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Abstract

We employed longitudinal distributed lag modeling approach to systematically estimate how 

associations between built environment features and transport walking decayed with the increase 

of distance from home to built environment destinations. Data came from a cohort recruited from 

six U.S. cities (follow-up 2000–2010, N=3913, baseline mean age 60). Built environment features 

included all walkable destinations, consisting of common and popular destinations for daily life. 

We also included two subsets frequent social destinations and food stores to examine if the 

spatial scale effects differ by varying density for different types of built environment destinations. 

Adjusted results found that increases in transport walking diminished when built environment 

destinations were farther, although distance thresholds varied across different types of built 

environment destinations. Higher availability of walking destinations within 2-km and frequent 

social destinations within 1.6-km to be associated with transport walking. Food stores were 

not associated with transport walking. This new information will help policymakers and urban 

designers understand at what distances each type of built environment destinations influences 

transport walking, in turn informing the development of interventions and/or the placement of 

amenities within neighborhoods to promote transport walking. The findings that spatial scales 

depend on specific built environment features also highlight the need for methods that can more 

flexibly estimate associations between outcomes and different built environment features across 

varying contexts, in order to improve our understanding of the spatial mechanisms involved in said 

associations.
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1. Introduction

Built environment features have drawn growing attention for their potential influence on 

health behaviors and health outcomes (Cummins et al., 2007; Diez Roux, 2001; Garin et 

al., 2014; Renalds et al., 2010; Roux, 2003). For example, empirical studies have found that 

built environment features such as mixed land use (Cao et al., 2007; Rodriguez et al., 2009), 

high accessibility to amenities (Cao, 2015; Cao et al., 2006; Frank et al., 2007; Heath et al., 

2006; Kitamura et al., 1997; Li et al., 2020; Van Dyck et al., 2011), high residential density 

(Mooney et al., 2020; Braun et al., 2016; Khattak & Rodriguez, 2005), and greater road 

connectivity (Chatman, 2009) were associated with more transport walking. Some studies 

found the macro-scale neighborhood walkability was associated with more transport walking 

(Hirsch et al., 2013; McCormack et al., 2021; Steinmetz-Wood et al., 2020).

Despite growing evidence about built environment-health associations, the appropriate 

spatial scales for measuring built environment exposures in specific contexts remain largely 

unknown. Empirical studies show that associations between built environments and health 

behaviors vary depending on which spatial scales were used (Duncan et al., 2021; Kwan, 

2012a; Li & Kim, 2020; Spielman & Yoo, 2009). Spatial scale in this study was measured 

through a set of continuous ring-shaped network buffers taken every 100-meter up to 5 km 

from a participant’s residence. Built environment exposures were measured by counting the 

number of walkable destinations within each ring-shaped network buffer. Until recently, 

studies employed pre-defined spatial scales such as buffers with arbitrary sizes (Jia et 

al., 2021; Rodriguez-Loureiro et al., 2021; Charreire et al., 2010; Forsyth et al., 2012) 

ranging from 100-meter to 4800-meter (Leal & Chaix, 2011) or various administrative 

units (Diez Roux, 2001, 2007; O’Campo, 2003) to delimit neighborhood boundaries within 

which built environment features were measured. However, pre-specified resiential buffers 

are susceptible to Modifiable Areal Unit Problem (MAUP) (Fotheringham & Wong, 1991)—

the size and shape of a spatial unit within which built environment features are measured 

may influence the built environment-health associations. Further, while definitions of spatial 

scales using buffers or administrative boundaries are convenient to implement and easy 

to summarize, they may not appropriately represent individuals’ real geographic contexts 

(Kwan, 2012a; Kwan, 2012b). For example, research has shown that 1-mile circular and 1-

mile network buffer, represents less than one-half of the neighborhood boundaries identified 

by residents of those neighborhoods (Smith et al., 2010). A recent study compared multiple 

buffers at 400 m, 800 m, 1000 m, 1600 m and 3000 m and found that traditional buffers 

captured, at best, two-thirds of individuals daily movement (Christensen et al., 2021). 

Besides, a residential buffer with a pre-specified radius for assessing built environment 

exposures is susceptiable to the residential effect fallacy (Chaix et al., 2017)—referring to 

the problem that the areas outside the pre-defined residential buffer along the course of daily 

activities may have built environment features that correlates with those in the residential 

buffer, thus overestimating the residential contextual effects. In addition, such pre-specified 

spatial scales do not capture individual-level differences in the relevant built environments, 

which are shaped by intra-personal differences in how physical and social environments 

are experienced (Chaix et al., 2009; de Almeida Célio et al., 2018; Lovasi et al., 2011; 

Macintyre et al., 2002). For instance, research has illustrated that individuals perceive 
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relevant distances differently (Vallee et al., 2015), and experience different travel distances 

and activity spaces (Hirsch et al., 2014; Li & Kim, 2018; Mitchell et al., 2014). Third, 

typically used spatial scales may not be appropriate for different types of activities because 

empirical evidence shows that the walking distance varies depending on various activity 

purposes (Cerin et al., 2007; Gunn et al., 2017; Moudon et al., 2006; Yang & Diez-Roux, 

2012). For instance, the walking distance for recreation was substantially longer than those 

for other activity purposes (Yang & Diez-Roux, 2012), and threhold distances varied for 

eating/drinking establishments (860 feet) and grocery stores (1445 feet) (Moudon et al., 

2006). Some studies mitigated the potential bias by comparing the associations between 

walking/physical activities and built environment destinations using multiple concentric 

buffer rings (Gunn et al., 2017;Xie et al., 2021).

Crucially, pre-defined spatial scales may bias the relationships between built environments 

and health outcomes (Baek et al., 2016), and subsequently mislead the direction of policy 

interventions (Kwan, 2021) (Lovasi et al., 2011; Martin et al., 2014). Further, most built 

environment-health studies have primarily relied on cross-sectional designs, limiting the 

ability to draw causal inferences regarding the relationships between built environment 

features and health behaviors/outcomes due to both residential self-selection bias and 

temporal concerns of reverse causation. A few studies used longitudinal data, however, most 

used pre-specified spatial scales for built environment features (Hirsch et al., 2014; Knuiman 

et al., 2014; Schipperijn et al., 2015; Sun et al., 2014). Further, some were conducted outside 

of the U.S. with relatively small sample sizes (Knuiman et al., 2014; Schipperijn et al., 2015; 

Sun et al., 2014; Xie et al., 2021), and results may not be generalized to U.S. residents and 

their neighborhood contexts. Consequently, the field needs an easy to implement method of 

assessing appropriate spatial scales for different built environment features within different 

contexts so that it can inform future research to improve the assessment of health impacts of 

various built environment features and help policy makers make more effective interventions 

to promote health behaviors.

To bridge these gaps, we employed a longitudinal distributed lag modeling (DLM) approach 

(Baek et al., 2017; Baek et al., 2016) to examine spatial scale effects on associations 

between transport walking and built environment categories of all walking destinations, 

frequent social destinations, and food stores as a case study of built environment-health 

assocations using longitudinal data from the Multi-Ethnic Study of Atherosclerosis (MESA). 

Transport walking can contribute to physical activity (Cole et al., 2006) and subsequently 

improve health. Empirical evidence shows that higher levels of physical activities are 

associated with lower risk of obesity (Bassett et al., 2011) and other chronic diseases 

(Humphreys et al., 2013). This study primarily aimed to systematically estimate how the 

longitudinal associations between built environment features and transport walking vary 

with increasing distance between participants’ home and built environment destinations, 

and thus infer the spatial scale at which associations dissipate, which will inform policy 

interventions that where to place amenities to promote health related behaviors.
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2. Methods

2.1. Sample and Data Sources

Data came from Multi-Ethnic Study of Atherosclerosis (MESA), a longitudinal study of 

6814 adults aged 45–84 years without clinical cardiovascular disease at baseline (year 2000). 

Participants were recruited between July 2000 and August 2002 in six study sites (Los 

Angeles, CA; Chicago, IL; Saint Paul, MN; New York City, NY; Baltimore, MD; Forsyth 

County, NC). Data for this study came from baseline and three follow-up examinations of 

MESA: the second examination was between July 2002 and February 2004; examination 3 

was between January 2004 and September 2005; and examination 5 was between April 2010 

and May 2012. Examination 4 was not used because walking (our outcome variable) was 

not measured during that exam. MESA addresses were geocoded using TeleAtlas (Tele Atlas 

North America, Inc., Lebanon, New Hampshire).

Sample selection began with MESA cohort members recruited from the six sites who agreed 

to participate in the MESA Neighborhood Study (N=6191). We retained participants who 

were retained in the follow-up exams and that had accurate residential addresses geocoded 

at street level or Zip code +4 level at both Exam 1 and Exam 5 (yielding a sample of 4503 

participants). We further excluded 186 participants missing transport walking at Exam 1, 2, 

3, and Exam 5, and 204 participants with missing sociodemographic information at Exam 1, 

2, 3 and Exam 5, and 200 participants who we did not calculate built environment exposures 

due to missing historic residential data. The final sample for analysis consisted of 3913 

participants. The excluded participants were roughly similar to the participants in the final 

analytical sample, except that the participants in the analytical sample were slightly more 

advantaged (larger proportion with a college degree, employed, and higher income-wealth 

index) and had slightly higher proportion of White (data not shown).

Built environment data came from National Establishment Time Series (NETS) database 

(Hoehner & Schootman, 2010; Walls & Associates, 2013), obtained through the MESA 

Neighborhoods study and Retail Environments for Cardiovascular Disease (RECVD) project 

(https://sites.google.com/view/recvd-team-project-site/home). These data are available for 

the years 2000–2014 which overlaps with MESA Exams 1–5. Census block population data 

came from Census 2000 and Census 2010 SF1 data. Road network data were obtained from 

Census 2010 TIGER Roads data.

2.2. Variables

2.2.1. Health outcome—transport walking minutes per week—The health 

outcome variable was transport walking minutes per week. A MESA survey asked 

participants whether they had walked to get to places (bus, car, work, store) in a typical 

week in the past month. If yes, they were asked to report how many days per week and how 

much time per day they walked to get to places. We calculated transport walking minutes per 

week by multiplying number of days for transport walking per week by number of minutes 

for transport walking per day.
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2.2.2. Built environment exposures—Built environment features included a broad 

category of all walkable destinations, consisting of common and popular destinations for 

daily life (e.g., food stores, restaurants, drug stores and pharmacies, department stores, 

post offices, banks/credit unions, libraries, beauty shops and barbers, social/entertainment 

destinations, museums, schools). We further included two subsets of the broad category 

of all walkable destinations (frequent social destinations and food stores) to examine if 

the spatial scale effects differ by varying density for different types of built environment 

destinations. Frequent social destinations consisted of destinations that facilitate social 

interaction and promote social engagement (e.g., beauty shop/barber, libraries, non-physical 

activity recreation clubs, religion). Food stores consisted of a variety of food outlet 

destinations (e.g. supermarkets, convenience stores, small grocers/bodegas, fish market, fruit 

and vegetable markets, bakery, candy, ice cream, and coffee shops). The detailed list of 

all the destinations is shown in Supplement Table 1 (ST1). Built environment exposures 

were calculated using ArcGIS [GIS software] (Version 10.5. Redlands, CA: Environmental 

Systems Research Institute, Inc., 2016).

2.2.3. Covariates—Covariates were selected based on a prior MESA study which 

examined longitudinal associations between walking and built environment features 

(Hirsch et al., 2014). Time-invariant person-level covariates included age at baseline, 

sex, race/ethnicity, and education. Time-varying covariates included income-wealth index, 

employment status, household car ownership, body mass index (BMI), self-rated health 

compared with others of the same age, and arthritis flare-up in the past 2 weeks. The 

income-wealth index was specified as a 9-point scale (0 being the lowest level of income 

and no assets and 8 being the highest level of income and all 4 assets). Details about the 

index are shown in the note of Table 1 and the index was described previously in depth 

(Hajat et al., 2010). Area-level covariates included population density in a 1-mile residential 

buffer, street network ratio in a 1-mile residential buffer, and region (from census categories: 

Northeast, Midwest, South, West). To calculate population density in a 1-mile Euclidean 

buffer around residence, first we used the ‘intersect’ geoprocessing tool in ArcGIS [GIS 

software] (Version 10.5. Redlands, CA: Environmental Systems Research Institute, Inc., 

2016) to calculate the total population for block groups/pieces of block groups within a 

1-mile Euclidean buffer of each participant and then we divided the total population by the 

area of the buffer. Street network ratio in a 1-mile residential buffer was calculated as the 

ratio of the area of a 1-mile network buffer to the area of a 1-mile Euclidean buffer around 

each participant’s residence. The ratio varies between 0 and 1, with 0 meaning none of the 

area can be reached through the road network and 1 meaning the entire area can be reached 

through the street network (i.e., the highest level of network ratio).

2.3. Distributed lag models

Distributed lag models (DLMs) have been widely used in economics (Almon, 1965) and 

air pollution studies (Dominici et al., 2004; Pope III et al., 1991; Welty et al., 2009). 

Most recently, DLMs have been used to estimate associations between spatially-lagged food 

environment exposures and body mass index(Baek et al., 2017; Baek et al., 2016). DLM is 

advantageous in exploring how effects of built environment on health outcomes vary across 
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distance without pre-specifying a geographic scale; and identifying spatial scales at which 

the effects peak and the distance at which the effects vanish.

2.3.1. DLMs for the MESA longitudinal data—In all models, the outcome Yij is 

transport walking minutes per week for participant i at Exam j, which is log-transformed 

as it is skewed to the right. In order to estimate how the association between walking 

destinations and transport walking vary with network distance between participants and 

destinations, the DLM uses a set of “distributed lag covariates”, instead of a single count of 

destinations within a network buffer of pre-determined radius. The distributed lag covariates 

are the count of built environment destinations for participant i at Exam j measured within 

a ring-shaped network buffer area with inner and outer radii of rl−1 and rl , respectively, 

and are denoted as Xij(rl−1; rl) for l = 1,2, … ,50. The diagram of the ring-shaped network 

buffers within which the built environment destinations were assessed was displayed in 

Supplement Figure 1. We set the width of the ring as rl-rl−1= 100-meter, which is a typical 

width for city blocks in U.S. cities and thus a reasonable increment for walking distance. 

In a hypothetical city with 100 × 100 meter blocks, the distributed lag covariates would 

thus represent the number of destinations available within consecutive groups of blocks 

incrementally further away from each participant’s residence. We set the largest ring-shaped 

network buffer area to have outer radius of 5-km (3.11 miles), since most people walk 

less than 3 miles per day (Yang & Diez-Roux, 2012). Hence, the inner and outer radii 

of the first ring-shaped network area were 0 and 0.1-km; the inner and outer radii of the 

50th ring-shaped network area were 4.9-km and 5-km. Distributed lagged covariates were 

constructed in this way for all walking destinations, frequent social destinations and food 

stores. The longitudinal distributed lag models estimated were then:

log Y ij + 1 = β0i + ∑l = 1
50 β rl − 1; rl Xij rl − 1; rl + β2iTimej + γZij + εij . (1)

where: β0i is a random intercept for person i; Zij denotes a set of time varying and time 

invariant covariates. The model also included a random time slope (year 2000 to year 2010), 

β2i, that enables the longitudinal change in transport walking to vary between individuals.

The DLM estimates associations β(rl−1;rl) between transport walking and destinations 

at every100-meter, which represent the average difference in transport walking minutes 

associated with one additional walkable destination within the ring-shaped network area 

within rl−1 and rl distance from the subject. Because of the large number of associations 

estimated, the model could be prone to overfitting and collinearity problems. Additionally, 

it is desirable to have coefficients from adjacent rings be similar to each other, since, for 

example, one would not expect the association between walking and availability of walking 

destinations in one block to be drastically different from the association in the next block. 

Thus, to resolve potential overfitting and collinearity problems and encourage similarity of 

coefficients among adjacent rings, the distributed lag coefficients β(rl−1;rl) are constrained 

to follow a smooth, continuous pattern across distance using smoothing splines (Baek et 

al., 2017; Baek et al., 2016; Zanobetti et al., 2000). Three separate DLMs were estimated 

for each of the built environment exposures (all walkable destinations, frequent social 
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destinations, and food stores). Estimation of distributed lag model parameters were carried 

out using a restricted maximum likelihood estimation in the software R.

2.3.2. Sensitivity analyses for DLMs—We conducted cross-sectional DLMs for 

transport walking and all walkable destinations and the two subdomains at Exam 5. The 

purpose of this was to use a simplified model to check the performance of the model (absent 

time). Using this simplified model, we stratified the cross-sectional DLM for transport 

walking and all walkable destinations at Exam 5 by population density (below median 

versus median or above) and by region, separately. The purpose of the stratification was to 

assess whether results were similar across different contexts.

2.3.3. Results presentation and interpretation—First, we used figures to display 

the estimated distributed lag coefficients quantifying associations between transport walking 

and built environment exposures up to 5-km from home locations. These figures visualize 

whether and how the associations between transport walking and built environment 

destinations diminish with increasing distance between residential locations and these 

destinations, and help identify the distances or spatial scales within which the health effects 

of built environment exist. The DLM coefficients β(rl−1;rl) in the figures are shown in the 

log scale since the outcome variable is log-transformed. Second, we presented aggregated 

values of these coefficients, representing associations within ring-shaped network area 

associations that have wider width (e.g., 0.5 km). These aggregated values may be more 

policy-relevant compared to the associations at 100-meter resolution shown in the figures. 

For a given ring-shaped network area with inner and outer radii of rm and rk, these 

aggregated associations were derived by summing the coefficients within the range, i.e., 

β rm; rk = ∑l = m
k β rl − 1; rl . We presented seven of these with respective ranges of 0 – 

0.5km, 0.5 – 1km, 1 – 1.5km, 1.5 – 2km, 2 – 3km, 3 – 4km, 4 – 5km. Additionally, 

to facilitate comparison to prior studies, we calculated the average buffer area association 

β 0; rk = ∑l = 1
k β rl − 1; rl  for seven network buffer areas with a radius of rk of 0.5km, 1km, 

1.5km, 2km, 3km, 4km, and 5km. We back-transformed the average ring-shaped network 

area association β rm; rk  and the average buffer area association β 0; rk  by (Exp(10β rm; rk )) 

and (Exp(10β 0; rk )) to aid interpretation, respectively. Note that we pre-multiplied these 

aggregated associations by 10 for better interpretation. Namely, the transformed associations 

represent the average percent increase in transport walking minutes per week associated with 

10 additional walkable destinations in the two aforementioned aggregated spatial scales, 

respectively.

3. Results

3.1. Descriptive results

Table 1 displays characteristics of the analytical sample of MESA participants at Exam 1, 

2, 3, and 5. The sample was 53% female, 42% of white, and had average of 14 years of 

education (standard deviation [SD] = 3.7). Mean participant age was 60 years (SD = 9.5) at 

Exam 1. At Exam 1, 61% were employed and that dropped to 44% at Exam 5. About 85% 

of participants owned at least one car. Participant BMI was approximately 28.3 kg/m2. The 
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percent of participants with arthritis flare-up in past 2-weeks increased from 11% at Exam 

1 to 19% at Exam 5. Average length of living in the current neighborhood was 19 years 

at Exam 1 and about 71% of participants remained at the same residence over follow-up. 

Median minutes of self-reported weekly transport walking at Exam 1 was 180 (Q1–Q3: 60 

– 420) and was 150 (Q1–Q3: 30 – 420) at Exam 5 (see Table 1). The difference in transport 

walking minutes per week between Exam 5 and Exam 1 was as follows: median change was 

0 (Q1: −175, Q3: 180, 10th percentile: −420, 90th percentile: 450), mean change was −5.57 

(SD: 540.07).The population density of participants’ 1-mile neighborhood decreased over 

time, with mean of 15508.14 (SD: 19487.05) at Exam 1 and 14581.92 (SD: 19254.95) at 

Exam 5. Mean street network ratio did not change much over time (Exam 1 to Exam 5: 0.42 

to 0.41).

Descriptive statistics for built environment exposures at Exam 1, 2, 3, and 5 in a series of 

ring-shaped network areas is displayed in Supplement Table 2 (ST2). The median count 

of all walkable destinations and subdomains (frequent social destinations and food stores) 

increased with increasing distance from participants’ home. For example, at Exam 1, in the 

ring-shaped network area closest to participants’ home locations (inner and outer radii of 

0km and 0.5km) the median count of all walkable destinations at Exam 1 was 9 (Q1–Q3: 

2–30) and increased to 369 (Q1–Q3: 196–779) in the ring-shaped network area farthest 

from participants’ home locations (inner and outer radii of 4-km and 5-km, ST2). The 

counts of frequent social destinations and food stores in different geographic scales showed 

similar patterns, increasing from smaller scales to larger scales. In addition, the counts of 

all walkable destinations and subdomains increased slightly from Exam 1 to Exam 5. For 

example, in the ring-shaped network area closest to participants’ home (0 – 0.5 km) the 

median count of walkable destinations increased from 9 to 11 from Exam 1 to Exam 5.

3.2. Spatial scale effects in the longitudinal associations between transport walking and 
built environment destinations

Figure 1 shows estimated distributed lag coefficients (log) for longitudinal associations 

between transport walking and built environment categories within 5-km from residential 

locations, adjusted for sociodemographic characteristics. The thresholds at which a higher 

number of walkable destinations was associated with more transport walking varied by 

destination types. For all walkable destinations and for frequent social destinations, transport 

walking declined with distance to destinations and the thresholds for the effects were 

approximately 2-km and 1.6-km, respectively. Further, the decline in walking minutes 

with distance from destinations was steeper for frequent social destinations compared 

to all walkable destinations. For food stores, there was little evidence of an association 

(confidence intervals include 0) or a decline in the association with distance.

Table 2 shows estimated average ring-shaped network area associations between transport 

walking and built environment categories in the seven aggregated ring-shaped network areas 

with various inner and outer radii derived from the DLM coefficients in the 50 ring-shaped 

network areas. The average transport walking minutes per week increased by 3.0% (this 

was equivalent to 4.5 minutes at Exam 5) per 10 additional walkable destinations in the 

ring-shaped network area with inner and outer radii of 0 and 0.5 km. The average transport 
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walking minutes per week increased by 2.2%, 1.5%, and 0.8% per 10 additional walkable 

destinations in the ring-shaped network areas with ranges of 0.5 – 1 km, 1 – 1.5 km, and 1.5 

– 2 km, respectively. For frequent social destinations, the average transport walking minutes 

per week increased by 15.8% (this is equivalent to 24 minutes at Exam 5), 10.1%, 5.3% per 

10 additional frequent social destinations in the ring-shaped network areas with ranges of 0 

– 0.5 km, 0.5 – 1 km, and 1 – 1.5 km, respectively. In addition, Table 2 also displays the 

average buffer area associations between transport walking and built environment categories 

in the seven network buffer areas with various radii derived from the DLM coefficients in 

the 50 ring-shaped network areas. In general, the estimated average buffer area associations 

existed between transport walking minutes per week and walkable destinations and frequent 

social destinations in the buffer areas up to 0.5 km, 1 km, 1.5 km, 2 km, 3 km, 4 km, and 

5 km, respectively. For example, the average transport walking minutes per week increased 

by 5.3% per 10 additional walkable destinations in the 1-km buffer and by 27.5% per 10 

additional frequent social destinations in the 1-km buffer. Food stores were not associated 

with transport walking within the buffer areas with various ranges.

3.3. Sensitivity analysis results

Supplement Figure 2 shows cross-sectional associations between transport walking and the 

three built environment categories. In cross-sectional analyses (exam 5 only), the plots of 

the distributed lag coefficients showed a similar pattern to the longitudinal results. Further, 

the DLM coefficients estimated from stratified cross-sectional analysis by population 

density (below median vs. median or above) also showed a similar pattern (magnitude 

of association decreased with increasing distance), although the associations for less dense 

areas (population density < median) were not significant at the 0.05 level. Stratified cross-

sectional results by region also showed a similar pattern.

4. Discussion

This study employed a longitudinal distributed lag modeling approach to explore the 

associations between transport walking and various built environment destinations in a set 

of continuous ring-shaped network buffers up to 5-km from a participant’s home to the 

built environment destinations. This method enables us to measure and illustrate how the 

associations decay with the increasing distance from home to built environment destinations 

and allows us to infer the spatial scales at which these built environment exposures impact 

transport walking. Further, the longitudinal data used in the DLM help produce more robust 

results on the associations between transport walking and built environment destinations. 

We found that the magnitude of the association between transport walking and walkable 

destinations decreases with increases in distance from home to walkable destinations; 

this result also held for the subdomain of frequent social destinations. These associations 

were positive, as expected, when destinations were close to residential locations, and were 

negligible and not significant by approximately 2 km (all walkable destinations) and 1.6 km 

for frequent social destinations. There was little evidence for an association between food 

stores and transport walking at any distance.
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The specificity in our DLM approach is a step forward to addressing the Modifiable 

Areal Unit Problem (MAUP) (Fotheringham & Wong, 1991) because it jointly estimates 

the associations between transport walking and built environments in various spatial units 

with small distance intervals to circumvent a pre-defined residential buffer with a fixed 

radius. Our DLM method also helps visualize how associations diminish with distance and 

identify at what scale the associations vanish. Furthermore, unlike traditional pre-defined 

residential buffers, our DLM method mitigates the residential effect fallacy (Chaix et al 

2017) since it accounts for spatial autocorrelation of built environment features in closer 

and faraway distance up to 5-km from residence by estimating associations between 

transport walking and built environment features in a series of continuous ring-shaped 

network areas. Additionally, our DLM method broadens the spatial scale from the immediate 

residential neighborhood to a larger area to better approximate the true geographic contexts, 

which partially mitigates the Uncertain Geographic Context Problem. Further, our findings 

illustrate the thresholds at what scale the spatial associations become negligible vary across 

different types of built environment features, enriching the nuanced understanding on the 

associations between transport walking and various built environment features.

The associations we found are stronger in closer distance and weaker in farther distance, 

which support the long standing (though not often tested) hypothesis that health-related 

behaviors are more related with built environment features at closer distance (Baek et al., 

2016; Spielman et al., 2009). The model results provide information about the distance at 

which walkable destinations may no longer influence transport walking. The spatial scales 

inferred from the model were somewhat different for different built environment features 

(smaller scales for frequent social destinations compared to all walkable destinations), which 

highlights that spatial scales are dependent on which feature of the built environment is 

being measured. The spatial scales for all walkable destinations and for frequent social 

destinations were approximately at 2 km and 1.6 km, respectively. Stronger associations for 

all walkable destinations and frequent social destinations might be because these amenities 

are more prevalent in the environment and thus encouraging all sorts of errands, and 

trip-chaining (going from one place to another). These findings are aligned with results 

in previous literature that indicated that the threshold walking distance varies depending 

on different types of destinations (Cerin et al., 2007; Gunn et al., 2017; Moudon et al., 

2006; Yang & Diez-Roux, 2012). Meanwhile, we did not find evidence that food stores are 

associated with transport walking. One potential explanation might be because food stores 

are rarer and people may need to travel farther to get to food stores. Indeed, empirical 

evidence from a U.S. city Atlanta shows that the mean travel distance for food ranges from 

4.5 miles (7.24 km) for coffee shops to 6.3 miles (10 km) for superstores and only 7% of 

all trips to a food outlet were by walking (Kerr et al., 2012). Nevertheless, more studies are 

needed to investigate the food environment and its assocations with transport walking.

We found that transport walking was associated with walkable destinations within 2-km 

from home and was associated with frequent social destinations within 1.6-km from 

home. These findings are generally consistent with previous findings in another MESA 

study which finds that transport walking is associated with popular walkable destinations 

and social destinations measured in a 1-mile (1.6 km) buffer (Hirsch et al., 2014), and 

results in another community survey study which finds transport walking is associated 
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with neighborhood walkability assessed in a 1-mile (1.6 km) buffer (Li et al., 2020). The 

alignment of our findings with prior results verifies the prior results. Nevertheless, we note 

that our analyses are more robust than the traditional pre-defined buffer-based methods used 

in the previous study. Our method is able to systematically estimate associations between 

transport walking and built environment features decayed with the increase of distance 

from home locations. Further, our results highlight that the spatial scales within which 

built environments have health impacts vary across different types of built environment 

destinations.

Our DLM results about the spatial scales across distances have important implications. 

First, the DLM results enable us to identify the most relevant distance for detecting 

associations between transport walking and built environment features. This can be used 

to guide policymakers regarding where to place amenities or how to design spaces to 

encourage transport walking, which could ultimately increase physical activity levels and 

reduce motorized trips. Further, the DLM results suggest that the spatial scales within 

which the associations between transport walking and built environment features exist vary 

among different types of built environment features, shedding new light on identifying 

relevant spatial scales for different built environment features. It also highlights the need for 

methods that can more flexibly estimate associations between outcomes and different built 

environment features across varying contexts, in order to improve our understanding of the 

spatial mechanisms involved in said associations. This finding will inform future research to 

choose appropriate spatial scales to assess different built environment features and develop 

more robust associations with health outcomes. It will also help policymakers understand 

where to place different types of amenities to promote transport walking.

4.1. Strengths and limitations

This study has some strengths. First, this is the first study to use a longitudinal DLM 

approach to provide systematic evidence on how the associations between transport 

walking and walkable destinations vary across distances between participant’s residential 

locations and walkable destinations. The method helps identify appropriate spatial scales 

for walkable destinations and frequent social destinations. The DLM approach provides a 

way to circumvent pre-specifying a spatial scale to measure built environment destinations 

by estimating associations between transport walking and built environments in a set of 

consecutive ring-shaped network areas. Further, the DLM results are more flexible than 

pre-defined buffer methods as they can be easily aggregated to various buffer areas with 

varying radii, thus enabling comparison with prior studies. Second, the method can be 

flexibly applied to various built environment features and contexts. Third, this study used 

systematically coded business data (Hirsch et al., 2021) consistent with several other cohorts 

(enhancing reproducibility). Fourth, the longitudinal data came from a diverse sample of 

race, gender, and region which provided more robust associations between transport walking 

and walkable destinations.

This study also has some limitations. First, although the MESA study was longitudinal, 

we were unable to estimate whether within-person changes in built environment exposures 

were associated with within-person changes in transport walking. Although estimating such 
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associations using the DLM approach is possible, there is relatively little change in transport 

walking and in walkable destinations during the study period. Second, this study focused 

on examining the spatial scale effects for built environment destinations in areas up to 

5-km from residence, which may not cover potential activity spaces for daily movement. 

Future studies can extend the DLM method to broader activity spaces that account for built 

environment exposures over the course of daily activities using GPS tracking data. Third, 

we focused on a specific subset of environment features, namely all walkable destinations 

and the two subdomains (frequent social destinations, and food stores). Further research 

can extend to examine other built environment features and their impacts on both transport 

walking and other health outcomes. Fourth, the participants in our study sample were 

mostly middle-age and older adults residing in urbanized areas. Our results might not be 

generalizable to all adults or children or people in suburban or rural areas who may have 

different travel patterns and time demands. Addtionally, our transport walking minutes were 

self-reported data, which may not be as accurate as those measured using pedometers or 

accelerometers.

5. Conclusions

The longitudinal DLM approach enabled us to infer the spatial scales at which associations 

between availability of walking destinations and transport walking occur, thus allowing us to 

understand how far built environment destinations are associated with transport walking. 

We found higher availability of walking destinations within 2-km and frequent social 

destinations within 1.6-km to be associated with walking for transport. This new information 

will help policymakers and urban designers understand at what distances each type of built 

environment destinations influences transport walking, in turn informing the development of 

interventions and/or the placement of amenities within neighborhoods to promote transport 

walking. The findings that spatial scales depend on specific built environment features 

also highlight the need for methods that can more flexibly estimate associations between 

outcomes and different built environment features across varying contexts, in order to 

improve our understanding of the spatial mechanisms involved in said associations.
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Highlights

• We used longitudinal distributed lag models to estimate associations between 

walkable destinations and transport walking decayed with the increase of 

distance from home.

• Higher availability of walking destinations within 2-km and frequent social 

destinations within 1.6-km to be associated with walking for transport.

• The spatial scales within which built environments have health impacts vary 

across different types of built environment destinations.

• Our findings inform policymakers where to place amenities within 

neighborhood to promote health behaviors.
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Figure 1. 
Distributed lag modeling results for longitudinal data on transport walking (log scale) and 

built environment destinations in the ring-shaped network areas up to 5-km from residence. 

Panel A: all walkable destinations; Panel B: frequent social destinations; Panel C: food 

stores. Dashed lines represent 95% confidence intervals. Each model adjusted age, gender, 

race, education, per capita income and wealth index, BMI, self; rated health, arthritis last 

2 weeks, car ownership, marital status, employment status, population density in 1-mile 

residential buffer, street network ratio in 1-mile residential buffer.
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Table 1.

Longitudinal sociodemographic and neighborhood characteristics among participants in the Multi-Ethnic 

Study of Atherosclerosis (MESA), 2000–2010

Exam 1 Exam 2 Exam 3 Exam 5

Median (Q1–Q3) Median (Q1–Q3) Median (Q1–Q3) Median (Q1–Q3)

Total transport walking minutes/week (minute) 180 (60–420) 120 (35–315) 120 (35–325) 150 (30–420)

Time-varying covariates Mean (STD) Mean (STD) Mean (STD) Mean (STD)

Age 60 (9.5) 62 (9.5) 63 (9.5) 70 (9.5)

Income-wealth index
a
 (ranges from 0 to 8) 5.02 (2.24) 5.00 (2.25) 5.01 (2.23) 5.01 (2.19)

Body mass index (kg/m2) 28.30 (5.40) 28.40 (5.52) 28.38 (5.56) 28.47 (5.67)

Population density per square mile 15508.14 (19487.05) 15296.48 (19505.22) 15015.29 (19342.31) 14581.92 (19254.95)

Street network ratio 0.42 (0.15) 0.41 (0.15) 0.41 (0.15) 0.41 (0.16)

% % % %

Currently employed 61.41 58.57 56.4 44.21

Own at least one car 84.82 84.82 84.59 85.87

Arthritis flare-up in past 2 weeks 10.94 10.32 11.99 19.37

Self-rated health compared with others % % % %

 Better 60.59 60.59 60.26 58.63

 Same 34.86 34.86 35.5 36.08

 Worse 4.55 4.55 4.24 5.29

Region
b % % % %

 Northeast 16.87 16.87 16.76 16.66

 Midwest 36.93 36.44 36.21 35.91

 South 30 30.36 30.46 30.87

 West 16.2 16.33 16.56 16.56

Time-invariant covariates %

Female sex 52.95

Race/ethnicity

 White 42.42

 Black/African American 25.45

 Chinese 11.96

 Hispanic 20.16

Education level

 High school/GED or less 30.49

 Some college 29.16

 BA or above 40.35

Note:

a.
An income-wealth index was created by adding together two 5-categorey variables, inflation adjusted per capita income (ranges from 0 to 4) 

and wealth index (ranges from 0 to 4). Inflation adjusted per capita income was created by the following formula ([annual household income * 
inflation factor at the year of exam] / number of people in the household)/ $10000. Next, in order to combine it with wealth, income per capita was 
subsequently categorized into quintiles. Wealth index was calculated as the sum of home ownership (0 or 1), car ownership (0 or 1), land ownership 
(0 or 1), and investments (0 or 1). After summing the 5 categories of income and 5-categories of wealth, this yielded a 9-point scale (0 being the 
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lowest level of income and no assets and 8 being the highest level of income and all 4 assets). The MESA income-wealth index has been previously 
described in depth (Hajat et al., 2010).

b.
Region categories came from Census catogories.
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Table 2.

Estimated associations between transport walking and built environment exposures within specific ring-shaped 

areas and buffer areas, based on longitudinal data from MESA, 2000–2010.

N = 3913 Outcome: transport walking minutes per week

Ring-shaped areas (Rm - Rk) Buffer areas (0 - Rk)

Exposure buffer ranges 
(km): Rm - Rk

Exp 10 * β rm; rk 95% C.I. buffer ranges 
(km): 0 - Rk

Exp 10 * β 0; rk 95% C.I.

1. Walkable 
destinations 0 – 0.5 0.030 0.008 0.053 0 – 0.5 0.030 0.008 0.053

0.5 – 1 0.022 0.008 0.036 0 – 1 0.053 0.016 0.091

1 – 1.5 0.015 0.006 0.023 0 – 1.5 0.068 0.022 0.117

1.5 – 2 0.008 0.002 0.015 0 – 2 0.077 0.024 0.133

2 – 3 0.007 −0.005 0.018 0 – 3 0.084 0.019 0.154

3 – 4 0.006 −0.004 0.016 0 – 4 0.091 0.015 0.172

4 – 5 0.008 −0.006 0.021 0 – 5 0.099 0.010 0.197

1.1. Frequent 
social 
destinations

0 – 0.5 0.158 0.057 0.269 0 – 0.5 0.158 0.057 0.269

0.5 – 1 0.101 0.047 0.157 0 – 1 0.275 0.107 0.469

1 – 1.5 0.053 0.018 0.088 0 – 1.5 0.342 0.127 0.598

1.5 – 2 0.018 −0.009 0.047 0 – 2 0.367 0.117 0.672

2 – 3 0.008 −0.038 0.055 0 – 3 0.377 0.075 0.765

3 – 4 0.039 −0.005 0.084 0 – 4 0.430 0.069 0.914

4 – 5 0.025 −0.026 0.079 0 – 5 0.466 0.041 1.065

1.2. Food 
stores 0 – 0.5 0.025 −0.035 0.089 0 – 0.5 0.025 −0.035 0.089

0.5 – 1 0.023 −0.027 0.076 0 – 1 0.049 −0.061 0.173

1 – 1.5 0.022 −0.019 0.063 0 – 1.5 0.072 −0.078 0.247

1.5 – 2 0.020 −0.010 0.051 0 – 2 0.093 −0.088 0.310

2 – 3 0.034 0.001 0.069 0 – 3 0.131 −0.087 0.401

3 – 4 0.027 −0.001 0.056 0 – 4 0.161 −0.088 0.479

4 – 5 0.018 −0.035 0.074 0 – 5 0.182 −0.120 0.589

Note: the coefficient 0.022 means a 2.2% change (over the 10 years of follow-up) in walking minutes per week for an additional 10 destinations 
within a 0.5 to 1 kilometer distance from the residence. Each model adjusts covariates: age, gender, race, education, per capita income, BMI, 
self; rated health, arthritis last 2 weeks, car ownership, marital status, employment status, population density in 1-mile residential buffer, street 
connectivity at 1-mile residential buffer. Bold fonts indicate p < 0.05.
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