Skip to main content
. 2022 Feb 21;22(4):1687. doi: 10.3390/s22041687
Algorithm 1 INS Solution Improvement Using ML
Input IMU’s sensor measurements of three gyroscopes and three accelerometers (ωx,ωy,ωz,ax,ax,ax)
for the MEMS-IMU and the reference IMU, initial PVA states Lat0,Long0,Att0,V0N,V0E,V0D,p0,r0,y0,
and the navigation solution of the reference IMU (pos_ref,vel_ref,att_ref).
Step 1 Prepare and tune the ML-ANFIS options (input data, output data, type of clustering,
MF type, number of Ms, F and epochs/iterations).
Step 2 Apply the ML-ANFIS on 50% of the input data (training phase).
Step 3 Generate the ML-ANFIS.
Step 4 Evaluate and apply the ML-ANFIS on the remaining data (testing phase).
Step 5 Evaluate the ML-ANFIS’s output (improved IMU sensor measurements (ωx,ωy,ωz,ax,ay,az).
Step 6 Compare the MEMS IMU’s sensor measurements and the ML-ANFIS IMU’s sensor measurements to the reference IMU’s sensor measurements to compute the percentage of improvement caused by the ML-ANFIS (RMSE).
RMSE=1nnXn,RefXn,ML2
where Xn,Ref and Xn,ML are the reference IMU and trained IMU measurements, respectively.
Step 7 Compute the ML-ANFIS’s navigation solution (PVA) by using the output of the ML-ANFIS as the input to the INS.
Step 8 Compare the MEMS IMU (PVA) and the ML-ANFIS (PVA) to the reference IMU (PVA) to compute the percentage of improvement of the ML-ANFIS (PVA) using the RMSE metric.
Output The INS solution (PVA) of the MEMS-IMU and the ML model compared to the output using the reference IMU.