020) demonstrated
that L. plantarum CRL1506 significantly enhanced the intestinal innate antiviral immune
response [61]. Śliżewska et al. (2021) demonstrated that new Lactobacillus strains might
be helpful in preventing intestinal infections by reducing the colonization of pathogenic
bacteria [62]. As a result, the use of probiotic Lactobacillus strains may improve the safety
and quality of animal-derived meat and food products. Therefore, previous studies suggest
that the use of immunobiotics/probiotics has good potential for immunomodulation to
prevent and improve different health disorders.
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Limitation for the Use of Probiotics in In Vitro and In Vivo Research Model

It was shown that the in vitro studies have a variety of limitations that must be consid-
ered. Results obtained with different IECs, for example, must be taken with caution because
not all cell lines have the same properties. It is also worth noting that culture circumstances
can affect how some molecular traits are expressed. The molecular explanation of probiotic
action in vivo will aid in the identification of authentic probiotics and in the selection of
the most appropriate ones for disease prevention and/or treatment. Nevertheless, further
studies are also required 1© to determine whether the probiotics used in animal nutrition
enter the human food chain and how they affect human health. 2© Animal womb is in an
aseptic state, but after birth, young animals are suddenly exposed to bacteria and virus.
To prevent infection from pathogenic bacteria and viruses, young livestock develops im-
munogenic potential by acquiring not only immunoglobulin and cytokine from colostrum
but also indigenous bacteria from the mother’s vagina and milk. Among them, if useful
immunobiotics for raising animals without AM agents can be found, they will be safe for
animals as well as humans. Therefore, more investigation will be required in order to find
Lactobacillus in the form of immunobiotics, pursue the possibility of using them as AM
substitutes, and try to construct immunobiotics library to establish the translocation route
from mother to child, which will represent the translocation route of indigenous bacteria
from mother to child. Further studies are also required 3© to elucidate the mechanisms
of action of probiotic LAB strains—in particular those related to the immunoregulating
ability of LAB strains through DCs activation via pattern recognition receptors (co-culture
experiments with probiotics, DCs, and IECs as well as in 3D models); 4© to search for
probiotics that can be used as drug alternatives in the prevention or treatment of various
infectious diseases using in vitro and in vivo models; 5© to search for new techniques, such
as genome editing and AI/IoT system, for the development of a healthy growth system
with immunobiotics.

6. Application of Probiotics in Livestock Production

In recent decades, some studies were conducted to illustrate the new scope in the field
of probiotics and to discover the potential probiotic microbes. According to Sun et al., (2021)
multi-species probiotics consisting of L. acidophilus, L. casei, B. thermophilum, and E. faecium
were successfully used to reduce the diarrhea caused by enterotoxigenic E. coli (ETEC) F18+

in newly weaned pig [93]. In addition, multi-species probiotics were helpful in enhancing
growth performance through a reduction in intestinal inflammation, oxidative stress, and
morphological damages. Sobrino et al. (2021) attempted to study AM substitutes in pig
production. They used Ligilactobacillus salivarius strain retrieved from sow’s milk and fed it
to pregnant sows and piglets. The results suggested that there was a notable reduction in
the presence of antibiotic-resistant Lactobacillus, which became apparent in the treatment
group [94]. In recent studies, it was suggested that Prevotella exerted positive consequences
in pig production by enhancing growth performance and immune response [95–98]. The
Lactobacillus, Escherichia, Shigella, and Bacteroides dominate the small intestine microbiota,
while on the other hand, the Prevotella dominates the large intestinal microbiota during the
newborn stage. Furthermore, the Prevotella dominates the pig’s small and large intestines
after weaning [99]. Additionally, it was reported that the non-diarrheic piglets were found
to have a considerably higher abundance of intestinal Prevotella than diarrheic piglets.
Prevotellacea UCG-003 was the key bacterium in the non-diarrheic microbiota of piglets,
according to co-correlation network analysis [98]. Ngo et al. (2021) used a new probiotic
(B. amyloliquefaciens H57) in high concentrate feed pellets that reduces volatile fatty acid
production and prevents flavor in pellet feed. That facilitates higher feed intake in ruminant
animals [28]. In recent studies on anaerobic fungi, it was demonstrated that it contributes
essentially to ruminal fiber utilization by degrading plant cell walls in two ways, i.e.,
enzymatically and mechanically [100,101]. Remarkably, ongoing exploration showed the
affinity of fungal CAZymes for stubborn fiber, which might clarify the specific use of
anaerobic fungi when lower quality forages were fed to ruminants. Therefore, this can
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also be used as a potential probiotic in ruminant nutrition [102]. Studies on the utilization
of B. subtilis as a spore-shaping probiotic bacterium in livestock nutrition have shown no
unsafe impacts and have exhibited the viability of its utilization as a probiotic, mostly
because of its demonstrated AM, mitigating cell reinforcement and exhibiting enzymatic,
and immunomodulatory action [103]. A study by Cai et al. (2021) enumerated that
S. cerevisiae and C. butyricum and their blend enhanced rumen conditions by expanding the
pH and diminishing oxidation and upgraded rumen maturation capacities by expanding
absorbability of supplements and further developing VFA production; from that point on,
further enhancements in production growth of heat-stressed goats were observed [104].
The Debaryomyces hansenii is also gaining attraction as a new potential probiotic for both
terrestrial and aquatic animals. The oral delivery of D. Hansenii has been linked to probiotic
features, such as immunostimulatory effects, gut microbiota regulation, increased cell
proliferation, differentiation, and improved digestive function. Its bioactive molecules have
been identified and linked to its immunomodulatory effect, including cell wall components
and polyamines [105]. Therefore, there are many potential probiotic microbes that are still
to be discovered, which might play an evolutionary role in livestock production.

7. Modes of Action of Livestock Probiotics

There are numerous proposed modes of action of livestock probiotics [106–114]. How-
ever, the major mechanisms of action proposed for probiotics are considered in the following
segments (summarized in Figure 3).

1©Modification of the microbial population of the GIT: Probiotics might boost the popula-
tion of beneficial microbes, such as Lactobacillus and Bifidobacterium, which subsequently
restrict the growth of harmful bacteria by creating inhibitory chemicals and by competing
for binding sites [115,116]. 2© Adhesion to the GIT wall to prevent colonization by pathogenic
microorganisms: The majority of enteric pathogens might colonize the intestinal epithelium
and cause disease as a result [117]. As a result, Lactobacillus can adhere to the gut epithelium
and compete with pathogens for adhesion receptors, such as glycoconjugates [118]. The
Lactobacillus and Bifidobacterium have hydrophobic surface layer proteins that assist the
bacteria non-specifically by adhering to the animal cell surface [119]. 3© Enhancement of
the Epithelial Barrier: The experimental studies in model animal have shown that probi-
otics P. acidilactici improve intestinal barrier function by reducing the permeability of the
intestinal epithelium translocation of enterotoxigenic E. coli to mesenteric lymph nodes in
post-weaning piglets as compared to the control group after ETEC challenge [120]. Our
current findings suggest that the L. jensenii TL2937 reduce the intracellular Ca2+ flux in
DSS-challenged PIE cells, increasing the tightness of the tight junction [121].

4© Increase in digestion and absorption of nutrients: In this case, the spore-forming
bacteria enhance the production of extracellular enzymes, which facilitate nutrient di-
gestion [122,123]. 5© Competing with pathogenic bacteria for nutrients in the gut: Probiotic
bacteria might compete with pathogenic bacteria for nutrients and absorption sites by
rapidly utilizing energy sources, potentially shortening the log phase of bacterial develop-
ment [116]. 6© Production of antimicrobial substances: Several probiotic bacteria, particularly
those that produce lactic and acetic acids, have the ability to suppress harmful microor-
ganisms [124,125]. 7© Alteration in gene expression in pathogenic microorganisms: Probiotics
might influence pathogenic bacteria’s quorum sensing, hence altering their pathogenicity.
Fermentation products from L. acidophilus La-5 significantly suppressed the extracellular
production of a chemical signal (autoinducer-2) by human enterohaemorrhagic E. coli
serotype O157:H7, leading to inhibition of the virulent gene (LEE—locus of enterocyte
effacement) expression in vitro [126]. 8© Bacterial antagonism: Probiotic microorganisms,
once established in the gut, may produce organic acids, hydrogen peroxide, lactoferrin,
and bacteriocin, which may exhibit either bactericidal or bacteriostatic properties [127].
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Figure 3. Proposed modes of action of livestock probiotics. Schematic diagram illustrating potential
mechanisms, whereby oral administration of probiotics might promote beneficial effects by changing
the composition of intestinal microbiota, altering intestinal barrier function, bile salts, and production
of Th1 cytokines. Additionally, probiotics containing LAB may down-regulate the expression of
pro-inflammatory cytokines and chemokines. Decrease in the translocation of bacteria may occur as a
result of the ability of probiotics to tighten the mucosal barrier. Probiotics disallow colonization by
pathogenic bacteria through competition for nutrients, immune system up-regulation, and production
of antitoxins. These mechanisms include 1© Competitive exclusion for binding sites, 2© Adhesion
to the GIT, 3© Enhancement of the epithelial barrier, 4© Increase in digestion and absorption of
nutrients, 5© Competing with pathogenic bacteria for nutrients in the gut, 6© Production of AM
substances, 7© Alteration in gene expression in pathogenic microorganisms, 8© Bacterial antagonism,
9© Bioconversion and
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9© Bactericidal activity/Bioconversion: Lactobacillus convert lactose to lactic acid, low-
ering the pH to a point where pathogenic bacteria cannot survive. Furthermore, living
yeasts compete with lactic acid-producing bacteria to digest sugars obtained from starch
breakdown, thereby stabilizing rumen pH and minimizing the danger of acidosis [128–130].
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Immunomodulation: Our study has shown that probiotic LAB with immunoregulatory
functions can beneficially modulate the immune response in the gut by modulating the
functions of PIE cells [12,54,56]. In addition, probiotic LAB have proven to be capable
of acting as immune modulators by enhancing macrophage activity [54], increasing local
antibody levels, inducing the production of anti-inflammation cytokines (interleukin (IL)-
10, interferon (IFN)-γ, β, IL-1β, TGF-β), reducing IL-4, IL-6, IL-8, MCP-1, and activating
killer cells [11,32,54].

Immunomodulation properties appear to be strain dependent, which means that
dissimilar probiotics might have parallel mechanisms of action, whereas a single strain
may have multiple mechanisms of action. Quite a lot of probiotic strains, for example,
have comparable impact on the microbial community of gastrointestinal tract, although
the mechanisms of action of certain probiotics are mostly unknown. The exact mode of
action of probiotics is not well understood in the majority of studies on their impact on
performance. Therefore, the mechanisms must be explored on a case-by-case basis because
closely interrelated probiotics appear to have diverse ways of action. Probiotic effects are a
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result of the interaction between the host and the probiotic microorganism. As a result, more
research into the host–microbe interaction could shed light on the probiotic mode of action.
Rapid improvements in molecular techniques and genome sequencing for microbial ecology
research will substantially aid our understanding of probiotic mechanisms of action.

8. Conclusions

In the present review, we provided an overview of the effects of probiotics, including
NGP on livestock in terms of nutrition, health, productivity, and the mechanisms of action
of probiotics. Additional knowledge on the in vitro system of livestock animal model for the
study of the mechanisms of immunomodulation by probiotic LAB in IECs is also illustrated.
Several livestock probiotics have been found effective in improving animal weight gain,
feed conversion, digestibility of nutrients, IgG, immune status, intestinal microflora and gut
health (increased Lactobacilli with decreased E. coli counts), intestinal morphology, milk
yield and quality, meat production and carcass quality, and reduction of the risk of pathogen
colonization, stress, and diarrhea in both pig and ruminant livestock industries. Probiotics
can be used as drug alternatives in growth promoters and in the prevention or treatment of
various infectious diseases. Finally, in this review we also suggest that immunobiotics LAB
can modulate immune responses in intestinal epithelial and immune cells from livestock,
suggesting many potential probiotics could be discovered by new techniques, such as
genome editing and AI/IoT system for contributions to promote healthy livestock without
using AM feed materials, which ultimately will lead to drug-independent healthy and
productive livestock, as well as food safety system for food animals.
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