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Abstract: We describe recent updates of existing molecular-targeting agents and emerging novel
gene-specific strategies. FLT3 and IDH inhibitors are being tested in combination with conven-
tional chemotherapy for both medically fit patients and patients who are ineligible for intensive
therapy. FLT3 inhibitors combined with non-cytotoxic agents, such as BCL-2 inhibitors, have poten-
tial therapeutic applicability. The menin-MLL complex pathway is an emerging therapeutic target.
The pathway accounts for the leukemogenesis in AML with MLL-rearrangement, NPM1 mutation,
and NUP98 fusion genes. Potent menin-MLL inhibitors have demonstrated promising anti-leukemic
effects in preclinical studies. The downstream signaling molecule SYK represents an additional target.
However, the TP53 mutation continues to remain a challenge. While the p53 stabilizer APR-246 in
combination with azacitidine failed to show superiority compared to azacitidine monotherapy in a
phase 3 trial, next-generation p53 stabilizers are now under development. Among a number of non-
canonical approaches to TP53-mutated AML, the anti-CD47 antibody magrolimab in combination
with azacitidine showed promising results in a phase 1b trial. Further, the efficacy was somewhat
better in patients with the TP53 mutation. Although clinical evidence has not been accumulated
sufficiently, targeting activating KIT mutations and RAS pathway-related molecules can be a future
therapeutic strategy.

Keywords: acute myeloid leukemia; FLT3; IDH1; IDH2; BCL-2; menin; MLL rearrangement; NPM1;
NUP98 fusion; SYK; TP53; CD47; KIT; KRAS; NRAS

1. Introduction

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy often char-
acterized by specific genomic alterations [1]. The standard treatment strategy for AML
is largely consisted of intensive chemotherapy with or without hematopoietic stem cell
transplantation. However, long-term survival can be achieved in only up to three-quarters
of patients, even in the favorable risk group [2]. Molecular-targeted therapy has had a
significant impact on clinical practice, especially for patients with specific genomic ab-
normalities. The fms-like tyrosine kinase 3 (FLT3) mutation, for example, is known as
one of the major adverse prognostic factors in AML. Further, potent FLT3 inhibitors have
improved clinical outcomes as a part of salvage/alternative therapy as well as in com-
bination with intensive chemotherapy in patients with FLT3-mutated AML. For patients
with iso-citrate dehydrogenase (IDH)-1 or -2 mutation, specific IDH inhibitors ivosidenib
and enasidenib are generally well-tolerated and expects complete remission (CR) rates of
30–40% as monotherapy [3,4]. Recently, menin-related leukemogenesis especially in AML
with mixed lineage leukemia 1 (MLL)-rearrangement have gathered attention and several
preclinical studies have evaluated its specific inhibitors. In addition, anti-tumor protein
p53 (TP53), KIT, and RAS strategies have developed both in hematologic malignancies
and solid tumors. A number of genomic abnormalities have been identified as potential
targets and some have shown promising data in preclinical/early-phase studies. Here, we
discuss emerging novel therapeutic approaches for AML, especially those targeting specific
genomic abnormalities.
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2. Targeting Specific Mutant Genes
2.1. Fms-like Tyrosine Kinase 3 Mutation

FLT3 protein is a receptor tyrosine kinase expressed in normal hematopoietic pro-
genitor cells. FLT3 is dimerized upon binding with FLT3 ligands (FLs) produced by bone
marrow stromal cells, which results in phosphorylation of the tyrosine residues in the
activation-loop (A-loop) then the downstream signaling follows [5]. The FLT3 mutation
is the most frequent genomic abnormality, accounting for approximately 30% of adult
AML, and is associated with poor prognosis [1,6]. FLT3 mutations are largely divided
into two types: an internal-tandem duplication of the juxta-membrane domain-encoding
region (ITD) and single nucleotide variants of the tyrosine kinase domain-encoding region
(TKD). Generally, AML with FLT3-ITD has stronger proliferation advantages and better
sensitivity to FLT3 inhibitors than those with FLT3-TKD. Although both FLT3-ITD and
FLT3-TKD are activating mutations, FLT3-ITD consistently upregulates the Janus kinase
(JAK)/signal transducer and activator of transcription (STAT) signaling and FLT3-TKD
enhance the src homology region 2 domain-containing phosphatase 1 (SHP1) and SHP2
activity that negatively regulate JAK signaling [7,8], which partially explains why FLT3-ITD
has showed more potent myeloproliferative advantages than the other [9,10].

Potent FLT3 inhibitors such as midostaurin (RATIFY trial [11]), gilteritinib (ADMIRAL
trial [12]), and quizartinib (QuANTUM-R trial [13]) have demonstrated clinical benefits as a
salvage monotherapy or in combination with conventional chemotherapy in phase 3 trials
(Table 1). FLT3 inhibitors show an approximately 50% CR rates as well as prolongation
of survival in patients with relapsed/refractory (R/R) AML. Although gilteritinib and
quizartinib are currently indicated only for R/R cases, combination therapy with stan-
dard chemotherapy for patients with newly-diagnosed (ND) FLT3-mutant AML is now
being evaluated in several phase 3 clinical trials (HOVON 156 AML/AMLSG 28-18 [14],
NCT03836209 [15], QuANTUM-First [16]). The next-generation FLT3 inhibitor crenolanib
is a promising novel agent [17] currently under evaluation in phase 3 randomized trials for
patients with R/R [18] and ND FLT3-mutant AML [19].

Table 1. The phase 3 trials of currently available FLT3 inhibitors.

Author
and Jounal Object(s) Disease

State Agent(s) Phase Response Rate Median
Survival

Stone, et al. [14]
N Engl J Med 2017

FLT3-mutated AML
(both ITD and TKD) ND

Midostaurin
III CR 70% (504/717) 8.2 mo.

[5.4–10.7]+ StdCTx

Perl, et al. [15]
N Engl J Med 2019

FLT3-mutated AML
(both ITD and TKD) R/R Gilteritinib III CR/CRi

PR
54% (134/247)
13% (33/247)

9.3 mo.
[7.7–10.7]

Cortes, et al. [16]
Blood 2019

FLT3-mutated AML
(ITD only) R/R Quizartinib III CR/CRi 48% (118/245) 18.5 mo.

[10.8–28.8]

StdCTx: standard chemotherapy, CRi: CR with incomplete hematologic recovery, PR: partial response.
ITD: internal tandem duplication, TKD: mutation of tyrosine kinase domain. ND: newly-diagnosed, R/R: relapsed
or refractory to previous therapy.

FLT3 inhibitors may also have an important role in maintenance therapy after allo-
geneic hematopoietic transplantation (allo-HSCT), and several clinical studies have evalu-
ated the efficacy of sorafenib or midostaurin. A systemic review of 7 such studies including
six-hundred-eighty FLT3-mutated AML patients revealed that FLT3 inhibitor maintenance
therapy significantly reduced the risk of post-transplant relapse by 65% (HR 0.35, 95% CI
0.23–0.51) and improved survival rates (HR 0.48, 95% CI 0.36–0.64) [20]. The result of a
phase 3 trial evaluating the efficacy of gilteritinib as post-transplant maintenance therapy
is anticipated [21].

Combinations with low-intensity chemotherapy have also been evaluated. Retro-
spective and early-phase studies have suggested the modest efficacy of FLT3 inhibitors
plus azacitidine or low-dose cytarabine with response rates of one-fifth to one-quarter
(Table 2) [22–24]. However, the randomized phase 3 LACEWING trial, which compared



Int. J. Mol. Sci. 2022, 23, 2362 3 of 16

the combination of gilteritinib plus azacitidine with azacitidine monotherapy in patients
with ND FLT3-mutated AML or myelodysplastic syndrome (MDS) who were ineligible for
intensive chemotherapy, did not meet the primary endpoint (overall survival) [25].

Table 2. Clinical studies evaluating FLT3 inhibitors in combination with low-intensity chemotherapy.

Author
and Jounal Object(s) Disease

State Agent(s) Phase Response Rate Median
Survival

Ohanian, et al. [22]
Am J Hematol 2018

FLT3-mutated AML
(ITD only) NDi Sorafenib

+ AZA I/II CR 26% (7/27) 7.1 mo.
[1–29]

Strati, et al. [23]
Am J Hematol 2015

FLT3-mutated AML or MDS
(both ITD and TKD)

NDi
or R/R

Midostaurin
+ AZA I/II ORR 26% (14/48) 22 wk.

[15–29]

Swaminathan, et al. [24]
Haematologica 2020

FLT3-mutated AML or MDS
(ITD only)

NDi
or R/R

Quizartinib
+ AZA/LDAC I/II CR

CRi
17% (12/70)
37% (26/70)

19.2 mo. for AZA
8.5 mo. for LDAC

Wang, et al. [25]
Blood 2020

FLT3-mutated AML
(both ITD and TKD) NDi Gilteritinib

+ AZA III Did NOT meet the primary endpoint
39% were alive when study halted

NDi: newly-diagnosed and ineligible to intensive chemotherapy, AZA: azacitidine, LDAC: low-dose cytarabine.

A combination strategy with non-cytotoxic agents has also been developed. A patient-
derived xenograft (PDX) mouse model experiment demonstrated that quizartinib in com-
bination with the selective B-cell leukemia/lymphoma 2 (BCL-2) inhibitor venetoclax
significantly prolonged survival of FLT3-mutant PDX mice compared with those receiving
monotherapy [26]. This study also suggested that FLT3-ITD inhibition led to increased de-
pendance on BCL-2 through indirect attenuation of B-cell lymphoma-extra large (BCL-XL)
and myeloid-cell leukemia 1 (MCL-1) which are involved in anti-apoptotic mechanisms.
Arsenic trioxide (ATO), one of the key drugs in treating acute promyelocytic leukemia and
which induces differentiation of leukemic cells by enhancing RARA gene function, in com-
bination with the FLT3 inhibitors showed a synergistic anti-leukemic effect in vivo along
with reduced expression (or facilitated poly-ubiquitination) of FLT3 proteins [27]. A PDX
model study suggested that inflammatory genes were upregulated in quizartinib-resistant
FLT3-mutant leukemia, and co-administration of dexamethasone with quizartinib showed
synergistic cell death in vivo [28].

2.2. Isocitrate Dehydrogenase Mutations
2.2.1. Targeting IDH1 and IDH2 Mutations

Isocitrate dehydrogenase (IDH) 1 and IDH2 proteins are house-keeping enzymes
involved in the tricarboxylic acid cycle in mitochondria. Mutant IDH1 and IDH2 con-
fer an aberrant enzymatic activity, which converts alpha-ketoglutarate (alpha-KG) to
the oncometabolite 2-hydroxyglutarate (2-HG) [29], resulting in epigenetic alterations
that prevent hematopoietic differentiation [30,31]. IDH mutations impaired the histone
demethylation that is required for cell differentiation through producing 2-HG [31]. Indeed,
IDH1/2-mutated leukemic cells displayed global DNA hypermethylation and attenuated
function of the alpha-KG-dependent enzyme Tet methylcytidine dioxygenase 2 (TET2) [30],
which partially explains why IDH mutations and TET2 mutation are mutually exclusive
in AML.

Both IDH1 and IDH2 gene mutations are found in approximately 20% of AML [6]
as well as 12% of myelodysplastic syndrome (MDS) especially in high-risk cases [32].
IDH1/IDH2 mutations are also commonly found in high-grade gliomas and IDH1 inhibition
prolonged disease control with favorable safety profile in a phase 1 clinical study [33]. The
specific IDH1 inhibitor ivosidenib demonstrated a 21.6% CR rate in patients with R/R
IDH1-mutated AML in a phase 1 study [34]. Ivosidenib also showed a 42.4% CR plus CR
with partial hematologic recovery (CRh) rates as monotherapy [3] and a 60.9% CR rate
in combination with azacitidine in patients with newly-diagnosed IDH1-mutated AML
who were ineligible for standard therapy [35]. Similarly, the IDH2 inhibitor enasidenib
showed a 40.3% overall response with a median response duration of 5.8 months in patients
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with R/R IDH2-mutated AML (Table 3) [4]. Ivosidenib plus azacitidine therapy for ND
AML/MDS is now under evaluation in the phase 3 AGILE study [36].

Table 3. Clinical studies evaluating IDH inhibitors with or without cytotoxic agents.

Author
and Jounal Target(s) Disease

State Agent(s) Phase Response Rate Duration of
Response

DiNardo, et al. [3]
N Engl J Med 2018

IDH1-mutated
AML R/R Ivosidenib Ib CR

ORR
21.6% (56/258)

41.6% (107/258)
8.2 mo.

[5.5–12.0]

Stein, et al. [4]
Blood 2018

IDH2-mutated
AML R/R Enasidenib Ib/II CR

ORR
19.3% (34/176)
40.3% (71/176)

5.8 mo.
[3.9–7.4]

DiNardo, et al. [36]
N Engl J Med 2018

IDH1-mutated
AML NDi Ivosidenib

+ AZA Ib CR
ORR

60.9% (14/23)
78.3% (18/23)

Not reached
Median f/u 16 mo.

Stein, et al. [37]
Blood 2018

IDH1-mutated
AML

ND

Ivosidenib +
StdCTx

I
ORR 78.0% (32/41) 41% proceeded to

HSCT

IDH2-mutated
AML

Enasidenib +
StdCTx ORR 68.8% (53/77) 43% proceeded to

HSCT

AZA: azacitidine, StdCTx: standard chemotherapy, HSCT: hematopoietic stem cell transplantation, f/u: follow-up.

Combinations with intensive chemotherapy have also been evaluated. A phase
1 clinical study revealed that ivosidenib or enasidenib in combination with standard induc-
tion chemotherapy and consolidation therapy showed 73–93% CR/CRh rates with 58–89%
minimal residual disease (MRD)-negative rates in patients with IDH1- or IDH2-mutated
newly diagnosed AML [37].

2.2.2. Targeting Anti-Apoptotic BCL-2

The B-cell leukemia/lymphoma 2 (BCL-2) family regulates the mitochondrial apop-
totic pathway by controlling mitochondrial outer membrane permeabilization (MOMP)
and the release of cytochrome c [38]. The family consists of proapoptotic proteins (e.g.,
BCL-2 homology 3 (BH3)-only, BCL-2-associated X protein (BAX), and BCL-2 homologous
antagonist/killer (BAK)) and anti-apoptotic proteins (e.g., BCL-2, BCL-XL, and MCL-1) [39].
BCL-2 proteins on the mitochondrial outer membrane surface ordinarily capture cytoplas-
mic BH3-only proteins and inhibit BAX/BAK, which are activated by BH3-only proteins,
then initiate MOMP to release cytochrome c. BCL-2 inhibitors competitively bind to BCL-2
proteins to release BH3-only proteins and disinhibit BAX/BAK, which eventually initiates
the apoptotic cascade of tumor cells (Figure 1) [40]. Chan and colleagues demonstrated
that the oncometabolite 2-HG inhibited the activity of cytochrome c oxidase, a key cation
channel involved in the electron transport system of mitochondria, and then lowered the
threshold of MOMP, resulting in dependence on BCL-2 activity (Figure 1). In this study, ex
vivo and PDX model experiments showed that the BCL-2 inhibitor ABT-199 (venetoclax)
significantly suppressed the proliferation of IDH1- or IDH2-mutated leukemic cells [41].

In the VIALE-A study, a phase 1b study, which proved the clinical efficacy of venetoclax
in combination with azacitidine for previously untreated AML, the subgroup analysis
suggested that IDH1 and IDH2 mutations were independently associated with a favorable
prognosis (hazard ratio, 0.34) [42]. Notably, venetoclax is available for any type of AML
regardless of genomic status, IDH1 and IDH2 mutations might help to predict responses
to the agent. Given that FLT3 inhibition facilitates dependance on anti-apoptotic BCL-2,
as mentioned above, the combination of FLT3 inhibitors and venetoclax can be a future
strategy for AML [26].
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Figure 1. Schematic of the pharmacodynamics of B-cell leukemia/lymphoma 2 (BCL)-2 inhibitors in
association with mutant isocitrate dehydrogenases (IDH)-mediated consequences. BCL-2 ordinarily
inactivates key proapoptotic molecules such as BCL-2 homology 3 (BH3)-only proteins, BCL-2-
associated X protein (BAX), and BCL-2 homologous antagonist/killer (BAK). BCL-2 inhibitors allow
activation of these molecules to initiate the apoptotic cascade. The oncometabolite 2-hydroxyglutarate
(2-HG), which is converted from alpha-ketoglutarate by mutant IDH, inhibits the activity of cy-
tochrome c oxidase and results in decreased threshold of mitochondrial outer membrane permeabi-
lization (MOMP), which eventually leads to dependance on BCL-2.

2.3. Menin-MLL Complex-Associated Gene Mutations
2.3.1. Targeting MLL-Rearrangement

The mixed lineage leukemia 1 (MLL, also known as KMT2A) gene encoding a histone
methyl-transferase is a proto-oncogene involved in a variety of chromosomal transloca-
tions [43]. Rearrangements of the MLL gene (MLL-r.) are found in approximately 5–10% of
AML, are particularly prevalent in infant leukemias, and are associated with poor prognosis
and resistance to chemotherapy [1,44]. Recent studies have suggested that oncogenic MLL
fusion proteins interact with the chromatin-associated complex, including disruptor of
telomeric silencing 1-like (DOT1L), a histone H3K79 methyltransferase, and the product
of the MEN1 tumor suppressor gene (menin), which are required for the initiation of
MLL-mediated leukemogenesis (Figure 2) [45,46]. Menin classically functions as a tumor
suppressor for the endocrine lineage. However, menin also plays an essential role as a
transcriptional cofactor for MLL oncoproteins [46]. Menin links MLL proteins with lens
epithelium-derived growth factor (LEDGF), an epigenetic reader recognizing H3K36 hi-
stone marks, on cancer-associated target genes to upregulate the transcription [47]. In
addition, oncogenic MLL fusion proteins are also linked with the histone H3K79 methyl-
transferase DOT1L via its fusion partners, such as AF9 [48]. Indeed, preclinical studies
have suggested that leukemic cells with MLL-r. were dependent on DOT1L activity [49–51],
which results in upregulation of specific genes essential for hematopoietic proliferation,
such as homeobox A9 (HOXA9) and myeloid ecotropic viral insertion site 1 (MEIS1) [52,53].
Although some previous studies suggested potential therapeutic activity of DOT1L in-
hibitors on AML with MLL-r. [54,55], it turned out to be far from clinically useful [56].
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Figure 2. Schematic of the mechanism of menin-mediated leukemogenesis in acute myeloid leukemia
(AML) with rearrangement of mixed lineage leukemia 1 (MLL-r.), nucleophosmin1 (NPM1) mutation,
or nucleoporin 98 (NUP98) fusions. MLL fusion protein or wild-type MLL protein form chromatin-
associated complex, which upregulates proliferation-initiating genes such as homeobox A9 (HOXA9)
and myeloid ecotropic viral insertion site 1 (MEIS1) mediated by the histone methyltransferase
telomeric silencing 1-like (DOT1L). Spleen tyrosine kinase (SYK) is involved in downstream signaling
and plays a key role in HOXA9/MEIS1-overexpressing AML. Upregulated transcription of MEIS1
results in indirect activation of SYK and, in turn, activated SYK enhances transcription of MEIS1.

Still, several preclinical studies using leukemic cell lines and xenograft mice showed
on-target antileukemic effects of menin-MLL inhibitors [57–61]. Krivtsov and colleagues
demonstrated a dramatic reduction in leukemic burden when MLL-r. PDX mice were
treated with the orally bioavailable menin-MLL inhibitor VTP50469 [61]. This study also
demonstrated uniformly suppressed expression of MLL-target genes, especially MEIS1,
in the bone marrow of PDX mice which were treated with the menin-MLL inhibitor. An-
other menin-MLL inhibitor, MI-3454, also showed complete remission or regression of
leukemia in a PDX model accompanied by downregulation of key leukemogenic genes
such as MEIS1 [60]. Indeed, the agent was equally effective for MLL-r. and NPM1-
mutated leukemia.

2.3.2. Targeting NPM1 Mutations

Nucleophosmin1 (NPM1) mutations are found in approximately 30% of AML patients
and often co-exist with DNMT3A mutations [6,62]. Although mutant NPM1 with absent or
low-allelic-ratio FLT3-ITD is known as a favorable prognostic factor of AML [1], NPM1 and
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FLT3 mutations are not uncommonly found simultaneously [6]. Normal NPM1 protein is a
key chaperon protein in the nucleus that maintains genomic stability [63]. Mutant NPM1
protein loses the ability to be transported into the nucleus and consequently accumulates
in the cytoplasm [64]. MLL proteins form a macromolecular complex involving menin
that maintains expression of HOX genes, resulting in expansion of progenitor cells [65–67].
Recent studies have suggested that the interaction of menin and wild-type MLL plays a
pivotal role in AML with NPM1 mutation by upregulating leukemogenic genes, such as
HOXA, HOXB and MEIS1, similar to the action of MLL-fusion protein (Figure 2) [62,68,69].
Aberrant demethylation of H3K79, the primary target region of DOT1L, and subsequent
upregulation of HOXA9 and PBX3 genes have also been reported [70]. Highly potent menin-
MLL inhibitors have been preclinically developed targeting NPM1-mutated leukemia,
including MI-3454 mentioned above [60,71]. Interestingly, an in vivo study demonstrated
that combined menin-MLL and FLT3 inhibition showed a synergistic anti-leukemic effect
on NPM1-mutated and FLT3-mutated AML [72].

2.3.3. Targeting NUP98 Fusion

The nucleoporin 98 (NUP98) gene was originally identified as a component of the
nuclear pore complex [73]. NUP98 is involved in a variety of balanced translocations and
inversions as the fusion partner of dozens of genes such as HOXA9 and lysine-specific
demethylase 5A (KDM5A), also known as JARID1A [74]. The majority of NUP98 fusions are
accompanied by overexpression of HOXA9 [75,76], which is associated with poor prognosis
in AML [77,78]. Recent studies have suggested that leukemic cells with NUP98 fusions
are dependent on MLL protein in terms of recruiting the fusion proteins onto the HOXA
locus to initiate leukemogenesis [79]. Given the synergy of MLL-r. and NPM1-mutated
leukemia, Heikamp and colleagues demonstrated that the menin-MLL inhibitor VTP50469
prolonged survival of PDX mice with human leukemia following implantation with NUP98-
HOXA9 and NUP98-JARID1A, along with suppressed pro-leukemic gene expression and
upregulated differentiation markers [80].

2.3.4. Targeting SYK Signaling

Spleen tyrosine kinase (SYK) was originally identified as a signaling molecule down-
stream of the B cell antigen receptor. SYK also plays a key role in AML in terms of phos-
phorylating signal transducer and activator of transcription 5 (STAT5) [81] and cooperating
with FLT3-ITD in maintaining leukemia [82], and is also associated with an unfavorable
prognosis [83]. Mohr and colleagues revealed that Meis1 induced SYK signaling through
multiple transcriptional events, including downregulation of microRNA(miR)-146a, which
negatively regulates SYK expression in Hoxa9-overexpressing myeloid progenitor cells.
The study also showed that SYK overexpression enhanced Meis1 transcriptional patterns,
resulting in dependence on SYK activity in Hoxa9/Meis1-overexpressing myeloid pro-
genitors. Indeed, SYK inhibition prolonged survival of mice with Hoxa9/Meis1-driven
leukemia [84]. In an international multicenter phase 1b/2 study, 34 previously untreated
AML patients were treated with the SYK inhibitor entospletinib in combination with stan-
dard induction chemotherapy, resulting in a 56% CR rate with acceptable toxicity [85]. In
this study, patients with HOXA9/MEIS1 overexpression showed significantly better OS
(HR 0.32, 95% CI 0.100–0.997) than others (Table 4).

2.4. TP53 Mutations
2.4.1. p53 Stabilizers

Tumor protein p53 (TP53) is a major tumor suppressor inducing growth arrest or
apoptosis. TP53-induced apoptosis is partially mediated by stimulation of BAX and re-
pression of BCL-2 expression [86,87]. TP53 prevents activity of cyclin-dependent kinase
(CDK) 7, a part of CDK-activating kinase (CAK), to stop cell cycle in response to DNA
damage [88]. TP53 gene mutations are found in less than 10% of AML patients, is one of
the most well-recognized adverse genomic factors, and is often associated with complex
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karyotype [1,6]. A number of in vitro and in vivo studies revealed that TP53-mutated
leukemia gains enhanced self-renewal capacity and a competitive growth advantage, sub-
sequently accumulating additional mutations such as DNMT3A, TET2, and ASXL1 [89].
APR-246 (eprenetapopt) is the first-in-class anti-tumor agent targeting TP53 mutation,
which thermodynamically stabilizes p53 protein and shifts the equilibrium toward a func-
tional conformation [90]. In a phase 1b/2 clinical study, the combination therapy of APR-246
and azacitidine produced a 71% overall response rate, including a 41% CR rate, in patients
with TP53-mutated high-risk MDS or AML (Table 4) [91]. Despite this promising result,
the combination therapy did not meet the primary endpoint (CR rate) in a phase 3 clinical
trial for patients with TP53-mutated MDS, though the CR rate tended to be superior in the
combination group than the azacitidine monotherapy group (33.3% vs. 22.4%) [92]. The
next-generation p53 stabilizer APR-548 is now being evaluated in an early phase clinical
trial [93].

2.4.2. Targeting CD47

The transmembrane protein CD47, also known as the “don’t-eat-me signal”, is the
ligand for signal regulatory protein alpha (SIRPα) on macrophages and dendritic cells
and results in inhibition of phagocytosis [94]. Increased expression of CD47 on AML stem
cells has been shown to be associated with poor prognosis [95]. The anti-CD47 antibody
magrolimab in combination with azacitidine showed a 57% CR/CRh rate in patients with
treatment-naïve AML (65% had TP53 mutation) who were ineligible for intensive therapy
in a phase 1b study. Although the immune escape mechanism through CD47 would not
be specific for TP53-mutant AML, the CR/CRh rates were somewhat higher (67%) in
TP53-mutated AML in this study (Table 4) [96].

Table 4. Clinical trials evaluating SYK inhibitor, p53 stabilizer, and anti-CD47 antibody.

Author
and Reference Category Object(s) Disease

State Agent(s) Phase Response Rate Median
Survival

Walker, et al. [85]
Clin Cancer Res 2020

SYK
inhibitor de novo AML ND Entospletinib

+ StdCTx Ib/II CR
CR/CRi

56% (19/34)
71% (24/34)

37.1 mo.
[16.8–Inf.]

Sallman, et al. [91]
J Clin Oncol 2021 p53 stabilizer TP53-mutated

AML or MDS HMA-naïve Eprenetapopt
+ AZA Ib/II ORR

* 64% (7/11) 10.8 mo.
[8.1–13.4]

NCT03745716 [92] p53 stabilizer TP53-mutated
MDS HMA-naïve

Eprenetapopt
+ AZA

(vs. AZA
alone)

III Did NOT primary endpoint
(CR 33.3% vs. 22.4%)

Sallman, et al. [96]
ASH meeting 2020

Anti-CD47
antibody AML NDi Magrolimab

+ AZA Ib CR
ORR

44% (15/34)
65% (22/34)

12.9 mo.
**

StdCTx: standard chemotherapy, ND: newly-diagnosed, NDi: newly-diagnosed and ineligible to intensive
chemotherapy. * only for AML. ** TP53 mt.

2.5. Other Potential Molecular-Targeting Agents Currently Available in Solid Tumors
2.5.1. KIT Inhibitors

KIT protein, also known as CD117, is expressed in 70% of AML as well as normal
hematopoietic progenitor cells. KIT mutations are seen in less than 10% of all subsets of
AML and in approximately 30% of the core-binding factor (CBF) AML [97–99]. KIT muta-
tions are associated with worse prognosis in CBF-AML [2,100]. KIT protein is a cell-surface
receptor for the cytokine SCF (Kit ligand) and plays an essential role in anti-apoptosis,
proliferation, and hematopoiesis via the Ras-Erk pathway, the PI3K/AKT pathway, and
the JAK/STAT pathway [101,102]. Activating mutations of KIT gene, commonly on the
exon 8 and 17, are frequently found in gastrointestinal stromal tumor (GIST) and systemic
mastocytosis, as well as CBF-AML. A number of tyrosine kinase inhibitors (TKIs) targeting
KIT such as imatinib, sunitinib sorafenib, regorafenib, dasatinib, nilotinib, ponatinib, and
midostaurin are suggested to be a potential therapeutic agent for KIT-mutated tumors [103].
A part or all of imatinib, sunitinib, regorafenib and avapritinib are involved in the standard
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treatment for GIST and systemic mastocytosis. While some KIT A-loop mutations (e.g.,
D816 alterations) render resistance to imatinib and sunitinib in patients with GIST, some
agents (e.g., avapritinib and ponatinib) remain effective for such resistant cases [104,105].
Although the clinical role of KIT inhibitors in treatment of AML has not been established,
there are a few clinical reports suggesting an anti-leukemic effect of KIT inhibitor (e.g.,
dasatinib) for KIT-mutated AML [106,107].

Kampa-Schittenhelm and colleagues reported 77-years-old patient with KIT D816V-
mutated CBF-AML which relapsed after the first-line decitabine monotherapy [106]. Upon
careful consideration and informed consent, he received a KIT inhibitor dasatinib as sal-
vage chemotherapy. Peripheral blasts started to reduce on day 15 and, instead, neu-
trophils/monocytes increased in a few days, suggesting the release of differentiation
blockade. The patient’s mononuclear cell sample showed dose-dependent cytoreduction ex
vivo responding to dasatinib and vanishment of phosphorylated KIT proteins on Western
immunoblotting after dasatinib administered. Although the patient eventually shifted to
best supportive care because of inacceptable tolerability of dasatinib, this report provided
proof-of-concept that KIT inhibition has anti-leukemic effect on KIT-mutated CBF-AML.

Recently, a heat shock protein (HSP)-90 inhibitor pimitespib (TAS-116) showed sig-
nificant improvement of PFS in patients with GIST resistant to imatinib, sunitinib, and
regorafenib in the phase 3 CHAPTER-GIST-301 trial [108]. HSP-90 is a molecular chap-
erone that engages a variety of clients including KIT by interacting with co-chaperone
proteins [109]. Thus, HSP-90 inhibition results in reduced functional stability of KIT then
attenuates it’s signaling. Preclinical studies have suggested that inhibition of HPS-90 led to
tumor shrinkage in human tumor xenograft mouse model as well as depletion of multiple
HSP-90 clients [110]. Katayama and colleagues reported that HSP-90 inhibition restored
the sensitivity to FLT3 inhibitors in AML cell-lines with FLT3-ITD plus FLT3-TKD (e.g.,
N676K, F691L, D835V, and Y824C) which render resistance to FLT3 inhibition [111]. HSP90
inhibitors in combination with other TKIs can be a future strategy in AML treatment.

2.5.2. Targeting RAS Pathway-Related Genes

RAS proteins have GTPase activity responding to growth factor receptor activation
and play an essential role in cell proliferation [112,113]. RAS genes (e.g., KRAS, NRAS, and
HRAS) are one of most popular proto-oncogenes and frequently mutated in human cancer,
affecting the mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase
(PI3K), and Ras-like (Ral) small GTPase (RalGEF) signaling pathways. Activating mutations
of NRAS and KRAS are found in approximately 15–25% of patients with AML [6]. RAS
genes commonly co-mutated with RAS-regulating genes (e.g., PTPN11 and NF1) and/or
signaling receptor genes that rely on RAS-involving pathways (e.g., FLT3 and KIT) [6,114].
Recent studies of cancer clonal evolution have suggested that additional RAS mutations
are associated with resistance to FLT3 inhibitors in FLT3-mutated AML. McMahon and
colleagues sequentially analyzed clinical samples from patients with FLT3-mutated AML
which progressed on gilteritinib treatment [115]. Among forty-one participants of this study,
fourteen patients (34%) acquired new NRAS and/or KRAS mutations after progression on
FLT3 inhibition. Almost complete substation of RAS-mutated subclones for the original
RAS-wild FLT3-mutated clone was observed in a few cases. In addition, leukemic cell lines
with both FLT3 and RAS mutations showed resistance to gilteritinib monotherapy, which
was canceled by co-administration of a MEK inhibitor trametinib.

Preclinical experiments have shown that inhibition of both MAPK and PI3K pathway
did not cause significant leukemic cell death but led to static effects instead [116,117].
Similarly, early phase clinical trials evaluating MEK or AKT inhibitor in patients with re-
lapsed/refractory AML demonstrated only transient or little anti-leukemic effects [118,119].
Whereas, Pomeroy and colleagues found that NRAS-driven AML cell line relapsed af-
ter genetic suppression on NRAS (NRI-AML) was devoid of MAPK and PI3K signaling
but dependent on the cyclin-dependent kinase (CDK) 5-mediated activation of RalGEF
signaling. In in vivo experiments using PDX mouse model, a CDK inhibitor dinaciclib
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which inhibits CDK5-mediated RalGEF signaling induced leukemic cell apoptosis and
prevented evolution of NRI-AML, suggesting that RalGEF signaling is involved in escaping
mechanism of RAS-mutated AML and can be a potential therapeutic target.

The KRASG12C-specific inhibitor sotorasib demonstrated 7–32% of overall response
rates in advanced solid tumors (mainly non-small cell lung cancer and colorectal cancer)
with KRAS G12C mutation in a phase 1 study [120] and now available in some countries.
The efficacy of KRAS inhibition have not been proved in hematologic malignancies neither
clinically nor preclinically. However, given that activating RAS mutations are associated
with worse prognosis and drug resistance in AML, KRAS inhibition might be included in
future possibility.

3. Conclusions and Perspective

Molecular-targeted therapies, especially for specific genomic abnormalities, have had
significant impacts on AML treatment. FLT3 inhibitors and IDH inhibitors have proved its
efficacy in clinical trials and now available in practice. In addition, menin-MLL inhibitors
have shown anti-leukemic effects in preclinical studies of AML with menin-related genomic
alterations such as MLL rearrangements, NPM1 mutations, and NUP98 fusion genes. SYK
inhibitors can be another strategy for AML with menin-related genomic alterations. For
AML with TP53 mutation, p53 stabilizers and anti-CD47 antibodies can be a candidate
for gene-specific therapeutic agents. Although clinical evidence has not been sufficient
yet, anti-KIT strategy such as HSP-90 inhibitors and RAS-pathway interference might be a
future approach for AML treatment. Mutations of FLT3, MLL, and TP53 are considered to
be unfavorable prognostic factors so far. However, the development of targeted therapies
with or without conventional therapy may improve or perhaps reverse the current situation.
Aberrant oncogenic mechanisms depending on specific genomic abnormalities can be an
ideal therapeutic target, though preventing or overcoming treatment resistance remains a
challenge. Determining genomic features and following case-specific molecular-targeted
strategy should be future therapeutic strategy in AML. Results from current developments
and ongoing trials are anticipated.
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