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Abstract

Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the 

spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-

unit structures. The vast majority of equilibrium assembly processes give rise to two states: one 

consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited 

size. This review focuses on the more specialized class of self-limiting assembly, which describes 

equilibrium assembly processes resulting in finite-size structures. These systems pose a generic 

and basic question, how do thermodynamic processes involving non-covalent interactions between 

identical subunits “measure” and select the size of assembled structures? In this review, we begin 

with an introduction to the basic statistical mechanical framework for assembly thermodynamics, 

and use this to highlight the key physical ingredients that ensure equilibrium assembly will 

terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, 

and classify them within this framework based on two broad categories: self-closing assemblies 
and open-boundary assemblies. These include well-known cases in biology and synthetic soft 

matter — micellization of amphiphiles and shell/tubule formation of tapered subunits — as well 

as less widely known classes of assemblies, such as short-range attractive/long-range repulsive 

systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we 

describe the physical mechanisms that select equilibrium assembly size, as well as potential 

limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size 

assemblies, and draw contrasts with the size-control that these can achieve relative to self-

limitation in equilibrium, single-species assemblies.

I. INTRODUCTION

A. Overview

Self-assembly is a process in which multiple subunits, or “building blocks”, spontaneously 

organize into collective and coherent structures. This process is ubiquitous in living systems, 

where it underpins a wide range of structures at the cellular and sub-cellular scale, from 

lipid membranes to multi-protein filaments and capsules (Alberts et al., 2002). Inspired by 

biology’s successful strategies to build functional nanostructures, self-assembly is forming 

the basis of modern approaches to generate materials from the “bottom up” (Hamley, 
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2003). Chemical techniques enable synthesizing a bewildering array of small-molecule, 

macromolecular, or particulate subunits that are engineered to self-assemble into high-order 

architectures (Boles et al., 2016; Klok and Lecommandoux, 2001; Stupp and Palmer, 

2014). As in the biological context, the assemblies bridge between the scales of molecules 

and chemical function (nanometer and subnanometer) to size scales that are useful for 

controlling material properties (microns and beyond).

In different domains of science and engineering, the term “self-assembly” often connotes 

a range of distinct, if overlapping, physical processes. In its broadest usage, self-assembly 

implies the collective association of multiple elements into organized configurations, by 

dynamics that start from a relatively “disorganized” state and evolve with at least some 

degree of randomness. The great conceptual appeal of self-assembly in materials science is 

that the instructions for a desirable or useful structure may somehow be imprinted into the 

assembling subunits themselves, such that in a simple mixture, the desired target structures 

emerge from the random processes of Brownian motion and subunit association.

In this article, we focus on self-limiting assembly (SLA), defined as self-assembly processes 

that terminate at an equilibrium state in which superstructures have a well-defined and 

finite spatial extent in one or more dimensions. Many examples of SLA can be found in 

biological systems, where the assembly of identical subunits into larger, yet finite-sized, 

superstructures is common and functionally vital. As shown in Fig. 1, examples include i) 

the protein shells that enclose viruses (Caspar and Klug, 1962; Mateu, 2013; Perlmutter 

and Hagan, 2015) and microcompartments (Kerfeld et al., 2010; Rae et al., 2013; Tanaka et 
al., 2008), ii) finite-size protein superstructures in photonic tissues (McPhedran and Parker, 

2015; Prum et al., 2009; Saranathan et al., 2012), and iii) finite-diameter bundles and fibers 

of cytoskeletal or extracellular protein filaments (Fratzl, 2003; Neville, 1993; Popp and 

Robinson, 2012). Each of these examples shares the notable feature that the finite size 

of the assembled structure far exceeds the nanometer size scale of the protein subunits. 

Crucial to their biological roles, the functional properties of these protein superstructures are 

regulated through the control of their finite size: respectively, (i) selective encapsulation and 

transport; (ii) optical response; and (iii) stiffness and strength. In this way, Nature exploits 

self-assembly to deploy structures, built from the same or similar subunits, in diverse 

intracellular and extra-cellular environments, and adapts their performance and functions by 

controlling the size of the assembled structure.

In contrast to these examples of SLA, most typical mechanisms of self-assembly in 

synthetic systems result in unlimited organized states, such as crystalline or liquid crystalline 

mesophases. In these states, structure may be well-defined on some microscopic scale, such 

as the unit cell dimension, but its overall size is uncontrolled by assembly thermodynamics. 

This result, which may be described as bulk phase separation, is a generic consequence 

of the thermodynamic trade-off between entropic and energetic drives. In the most general 

case, once the net cohesive drive for a subunit to join an assembled structure exceeds the 

entropic penalty for giving up its higher configurational freedom as a disassociated unit, 

there is no thermodynamic reason to stop this process. Thus, subunits continually add to the 

aggregate until it reaches macroscopic proportions and the subunits are nearly depleted.
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This review aims to describe the basic physical ingredients and common outcomes of 

assembly mechanisms that terminate at well-defined, finite sizes. We draw upon examples of 

SLA from biological systems, and consider the requirements to achieve such assemblies 

in synthetic systems. For clarity of presentation, we specifically focus on assemblies 

comprising a single species of identical subunits. Moreover, we restrict our definition of 

SLA to equilibrium assembly mechanisms, meaning that assembly terminates at a finite-

sized free energy minimum structure.

Equilibrium assembly processes deserve special focus for both conceptual and practical 

reasons. A key advantage is that they are described by well-defined and generic statistical 

mechanical principles. This allows one, as we attempt to do in this article, to draw 

sharp distinctions between assemblies that either are or are not self-limiting. Of course, 

reaching thermodynamic equilibrium requires subunits to associate and disassociate from 

aggregates sufficiently freely that a thermodynamically large collection of subunits 

behaves ergodically, sampling a sufficiently large ensemble of aggregation states in an 

experimentally relevant time. For systems at or near room temperature, such conditions are 

accessible when assembly is driven by non-covalent and reversible interactions, of the type 

that characterize physical association between macromolecules and colloidal particles in 

solutions (Israelachvili, 2011; Russel et al., 1989), including van der Waals, electrostatic, 

hydrophobic, hydrogen-bonding, and depletion forces.

The ability of reversibly associating assemblies, if given sufficient time, to proceed toward 

one specific, thermodynamically-defined state, points to practical advantages of equilibrium 

assembly. As evidenced by the synthetic approaches to size-controlled structures referenced 

above, non-equilibrium control over finite-dimensions of assemblies requires extensive 

protocols to control the assembly environment, for example, precisely regulating the 

temporal sequence of temperatures and subunit concentrations. This makes it exceedingly 

difficult, if not impossible, to deploy these non-equilibrium size-control strategies in 

uncontrolled environments, such as the complex and dynamic milieu of living organisms. In 

such scenarios where assembly cannot be carefully “supervised”, equilibrium mechanisms 

of assembly offer the distinct advantage that the final states may still be well defined. For 

example, viruses can exert only limited control over the inter-cellular media of their host 

organisms. Nevertheless, to be infectious, size-controlled capsid shells must assemble with 

high-fidelity from the capsomer subunits. While this assembly process is in general not 

purely equilibrium, biology often achieves such high fidelity by building upon equilibrium 

processes. For example, many viral capsids can spontaneously assemble from their purified 

components under (near) equilibrium conditions, with structures that are indistinguishable 

from capsids formed within a host cell (Fox et al., 1998; Johnson and Speir, 1997; Wang 

et al., 2015; Wingfield et al., 1995), and in some cases are even infectious (e.g. (Fraenkel-

Conrat and Williams, 1955)).

At the center of this specialized focus on equilibrium mechanisms for self-limiting single-

species assembly is the puzzle: how can equilibrium association processes “measure” the 
assembly to select a thermodynamic preferred state that is larger than a single subunit, 
yet less than infinite (i.e. bulk)? Because thermodynamic equilibrium is independent of the 

history of system, this state cannot be defined by the temporal process in which subunits 
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arrive to the aggregate. Nor do these identical subunits have specific “addresses” that 

prescribe where they are supposed to sit in a particular aggregation state. The answers, 

not surprisingly, lie in how the shape and interactions of subunits conspire to determine the 

dependence of assembly energetics on size. For example, in the canonical example of SLA, 

formation of spherical micelles from amphiphillic molecules (Israelachvili et al., 1976), the 

assembly motif favors individual subunits to span the assembly from the solvophobic core 

to the solvophillic surface. Hence, in this case it is intuitive that energetics favors aggregates 

that are limited to sizes that are comparable to the length of amphiphilies themselves. Far 

less intuitive is how single-species assemblies select finite equilibrium sizes that are much 

bigger than the subunit dimensions, or the range of their interactions. That is to say, what are 

“limits of self-limitation” — i.e., how large can a self-limited structure be, and how does this 

size limit depend on the physical characteristics (e.g. shape, interactions) of the subunits?

B. Outline

With these basic questions in mind, this review has two broad aims. We first overview 

the generic statistical and thermodynamic elements of SLA, and then present a broad 

classification for known mechanisms of SLA of identical subunits. The article is organized 

into two main sections based on these aims. In Sec. II, we present the thermodynamic 

principles of SLA based on the statistical mechanics of ideal aggregation of identical 

subunits. This begins with an introduction to ideal aggregation theory and illustration of the 

more generic case of unlimited assembly. Following this, we introduce a generic description 

of the ingredients for SLA. We review how the onset of aggregation – known as the critical 
aggregation concentration (CAC) – the self-limiting size of aggregates, and the statistics of 

aggregate size fluctuations depend on the functional form for the size-dependence of the 

intra-aggregate interaction energy. We then review the conditions for “polymorphic” SLA, 

in which assemblies exhibit multiple states of aggregration (some finite, some not). These 

systems are characterized by so-called secondary CACs, in which increasing concentration 

sufficiently far above the CAC leads to additional transitions between aggregation states.

Sec. III describes physical systems that exhibit SLA, and classifies the models that capture 

their behavior into two categories illustrated schematically in Fig. 2: self-closing and 

open boundary assembly. The former category describes assembly processes that terminate 

because they close upon themselves (Fig. 2A), and applies to shell and tubule formation, 

as well as the micellar assembly of surfactants, co-polymers, and other amphiphiles. The 

latter category applies to arguably lesser known classes of systems that have short-range 

attractions and long-range repulsions, or form geometrically-frustrated assemblies. These 

conditions enable assembly to terminate when the aggregate still has “open boundaries” 

characterized by a finite surface energy (Fig. 2B). For this case, we introduce a generic 

framework for understanding how the interplay between intra-aggregate stress accumulation 

and aggregate surface energy controls the finite-size of aggregates and the phase boundary 

between self-limiting and bulk aggregation.

While the core focus of this review is on the ingredients and outcomes of SLA from the 

point of view of thermodynamic equilibrium, the kinetic processes by which such systems 

reach equilibrium states (or in some cases, not) are essential to their study, particularly 
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from the experimental point of view. A comprehensive review of kinetic limitations on 

assembly, which is relevant to both self-limited and unlimited assembly, is beyond the scope 

of this article. Nevertheless, we provide a basic introduction to some key considerations of 

assembly kinetics in Sec. IV. In that section, our purpose is to illustrate how those features of 

the assembly energetics that give rise to size-selection in equilibrium influence the principle 

kinetic pathways of their formation.

Before concluding, we provide a discussion in Sec. V of physical mechanisms leading 

to finite-size aggregates that fall outside of the major scope of the review, namely non-

equilibrium and multi-species SLA, and questions these pose to the forgoing discussion for 

the more limited focus on single-species equilibrium SLA. We conclude with some remarks 

about open challenges in the application of the mechanisms and principles of SLA.

C. Scope of review

This review considers equilibrium assembly mechanisms that terminate at well-defined, 

finite sizes. As this focus suggests, we will leave out discussion of non-equilibrium 

processes in general, and more specifically, what might be called active-assembly processes, 

such as the steady-state length of treadmilling and severing cytoskeleltal filaments (Desai 

and Mitchison, 1997; Mohapatra et al., 2016; Pollard, 2016). Beyond that, we specifically 

consider assembly mechanisms of a single species of identical subunits. To be sure, this 

leaves out an emerging and fascinating area of research on so-called “addressable assemblies 

(Jacobs and Frenkel, 2016; Zeravcic et al., 2017), where mixtures of multiple distinct 

subunit species may be “programmed” to assemble into a specifically defined 3D structure 

in equilibrium. In this article, we provide only a limited discussion about size-controlled 

multi-species assembly and possible trade-offs with single-species mechanisms, particularly 

how the number of required species increases with target size.

Although the fabrication and synthesis of finite, size-controlled structures is well-known 

in synthetic materials, for example, size-controlled nanoparticles of atoms (Cozzoli et al., 
2006; Yin and Alivisatos, 2005) and macromolecules (Hiemenz and Lodge, 2007), these 

examples raise a key distinction between equilibrium and non-equilibrium assembly. The 

control over finite size in all of these foregoing examples relies on the non-equilibrium 

process by which they form. For example, the size distribution of metal nanoparticles 

(O’Brien et al., 2016; Yin and Alivisatos, 2005) is selected through spatiotemporal control 

of the physical-chemical factors that control nanocrystal growth (e.g. concentrations, 

temperature, ionic conditions). Indeed, as we discuss below, in generic conditions under 

which such assemblies form, allowing these assemblies to proceed to thermodynamic 

equilibrium would destroy the size control. Finite-sizes are only possible when these 

processes are driven, maintained, and arrested out of equilibrium. In this sense, we reserve 

the term “self-limiting” for those rarefied assembly processes that result in finite-size 

structures in thermodynamic equilibrium. The physical mechanisms of equilibrium assembly 

that achieve such size control are the central focus of this article.
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II. THERMODYNAMIC ELEMENTS

We begin with a review of the elementary statistical mechanical framework to describe 

equilibrium aggregation. We then illustrate the statistical thermodynamics of aggregation in 

models of what we will call canonical aggregation, where assembly proceeds via cohesive 

(short-range and stress free) assembly of elemental units into 1D, 2D, and 3D aggregates. 

We illustrate how so-defined canonical assemblies do not exhibit self-limitation. We then 

describe the generic conditions for self-limiting (finite) equilibrium assembly, and give an 

overview of the concentration-dependent thermodynamics of self-limiting assembly. Finally, 

we discuss models of competing finite aggregates and polymorphic transitions between 

finite to unlimited assembly, both of which may by characterized multiple aggregation 

thresholds in the ideal theory.

A. Equilibrium principles

In this review we concern ourselves with equilibrium association of single subunits, 

or monomers, into states with aggregation number n subunits, or n-mers. Our purpose 

is to describe the minimal ingredients of assembly dominated by structures with finite 

aggregation number n. To this end, we restrict our presentation to ideal aggregation 

theory, where interactions between distinct aggregates are neglected. This is not to say 

that interactions among subunits within the same aggregate are neglected. Quite the contrary, 

as we describe below, the intra-aggregate energetics, and its n-dependence, are critical 

for determining whether or not association leads to self-limited states, or instead, more 

canonical states of bulk aggregation.

1. Classical aggregation theory: fixed total concentration, non-interacting 
aggregates—Ideal aggregation theory is well established for certain classes of self-

assembly systems, particularly in the context of amphiphiles and surfactants. As such, this 

theory is better described, and in greater depth, in references such as (Gelbart et al., 1994; 

Israelachvili et al., 1976; Safran, 1994; Tanford, 1974). Here, our purpose is to consider the 

application and implications of ideal aggregation theory to a broader class of self-limiting 

assembly systems. Hence, we only present a minimal introduction to the elements necessary 

to describe aggregation to self-limiting states.

We consider a solution of N total subunits in a fixed total volume V. In what follows, 

we refer to unnassembled single subunits as monomers1. To describe the concentration of 

subunits, it is convenient to scale concentration by the reference state concentration v0
−1; i.e., 

v0 is the volume per subunit in the reference state2. In this way, we can define concentration 

in non-dimensional terms as the total volume fraction of subunits, Φ = Nv0/V3. The N 
subunits are distributed among distinct n-mer aggregates, with the volume fraction of 

1In literature on amphiphile aggregation the term “unimer” is often used to describe the single subunit, to avoid overlap with the 
connotation of “monomer” as the chemical repeat of macromolecular chain, which is often a component of self-assembling molecular 
subunits.
2For concreteness, we may take v0 to be the subunit volume in the disassociated state, which provides a convenient and non-
dimensional measure of concentration which will be much less than unity for dilute conditions. However, the formalism is independent 
of choice of reference state; for example, v0 = 1/NAV liter with the reference state concentration of 1 mol/liter commonly used in the 
life sciences. Changing the definition of the reference state only uniformly rescales the free energy of intra-aggregate interactions ϵ(n).
3Throughout, we also refer to a Φ more colloquially as the “concentration” of subunits
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subunits in n-mers defined as ϕn. In the following, we refer to ϕn as the subunit fraction 
distribution. Throughout this review, it is also useful to introduce a separate variable for 

the aggregate distribution ρn ≡ ϕn/n, which describes the relative count of n-mers in the 

mixture. Defined in this way, ϕn and ρn are all less than unity for all n. Moreover, for 

the particular assumptions of ideal aggregation to hold (i.e. two-body contacts between 

aggregates are vanishingly rare), these quantities must all remain much less than unity. 

To simplify the nomenclature, throughout the review we refer to the non-dimensional 

concentration (volume-fraction) simply as the concentration.

We define nϵ(n) as the free energy of intra-aggregate interactions; i.e., ϵ(n) is the per subunit 
aggregation free energy in an n-mer. The total free energy F for the ideal distribution of 

aggregates is given by

F
V /v0

= ∑
n = 1

∞
ϕn ϵ(n) + kBT

n ln ϕn/n − 1 , (1)

with the two terms in the parentheses respectively representing the intra-aggregate 

interaction free energy and translational entropy (in the ideal solution approximation) of 

n-mers, with the 1/n in the latter term reflecting the critical fact that all subunits of an n-mer 

share a common, single center-of-mass degree of freedom.

To obtain the equilibrium aggregate size distribution, we minimize F with respect to ϕn, 

subject to the constraint that the total subunit concentration is fixed:

∑
n = 1

∞
ϕn = Φ, (2)

i.e.,

∂
∂ϕn

F + μ Φ − ∑
n = 1

∞
ϕn = 0 (3)

with μ playing the role of a Lagrange multiplier. This yields

μ = ϵ(1) + kBT lnϕ1 = ϵ(2) + kBT
2 ln ϕ2/2 = … = ϵ(n) + kBT

n ln ϕn/n = ∂F
∂ϕn

(4)

showing that μ is the subunit chemical potential. This condition requires that subunits have 

the same chemical potential in all aggregates, and it derives from both the energetics of the 

assembly and the (ideal) translational entropy of the n-mer. Note that the prefactor of 1/n of 

the translational entropy, deriving from the sharing of a single center of mass in an n-mer, 

reflects a generically higher translational entropy of disaggregated states. The limit n → ∞ 
gives μ = ϵ(∞), describing the equilibrium between monomers and a bulk phase-separated 

condensate which has no translational entropy. For simplicity of notation, throughout this 

article, we choose to define energies such that ϵ(1) = 0, in which case ϵ(n) is defined as the 

difference of the per subunit energy between an n-mer and disassembled monomers.
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It is convenient to use the first equality in eq. (4) to recast the chemical potential in terms 

of the (unknown) monomer concentration, from which we can reformulate the generic 

chemical equilibrium conditions in terms of the law of mass action

ϕn = n ϕ1e−βϵ(n) n . (5)

where β−1 ≡ kBT. Inserting the expression for ϕn(ϕ1) into the fixed number concentration eq. 

(2) and summing over n then results in an equation of state relating the total concentration 

Φ to the monomer concentration ϕ1. This equation of state and the underlying distribution 

of assemblies, ϕn, derive from the specific n-dependence of aggregate interactions, with 

equilibrium states that are dominated by self-limited aggregates occurring only for certain 

forms of ϵ(n).

2. Unlimited assembly: short-range cohesive aggregation—Before describing 

models that give rise to SLA, we first consider the thermodynamics of the simplest models 

of physical association, described by short-range attraction between subunits. Crucially, 

while these models are relevant to a broad range of physical scenarios like colloidal 

crystallization (Manoharan, 2015; Morphew et al., 2018), they do not exhibit SLA. Yet, 

they will serve as a useful reference point for illuminating the necessary conditions 

for SLA. Specifically, these models result in either a single dispersed state whose most 

populous aggregate state is n = 1 (the free monomer), or coexistence between the dispersed 

monomer-dominated state and an unlimited aggregate (macrophase separation). The absence 

of equilibrium finite-sized states will be traced to the generic size-dependence of the cost of 

open boundaries at the edges of cohesive aggregates. In subsequent sections we will show 

mechanisms that compete against the open boundary cost to enable SLA.

Here, we consider models where inter-subunit association promotes uniform d-dimensional 

aggregates, e.g. 1-dimensional chain-like or 2-dimension sheet-like aggregates. Every 

internal subunit forms, on average, z attractive bonds of strength −u0, and subunits at the free 

boundary have δz fewer contacts (e.g. Fig. 3A). For example, in d = 1 chain-like assembly z 
= 2 and δz = 1. For the generic dimensionality, the interaction free energy takes the form

ϵ(n) = − ϵ0 + Δ0
n1/d , (6)

where ϵ0 = u0z/2 and represents the per subunit cohesive free energy in the bulk (i.e. n 
→ ∞) structure. The second term derives from the growth of number of particles at the 

boundary (~ n(d−1)/d) and their deficit of cohesive bonds (δz), so that Δ0 is equal to u0(δz) 

times a geometric factor accounting for the mean bond geometry at the boundary. Notably, 

the bonding-geometry in these assemblies permits the structure to grow uniformly without 

disrupting this local contact structure at any size scale, a condition that we revisit when 

describing examples of self-limiting assembly in Sec. III.

We define the concentration ϕs ≡ e−βϵ0, so that the law of mass action, eq. (5), takes the form
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ϕn = n ϕ1/ϕs
ne−βΔ0nα, (7)

where α = 1 – 1/d is an exponent that characterizes the geometric growth of the exposed 

boundary with n. As shown in Fig. 3B, ϕ1 ≤ ϕs and the distribution ρn = ϕn/n decreases 

exponentially with aggregate size for large n, and for any d. Hence, under these conditions 

Φ, the sum over the subunit fraction distribution in eq. (2), is finite, implying the existence 

of conditions where the concentration of subunits achieves equilibrium in the suspension. 

However, no such equilibrium exists for ϕ1 > ϕs, implying that ϕ1 → ϕs is an upper limit 

to concentrations that may be in equilibrium in a dispersed state. In other words, when Φ 
is sufficiently large that ϕ1 = ϕs the solution is saturated, and additional subunits (further 

increasing Φ) must phase separate to the macroscopic state (i.e. n → ∞).

First consider the linear case (d = 1), where the equation of state can be ready computed 

from eq. (7) with α = 0 and the geometric series,

Φ = e−βΔ0 ϕ1ϕs
ϕs − ϕ1

2    for d = 1 (8)

which notably diverges as ϕ1 → ϕs. As plotted in Fig. Fig. 3C, this divergence indicates that 

the monomer concentration increases with total concentration, but never reaches the point 

of saturation (i.e. ϕ1 < ϕs for any finite Φ). Hence, for all subunit concentrations the system 

maintains ϕ1/ϕs < 1, implying that the distribution of linear aggregates is always exponential, 

ϕn/n ∝ e−n/〈n〉, where the number-average length is 〈n〉 = 1/ln(ϕs/ϕ1).4 Noting that ϵ0 = 

Δ0 for a 1D chain assembly, the growth of mean length with end energy in the limit of 

high concentration n ≃ eβΔ0/2 Φ, which is well-known for equilibrium polymers (Hiemenz 

and Lodge, 2007) and cylindrical micelles (Gelbart et al., 1994; Safran, 1994), highlights 

the mechanism that prevents “bulk” assembly for 1D aggregation. In this dimension, the 

probability to introduce a free end remains finite eβΔ0 in the n → ∞ limit, analogous to 

the statistics of domain walls in the 1D Ising model at finite temperature (Fisher, 1984). 

However, while the mean-size is finite, this case is distinct from what we will describe as 

self-limiting assembly, in both the strong dependence of 〈n〉 on total concentration, and 

perhaps more significantly, the fact that fluctuations in aggregate size are always comparable 

to the mean; that is, n − n 2 1/2 ∝ n .

For higher assembly dimensionality, (d > 1), the geometric growth of the free boundary 

cost restrains the n → ∞ divergence in the distribution eq. (7) as the solution approaches 

saturation. For ϕ1 = ϕs the distribution takes the form ϕn ϕ1 ϕs = ne−βΔ0nα
, the sum over 

which converges for α > 0 when d > 1. For example, we can approximate the sum for planar 

aggregates (d = 2) by replacing the sum over aggregation number n with dimensionless 

4The number-average aggregate size is 〈n〉 = (Σn nρn)/(Σn ρn) = (Σn ϕn)/(Σn ϕn/n), where ϕn/n is the distribution of n-mers, while the 
mass-average aggregate size is 〈n〉M = (Σn nϕn)/(Σn ϕn).
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aggregate radius n = πr2, i.e. Σn ϕn → 2π ∫ drr ϕ(r). At saturation, aggregates sizes are 

exponentially distributed, ϕ(r) ≃ πr2e− πβΔ0r, yielding a saturation concentration

Φs(d = 2) ≃ 12 kBT
Δ0

4
(9)

at which point the ideal solution of aggregates reaches equilibrium with the bulk condensate. 

Thus, with the exception of the special case of d = 1 assembly, short-range cohesive 

aggregation is characterized by a finite saturation concentration, Φs = Φ(ϕ1 = ϕs), above 

which subunits phase separate into an unlimited bulk structure.

The thermodynamics of these examples are plotted in Fig. 3C in terms of the equation 

of state ϕ1(Φ) for each dimensionality. Note that while the distributions of short-range 

interacting systems have finite mean sizes in the absence of macrophase separation, their 

distributions are dominated by monomers; i.e., the concentration of n-mers ρn is always 

maximal for n = 1, a property that sharply contrasts with the SLA behavior described next in 

Sec. II.B.

B. Self-limiting assembly: Elements and outcomes

In this section, we describe the generic ingredients and thermodynamic outcomes of 

assembly models that exhibit self-limitation. That is, unlike the short-range cohesive models 

described above, these systems undergo ideal assembly into self-limiting states dominated 

by aggregates with a finite size n* that is larger than 1, yet smaller than bulk (unlimited) 

states.

The physical mechanisms that give rise to this behavior will be discussed in detail in Sec. 

III. Here, we give an overview of the essential thermodynamic ingredients and behavior 

based on a generic description of the energetics of a self-limiting system. We consider 

the assembly behavior in terms of a generic function for the interaction free energy per 

subunit, ϵ(n), which, as sketched in Fig. 4A, favors aggregation at a particular finite size, 

or possibly several distinct finite sizes. To highlight its distinct role from the translational 

entropy of aggregation, we use the term aggregation energetics to refer to ϵ(n), but we note 

that this describes a free energy per subunit, as interactions in general have both energetic 

and entropic contributions.

Given a known form of the ϵ(n), the discussion of this section addresses several key 

questions. First, what determines the onset of aggregation from the dispersed state? Second, 

what selects the (dominant) size of finite aggregates? And third, what are the conditions 

for driving transitions between different states of self-limiting aggregation, or between 

self-limited and unlimited aggregation states?

1. Aggregation threshold—We first describe the simplest picture of the concentration 

dependence of ideal aggregation. We begin with the assumption of an energy per subunit 

ϵ(n) of the form shown in Fig. 4A, which has a single energy minimum at a finite 

aggregation number nT, which we call the target size. The basic dependence of aggregation 

on concentration for such a model is sketched in Fig. 4B. There are two dominant 
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populations of aggregates, monomers and n-mers, with the n-mers narrowly distributed 

around the most populous state n* ≈ nT.

For large enough n*, the thermodynamics of aggregation can be captured, to a first 

approximation, by a two-state, or bimodal, distribution, in which fluctuations around free 

monomers and the n-mer aggregate peak are neglected. We will self-consistently test 

the validity of this approximation below (see eq. 18). When subunits are distributed 

strictly between the n = 1 and n = n* states, the conservation of subunit mass is simply 

Φ = ϕ1 + ϕn*. Chemical equilibrium then gives the concentration in preferred aggregates 

ϕn* = n* ϕ1e−βϵ*
n*

, where ϵ* ≡ ϵ(n*) < 0 is the per subunit energy gain upon aggregation 

into the optimal size. Defining the concentration scale

ϕ* ≡ n*e−n*βϵ*
−1/ n* − 1

≈ eβϵ*/n*
1/n*, (10)

yields the following equation of state, relating total concentration to monomer concentration

Φ
ϕ*

= ϕ1
ϕ*

+ ϕ1
ϕ*

n*
, (11)

a result derived originally by Debye to explain scattering in soap solutions (Debye, 1949). 

The dependence of the populations of monomers and n*-mers on total concentration is 

plotted in Fig. 5A and can be summarized as follows. For low concentration, Φ ≪ ϕ*, and 

additional subunits added to the system go predominantly to monomers, since ϕ1 ≈ Φ while 

ϕn* ≈ ϕ* Φ/ϕ*
n* ≪ Φ. Notably, the population of aggregates in this regime ϕn* is simply 

proportional to the random probability of n* free subunits to spatially coincide, Φn*, times 

the enhanced Boltzmann factor for aggregation, e−n*βϵ* ≈ ϕ*
−n*, and hence is diminishingly 

small. In the large concentration regime Φ ≫ ϕ*, the dominant populations are reversed: the 

n*-mer population increases in proportion to total concentration, ϕn* ≈ Φ, while monomers 

increase much more slowly, ϕ1 ≈ ϕ* Φ/ϕ*
1/n* ≪ Φ. These two regimes are characterized by 

a crossover near Φ ≈ ϕ*, which is known as the critical aggregation concentration (CAC), 

although it is not strictly a phase transition for finite n*.5 As illustrated in Fig. 5A, the 

aggregation crossover becomes increasingly sharp as the aggregation number n* increases. 

Fig. Fig. 5B shows an example of CAC behavior observed in experiments of hepatitis B 

virus capsid protein assembly (Ruan et al., 2018).

Underlying the transition is a thermodynamic trade off between translational entropy and the 

interaction free energy that drives aggregation. Maximizing the ideal translational entropy of 

aggregates favors maximizing the number of independent translational degrees of freedom, 

i.e. the number of independent centers of mass in the mixture. To form an aggregate, n* 

5The CAC is commonly referred to as the critical micelle concentration (CMC) in the amphiphile literature. In the virus assembly 
literature it is often called the pseudo-critical concentration to emphasize that it does not correspond to a true phase transition for finite 
n*, and because the CAC observed in finite-time experiments typically exceeds the equilibrium CAC due to nucleation barriers.
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monomers must give up their n* centers of mass, for the single center of mass of the 

aggregate. Only when the aggregation free energy is sufficient to “pay” this entropic price 

(i.e. when the concentration of “excess” monomers is sufficiently large), does aggregation 

become thermodynamically favorable. Hence, the CAC depends not only on aggregation 

energetics, but also the aggregation number n*. According to eq. (11), ϕ* exhibits a modest 

increase with n* (as n*
−1/n*) due to the increased translational entropy loss for when 

joining larger aggregates. We return to the implications of the n*-dependence of aggregation 

thresholds in the discussion of competing aggregate states below. Notice that although the 

model ignores physical interactions between distinct aggregates, the change in translational 

entropy couples n* units, making aggregation a cooperative process. For this reason, the 

CAC becomes progressively sharper and tends toward a thermodynamic transition as n* → 
∞ (Fig. 5A).

2. Finite aggregates: Mean size and size dispersity—Here we review the 

conditions for the most probable, or optimal aggregate size n* given a known form of 

ϵ(n), which we assume for the moment to have a single minimum at target size nT. The 

optimal size n* corresponds to the maximum in the aggregate distribution ρn = eβ(μ − ϵ(n)) n, 

or equivalently, the minimum in the free energy n[ϵ(n) − μ], which includes the total 

interaction free energy and entropy cost of forming an n-mer from free monomers. However, 

except under conditions where monomers are buffered to a fixed concentration, the chemical 

potential μ = ln ϕ1 varies as the equilibrium monomer population changes with total 

concentration. Naively, this might suggest that the optimal aggregate size should strongly 

vary with total concentration. Here, we illustrate why, notwithstanding the variation of μ 
with concentration, n* is nearly independent of Φ and almost entirely determined by the 

form of aggregation energetics, ϵ(n). Following this, we summarize the effects of dispersity 

(i.e. finite width of the aggregation peaks in Fig. 4B) on aggregation thermodynamics, which 

is necessary to account for the (weak) concentration dependence of the optimal aggregate 

size.

Two-state aggregation:  As a first approximation, consider the two-state aggregation model 

deep into the aggregation regime, i.e. well above the CAC (Φ ≫ ϕ*). The optimal aggregate 

size derives from the condition 
dρn
dn n*

= 0, or

ϵ n* + n*ϵ′ n* − μ = 0, (12)

where ϵ′ = dϵ
dn . Using the fact that ϕ1 Φ ≫ ϕ* ≃ ϕ* Φ/ϕ*

1/n* = eϵ* Φ/n*
1/n* from eq. (11) in 

the previous section, this transforms to the condition for the optimal (peak) aggregate size

ϵ′ n* = kBT
n*

2 ln Φ/n*    (two − state) . (13)

From eq. (13) we may draw two key conclusions. First, in the limit of large target size n* 

≫ 1, the optimal size corresponds to a minimum of ϵ(n). That is, since ϵ′(n*) → 0, n* 
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→ nT and the aggregate peak is selected by minimizing per sub unit aggregation energy, 

independent (to a first approximation) of concentration. Second, the right-hand side of eq. 

(13), which is proportional to the translational free energy of a dilute concentration of 

n*-mers, is negative, and hence ϵ′(n*) → 0. Combining this with eq. (12), we find the 

inequality,

μ < ϵ n* . (14)

This last condition shows that the equilibrium chemical potential approaches from below, 

but never quite reaches, the interaction energy of the optimal aggregate ϵ(n*) (excepting the 

unphysical limit Φ/n* → 1).

Finally, the fact that n* corresponds to a maximum in the aggregate size distribution, 

suggests the following condition from 
d2ρn
dn2 < 0

ϵ″ n* > − 2ϵ′ n*
n*

> 0. (15)

As the righthand side goes to zero as n*
−3, the aggregation energetics must be convex in the 

vicinity of the optimal size. Strictly speaking however, a stronger condition than convexity 

alone is needed to justify the neglect of aggregation number fluctuations in the 2-state 

approximation, as discussed next.

Gaussian approximation:  We now consider the effect of convexity of the aggregation 

energetics, characterized by the second-derivative of ϵ(n) at the peak aggregate size. As 

above, we restrict our analysis to the case of a single, well-defined minimum in ϵ(n) 

occurring at a finite target size nT > 1. Close to the minimal-energy size, the energetics have 

the form

ϵ(n) ≃ ϵT +
ϵT′′
2 n − nT

2, (16)

where ϵT < 0 and ϵT′′ > 0 respectively characterize the minimum energy and convexity of 

the target aggregate, as illustrated in the harmonic approximation in Fig. 4A. Physically, 

ϵT′′, which we call the convexity, quantifies (twice) the energetic cost (in kBT) to alter the 

aggregate number from its target by ±1. In the following section, we will describe the 

physical effects that control convexity in different models of self-limiting assembly. Here, 

we see that the concentration-dependence of the mean (or peak) self-limiting size, as well as 

the size-dispersity, are controlled by a single combination of ϵT′′ and nT.

The effect of finite convexity is to allow fluctuations in n around the peak size n*. When ϵT′′

and nT are sufficiently large, the aggregate distribution follows a Gaussian,
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ρn(n ≫ 1) ≃ en*β μ − ϵ* e−
n − n*

2

2 Δn2 , (17)

where 〈Δn2〉 characterizes the variance of aggregate sizes relative to n*. Assuming that 

the Gaussian distribution of aggregates is well separated from the monomer peak, the size 

fluctuations around n* may be summed in ϕn = nρn, yielding the same mass-action formula 

as eq. (11), but with a redefined CAC,

ϕ* ≈ eβϵ*

n* 2π Δn2 1/n*
,    (Gaussian) . (18)

Compared to the two-state approximation, ϕ*, is depressed by a factor proportional to 

Δn2 1/2n* due to the comparative increase in the number of aggregates states and associated 

entropy. Likewise, well above the CAC, the monomer population is depressed (relative to the 

2-state approximation) by the same factor. Combining this effect into the chemical potential 

with the peak aggregate condition in eq. (12) gives the following prediction for peak (mean) 

aggregate

n* ≃ nT 1 + kBT
nT

3ϵT′′
ln Φ

nT 2π Δn2 ,   (Gaussian) (19)

where we are considering only the leading correction to n* − nT. In this same limit, 

aggregate dispersity becomes,

Δn2 1/2

nT
≃ 1

nT
3βϵT′′

1/2 ,    (Gaussian),   (20)

where again averages are taken with respect to aggregate distribution ρn (i.e. number 

average).

The results of the Gaussian approximation in eqs. (19) and (20) highlight two physical 

effects of convexity. First, in eq. (19), the mean aggregate size always falls slightly below 
the minimal-energy target size (i.e. because Φ < 1, and hence, the logarithmic factor is 

always negative). This “sub-optimal” aggregate size derives from the (translational) entropic 

preference for smaller-n aggregates, and hence, this weak depression of n* decreases with 

increasing supersaturation as the translation free energy of aggregates (kBT/nT) ln(Φ/nT) 

tends toward zero. Second, the relative shift of mean aggregation number (n* − nT)/nT 

and the relative size variance 〈Δn2〉1/2/nT decrease with the reciprocal of ϵT′′nT
3 /kBT . Hence, 

corrections from size variations become small, in relative terms, either for sharp minima, 

when ϵT′′ ≫ kBT , or for larger aggregate number, when nT ≫ kBT /ϵT′′
1/3. While at first 

glance, this might suggest a generic tendencies toward monodisperse aggregation in the 

large nT limit, SLA models described in Sec. III show convexity to be a decreasing function 
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of nT. Hence, as it turns out, the decrease of relative size fluctuations with target size 

becomes non-trivially dependent on the geometric sensitivity of aggregation energy.

Self-limitation without minima:  Before considering landscapes with more complex 

equilibria, we briefly note that it is possible to construct functional forms of ϵ(n) which 

exhibit self-limitation without local minima. As an example, consider a variation of the 

general type of energetics described in Sec II.A.2,

ϵ(n) = − ϵ0 + Δ(n) (21)

where Δ(n) is a monotonically decreasing, and convex, function of n so that the minimal 

energy per particle occurs for infinite aggregates, i.e. ϵ(n → ∞) = −ϵ0. The condition for a 

maximum in ρn in eq. (12) gives

μ + ϵ0 ≡ − Δμ ∞ = Δ n* + n*Δ′ n* (22)

Because the chemical potential is bounded from above by −ϵ0 (from eq. (14)) and hence 

(Δμ)∞ > 0, the conditions for finite optimal aggregate size can be satisfied (at some 

accessible μ) provided that Δ(n) decreases faster than 1/n, or more specifically, that

Δ′(n)
Δ(n) < − 1

n , (23)

for some range of finite n. For example, for any model that approaches the bulk energy 

as a power-law Δ(n) = Δ0/nγ where γ > 1, it is straightforward to show the peak size 

obeys n* = (γ − 1)Δ0/(Δμ)∞ 1/β, which increases continuously with concentration as Δμ∞ → 

0 from above.

While the previous argument shows that it is possible to construct mathematical examples 

of minima-free energy densities that result in finite-n peaks in ρn, physical cases of SLA 

fall outside of this category. For example, generic physical grounds suggest that aggregates 

possess a boundary, or surface, at which the assembly energy is different (generally higher) 

than in the interior, as described for cases of short-ranged cohesive interactions in Sec. 

II.A.2. In the limit of large n, the asymptotic contribution to the energy density from this 

boundary, n−1/d where d ≥ 1, will dominate over other possible terms falling off faster than 

n−1 (such as the Δ(n) term in eqs. (21) and (23)), leading to unlimited assembly. Hence, we 

exclude such anomalous cases, and focus the discussion on situations where self-limitation 

is directly associated with well-defined minima of ϵ(n).

3. Competing states of aggregation—Secs. II.B.1 and II.B.2 above describe the 

simplest case of self-limiting assembly: a concentration-controlled crossover, or “pseudo-

transition”, from a monomer-dominated state to a state dominated by aggregates of one 

finite size. The finite aggregate size corresponds to a single minimum in ϵ(n), and the 

transition occurs at a single CAC. In this section, we overview the thermodynamics of cases 

in which assembly is characterized by multiple local minima, or instead, by transitions 

between self-limiting and unlimited aggregation states. In these cases, the aggregation 

thermodynamics can exhibit a more complex dependence on concentration, corresponding 
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to secondary CACs between different aggregation states. While concentration-dependent 

transitions between different aggregates are commonly attributed to interactions between 

aggregates (Israelachvili, 2011), it is less widely appreciated that they can also occur in ideal 

aggregation models, which strictly neglect inter-aggregate interactions. As we review in Sec. 

III.A.2, the possibility of an “ideal” secondary CAC was first considered in the context of 

transitions between spherical and cylindrical surfactant micelles (May and Ben-Shaul, 2001; 

Porte et al., 1984). In this section, we describe this behavior as a generic consequence of the 

translational entropy preferences for smaller aggregate sizes, and as such, ideal secondary 

CACs can occur in a much broader class of SLA models.

Two finite aggregate states:  We first describe a simple model with only 2 states of 

finite aggregates in equilibrium with a population of free monomers, for simplicity ignoring 

number fluctuations around these three states. We consider two states of small and large 
aggregates, corresponding to two well-defined local minima of ϵ(n), at nS and nL > nS 

subunits, respectively, as shown schematically in Fig. 6A. In this case, aggregation is 

controlled by not only the difference in the respective energy minima ϵS and ϵL, but also the 

difference in the aggregation number. To understand aggregation in the presence of multiple 

minima, it is convenient to define the nominal CACs corresponding to either aggregate state, 

from eq. (10),

ϕν* ≡ nνe−βnνϵν −1/ nν − 1
≈ eβϵν

nν
1/nν

 for ν = S, L (24)

These are concentrations at which aggregates of either type would overtake free monomers, 

were it not for the additional equilibrium between the populations of small and large 

aggregates. In terms of these concentration scales, the law of mass action takes the form

Φ = ϕ1 + ϕS*
ϕ1
ϕS*

nS
+ ϕL*

ϕ1
ϕL*

nL
, (25)

where the last two terms represent the respective populations of subunits in nS-mers and 

nL-mers, which we denote as ΦS and ΦL. As above for the case of a single minimum in ϵ(n), 

in the limit of high concentration, aggregation always proceeds towards the state with the 

lowest energy. However, in this case, there are two possible thermodynamic scenarios for the 

concentration dependence, depending on the relative energy difference between small and 

large aggregates:

i) ϵS < ϵL: Because nS < nL, in this case it is always true that ϕS* < ϕL*, which means that as 

concentration increases, ϕ1 ϕS* before reaching ϕL*. Above the threshold where ϕ1 ≈ ΦS, 

monomers remain effectively “buffered” at ϕ1 ≈ ϕS*, and it is straightforward to show that 

ΦL ≪ ΦS
6. Thus, when the smaller aggregate has a lower per subunit aggregation energy, 

6The assumptions of ideal aggregation require that Φ must remain below unity, a condition that requires ϕ1 ≪ ϕL* for case (i).
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aggregation proceeds as if there was only a single target state with a CAC at ϕS* and never 

yields a significant number of large aggregates.

ii) ϵS > ϵL: When the large aggregates are energetically favored, there are two possibilities. 

Consider first the case of large energy differences, such that eβ ϵL − ϵS <
nL
1/nL

nS
1/nS

. For this first 

regime ϕL* < ϕS*, and there is only a single CAC at the (lower) critical concentration for 

large aggregates. For the second regime, when the energy difference between large and small 

aggregates is smaller, in the range 1 > eβ ϵL − ϵS >
nL
1/nL

nS
1/nS

, the order of the CACs reverses: 

ϕS* < ϕL*, and leads to two CACs. As shown shown in Fig. 6B, for this case upon increasing 

concentration from the dilute limit, the concentration reaches a first CAC at Φ ≈ ϕS*, with a 

transition to a state dominated by small aggregates (i.e. ΦS ≫ ϕ1, ΦL). This state persists 

until reaching a second CAC at Φ ≈ ϕ**, defined by a crossover in dominant aggregation 

state to ΦL > ΦS. The concentration threshold condition can be estimated by solving for the 

monomer concentration at which ΦS(ϕ1) = ΦL(ϕ1) ≫ ϕ1 from eq. (25)

ϕ * * ≈ ϕL*
ϕL*
ϕS*

nS/ nL − nS
, (26)

which is larger than the “bare” value ϕL* owing to the depletion of free monomers by small 

aggregates, and corresponds to a total concentration Φ** ≈ 2ϕ**. The high-concentration 

regime above the second CAC is dominated by minimal-energy large aggregates, but 

maintains a sizeable amount of small aggregates (i.e. ΦL ≫ ΦS ≫ ϕ1), approximately 

buffered at the second CAC concentration.

To summarize this 2-aggregate model, it is possible to have two pseudo-critical transitions 

(as in Fig. 6B), first from disassembled monomers to small aggregates and then from small 

to large aggregates, provided the energy difference between aggregates is sufficiently small, 

in the window

0 < ϵS − ϵL < kBT
nS

lnnS − kBT
nL

lnnL . (27)

This is consistent with the secondary CAC behavior shown in the assembly state diagram in 

Fig. 6C, calculated for the case of nS = 10 and nL = 50.

The physical origin of this double CAC behavior can be traced to a competition between 

the higher cohesive energy of large aggregates pitted against the higher (per subunit) 

translational entropy of smaller aggregates. This can be cast in terms of the chemical 

equilibrium between large and small aggregates, which requires
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μ = ϵS + kBT
nS

lnρS = ϵL + kBT
nL

lnρL . (28)

Energetically favorable large aggregates, ϵL < ϵS, require aggregate concentrations to 

adjust to maintain a suitably higher translational entropy of small aggregates, namely 
1

nS
lnρS < 1

nL
lnρL, specifically

ρS/ρL = enSβ ϵL − ϵS

ρL
nL − nS /nL (29)

This condition shows that the larger entropy of smaller aggregates requires that ρS/ρL > 

1 provided that the concentration of large aggregates remains sufficiently small, below 

ρL < ρL* * = eβ ϵL − ϵS nSnL/ nL − nS
. Hence, when nS and the differential in aggregation 

energy are small enough, small aggregates remain more populous than large aggregates up to 

total concentrations that exceed the first CAC to the small aggregate state, until the second 

CAC.

This simplified model illustrates a generic conclusion. Even if an aggregate state does 

not correspond to the global minimum of ϵ(n), it may exhibit an entropically-stabilized 

window of thermodynamic dominance at intermediate concentrations, provided its target 

size is sufficiently small and its energy is sufficiently close to the global minimum. Next, we 

illustrate this entropic stabilization of finite (compact) aggregates in models for which the 

competing states are unlimited.

Finite and unlimited aggregates:  While polymorphic assembly into multiple finite-

number aggregates occurs in some natural and biomimetic systems (Lutomski et al., 
2018; Sun et al., 2007; Wingfield et al., 1995) and may be desirable for nanomaterials 

applications, cases in which aggregates change dimensionality are more common. That 

is, aggregate structures that remain finite in at least one or more spatial directions, but 

undergo essentially unlimited growth in other directions. The most common examples are 

amphiphillic assemblies, which can either form spherical micelles (finite in all directions), 

cylindrical micelles (finite in two spatial dimensions, unlimited in one), or lamellar/layered 

assemblies (finite in one dimension, unlimited in two). In Sec. III.A.2 below we describe the 

molecular ingredients that lead to polymorphic transitions between aggregate dimensionality 

based on a model of surfactant assembly (Bergström, 2016; May and Ben-Shaul, 2001). In 

this section, we illustrate how the principles of secondary CAC behavior apply to models 

which can exhibit states of finite aggregation number (e.g. spherical) that can transition to 

states of 1D aggregation or a bulk (unlimited) morphology.

Since our primary interest is to describe conditions where ideal aggregation gives rise to 

concentration-dependent transitions in morphology, we consider a minimal description of a 

generic model including finite and unlimited aggregation states. As summarized in Fig.7A, 

this model considers three disconnected “branches” of assembly:
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1) Finite (compact) aggregates, with respective target size and energy, nF and ϵF

2) 1D aggregates, with energy per subunit

ϵ(n) = ϵ1D + Δ0/n

where Δ0 > 0 characterizes the cost of finite “endcaps” and ϵ1D < 0 is the limiting n → ∞ 
per subunit assembly energy in this morphology

3) Bulk aggregates, with energy density ϵbulk. Here, we consider only one macroscopic 

aggregate (n → ∞) with negligible boundary energy.

Based on the foregoing analysis of the 2-finite assembly state model, it can be anticipated 

that secondary CAC behavior from finite to 1D aggregation takes places when the n → 
∞ energy density of 1D aggregates is lower than finite aggregates, but the energy gap is 

sufficiently small that the translational entropy associated with the compact aggregates can 

stabilize a window of nF-mer aggregates. Likewise, when the energy density of the bulk state 

falls below these dimensionally limited states, we anticipate an upper limit to concentration 

(i.e. saturation) which can maintain equilibrium with dispersed aggregates.

With this in mind, we consider a simplified law of mass action for subunit populations

Φ = ϕ1 + ΦF + Φ1D + Φbulk, (30)

where the terms respectively describe the populations of free monomers, subunits in a single 

finite aggregate size, 1D aggregates of various size, and bulk aggregation. The population of 

subunits in finite aggregates is given by (neglecting number fluctuations)

ΦF = nF ϕ1e−βϵF nF, (31)

while the 1D aggregate population is given by

Φ1D ≃ ∑
n = nF

∞
ne−βΔ0 ϕ1e−βϵ1D n ≃ nFe−βΔ0 ϕ1e−βϵ1D nF

1 − ϕ1e−βϵ1D
. (32)

In this final term, we made the additional assumptions that 1D assembly is not favorable 

below some aggregate size close to nF > 1, and that the monomer concentration remains 

well below the value eβϵ1D where Φ1D diverges7. The results are not qualitatively sensitive to 

these approximations.

7Specifically, we assume nF > eβδ. For nF < eβδ, Φ1D ≃ e−βΔ ϕ1e−βϵ1D nF + 1
1 − ϕ1e−βϵ1D −2

, 

ϕ1* * ≈ eβϵ1D 1 − e−βδ/2/nF
1/2 .
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Based on these forms, it is straightforward to find the free monomer concentration ϕ1* *

where finite aggregates and 1D aggregates are equally populous, i.e. ΦF ϕ1* * = Φ1D ϕ1* * ,

ϕ1* * = eβϵ1D 1 − e−βδ , (33)

where

δ = Δ0 + nF ϵ1D − ϵF (34)

is the energy difference, or “barrier”, between an nF-mer and a 1D aggregate of the same 

size (see Fig. 7A). As described above, a stable aggregate population requires at least a 

local minimum in the energy and hence a barrier necessarily separates aggregation states 

associated with distinct local maxima in population. Critically, the size of this barrier 

determines the window of secondary CAC transition behavior, as follows.

First, note that δ > 0 implies that the energy of forming two “end caps” on the 1D aggregate 

exceeds that of the target nF-mer. Second, the existence of a second CAC requires that 

this concentration exceeds the primary CAC to a nF-mer dominated state, that is, the 

condition ϕ1* * > ϕF* ≃ eβϵF/nF
1/nF

. This gives an upper limit to the energy gap between 

nF-mer aggregation and 1D assembly for second CAC behavior, ϵF − ϵ1D < Δϵmax, with

Δϵmax ≈ kBT
nF

lnnF + kBT ln 1 − e−δ . (35)

Notably, the stability window of the nF-mer state expands, in terms of Δϵmax, both with 

decreasing target size and increasing energy barrier to 1D aggregation. For energy gaps 

larger than this limiting condition, the intermediate nF-mer state disappears8.

Last, note that monomers reach chemical equilibrium with the bulk state at a concentration 

ϕ1 = eβϵbulk, which sets an additional condition for second CAC behavior, ϕ1* * < eβϵbulk. 

This gives the upper limit to the energy gap between 1D and bulk assembly for second CAC 

behavior before saturation,

ϵ1D − ϵbulk < − kBT ln 1 − e−βδ (36)

This condition shows that concentration range of the 1D aggregate state diminishes with 

increasing energy barrier between compact and 1D aggregates.

An example assembly state diagram for this model under conditions ϵF > ϵ1D > ϵbulk is 

shown in Fig. 7B. The concentration dependent state of aggregation is plotted versus energy 

gap between nF-mers and 1D aggregates for variable ϵF with fixed nF, Δ, ϵ1D, and ϵbulk. 

Under these conditions, when the aggregation energy of (compact) nF-mers is larger than, 

8Note that eq. (36) is an implicit relation for Δϵmax, since δ is a function of (ϵ1D − ϵF). However, in the limit δ ≫ 1, the maximum 
gap is approximately Δϵmax ≈ (ϵ1D + kBT ln nF)/nF. Similarly, in the limit nF < eβδ, Δϵmax ≈ (Δ0 − 2kBT) / nF (see previous 
footnote 7).
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but sufficiently close to, that of (infinite) 1D aggregation, the system undergoes a sequence 

of concentration-driven transitions: first from monomers to finite-aggregations; then to 1D 

aggregates; and finally, to bulk (unlimited) assembly. In the following section, we revisit the 

possibility of multi-CAC behavior in the context of polymorphism of surfactant aggregates, 

focusing on its microscopic origin for this effect in terms of an underlying molecular model 

of aggregation.

III. MECHANISMS AND MODELS OF SELF-LIMITING ASSEMBLY

In Sec. II, we overviewed the basic thermodynamics of ideal aggregation, and described 

some of the generic ingredients and outcomes of finite-size equilibria. We showed that the 

key ingredient is a per subunit aggregation free energy which has one or more local minima 

as a function of aggregation number (for finite-number aggregates), or as a function of the 

size of one or more spatial dimensions of the aggregate (for spatially finite aggregates like 

quasi-cylindrical or planar structures). In this section, we review four broad mechanisms of 

self-limiting assembly, and a physical example of each mechanism. In each case, we first 

focus on the physical ingredients that give rise to the self-limiting aggregation energetics, 

and then illustrate some of the implications of the generic phenomonology overviewed in 

Sec. II.

To organize the discussion, we divide these mechanisms into two broadly-delineated classes: 

self-closing assembly and open-boundary assembly. These classes are distinguished by 

the presence or absence of an open boundary and gradients in intra-aggregate stress in 

the target assembly. Self-closing assembly describes aggregates in which the subunits, by 

and large, share the same “cohesive environment” of neighboring subunits, and further 

adopt a common shape in the target assembly. In contrast, self-limitation of open-boundary 

assemblies requires gradients of the inter-subunit forces throughout the aggregate. Within 

the discussion, we highlight the distinct outcomes and potential “tradeoffs” between these 

different mechanisms in terms of size selection.

We divide the remainder of Sec. III into two main parts, focusing respectively on self-

closing and open-boundary assemblies. Following the introduction of each broader class 

of SLA, we further subdivide each into two subclasses, representing four basic physical 

mechanisms of SLA. For each of the four basic mechanisms, we briefly overview the 

applicable physical systems and then introduce a simple example model that captures the 

emergence of self-limited assembly.

A. Self-closing assembly

We define self-closing assembly (SCA) as class of self-limiting assembly that achieves a 

finite target size, or finite target dimension, due to anisotropic binding between neighbors 

that leads to a preferred rotation of neighbor bonds. Such interactions generically arise 

when subunits are tapered or wedged-shaped, such that cohesive bonding leads to a relative 

rotation of the axes of neighbor units (see Figs. 2A and 9A). In combination with the relative 

displacement of subunit centers, this relative rotation, when built up over multiple subunits 

leads to a preferred intra-assembly curvature (along one or more principal directions). In the 
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simplest case, this can be visualized as 1D “loops” of subunits, whose preferred curvature 

radius Rclose leads the structure to close upon itself.

We include in the SCA class structures that close upon themselves in all directions of 

assembly and thus achieve a finite number of subunits, such as the spherical shell in 

Fig. 8A, as well as structures that close in one or more directions but remain unlimited 

in others, such as the tubule in Fig. 8B. In the latter case, structures have an unlimited 

number of subunits but achieve a finite size in the self-closing direction(s). For example, the 

tubule is unlimited in the axial direction, but has a well-defined radius and corresponding 

number of subunits in the circumferential direction. Notably, the underlying principles for 

size selection remain the same as for finite number; namely, the self-limiting size W of 

a self-closing direction is determined by the minimum of the energy per subunit with 

respect W. This can be readily understood by considering a system with nearly all of its 

N subunits assembled in aggregates of unlimited number, and correspondingly a negligible 

fraction of free monomers. To first approximation, the energetic costs of free edges and the 

translational entropy of the unlimited aggregates can be neglected, and the concentration of 

free monomers can be assumed a small contribution to the total free energy, F ≈ Nϵ(W). 

Hence, the thermodynamic equilibrium at fixed N corresponds to the selection of the energy-

minimizing size W*, corresponding to ∂W ϵ W * = 0. We describe similar considerations for 

self-limiting, open-boundary assemblies in Sec. III.B.1 below.

Strictly speaking, for SCA it need not be necessary to identify a continuously loop of 

bonds along the self-closing direction(s), nor that target curvatures are strictly uniform. 

We only require that there are one or more periodic directions on a representative 2D 

surface of the aggregate (e.g., the surface spanned by the subunit centers). Moreover, the 

preferred curvature does not need to select a perfectly commensurate number of subunits 

per cycle, since physical subunits generically possess some flexibility of shape and cohesion 

(bonding) that permits fluctuation in the inter-unit rotation. In the simplest case, e.g. with 

fluid-like intra-assembly order, a SCA may accommodate such strains through uniform 

deformation of subunits and their bonds. However, certain physical examples introduce extra 

geometric constraints (e.g. solid-like, spherical shells) which require at least some variable 

intra-assembly strains. Notwithstanding the possibility of such gradients, we categorize 

assembly as self-closing if its target size is selected through the curvature radius Rclose, as 

opposed to the accumulation of stress-gradients, which is described as a distinct class of 

self-limiting assembly below.

Physical examples of SCA can be divided, roughly, into two groups according to the 

ratio of subunit size, characterized by some thickness d, and the target curvature radius 

Rclose. When Rclose/d ≫ 1 the target number of units per cycle is proportionately large. 

This case describes tubules, shells and capsules. The second case, Rclose ≈ d describes 

assemblies whose curvature (and thus self-limited size) is most often selected and regulated 

by the molecular dimension itself, which is characteristic of amphiphiles and their micellar 

aggregates.

1. Shells, capsules, and tubules—We first review the case of tubule or shell-

like assemblies. Examples of these are common in biology, where “tapered” protein 
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subunits select a preferred radius of assembly curvature (Oosawa and Asakura, 1975). 

Quasi-cylindrical (tubular) examples include microtubules (Cheng et al., 2012; Nogales, 

2000) and the bacterial flagella (Namba and Vonderviszt, 1997), while quasi-spherical 

(shell and capsule) examples include clathrin cages (Bucher et al., 2018; Giani et al., 
2017; Kirchhausen et al., 2014; Mettlen et al., 2018), viral capsids (Bruinsma and Klug, 

2015; Hagan, 2014; Hagan and Zandi, 2016; Mateu, 2013; Perlmutter and Hagan, 2015; 

Twarock et al., 2018; Zandi et al., 2020; Zlotnick and Mukhopadhyay, 2011), bacterial 

microcompartments (Bobik et al., 2015; Chowdhury et al., 2014; Iancu et al., 2007; Kerfeld 

et al., 2010; Kerfeld and Melnicki, 2016; Rae et al., 2013; Schmid et al., 2006), and other 

protein-shell organelles (Nott et al., 2015; Pfeifer, 2012; Sutter et al., 2008; Zaslavsky et 
al., 2018). Recently, engineered tapered or patchy colloids have also drawn interest for 

their ability to realize synthetic analogs of self-closing tubules and shells (Li et al., 2011; 

Morphew and Chakrabarti, 2017), although many if not most such realizations to date are 

properly categorized as analogs to micelles where curvatures are comparable to colloidal 

dimension. Whatever the underlying subunit structure, the existence of 1D curvature only 

ensures equilibrium self-limitation along one of the two assembly dimensions in the tubular 

constructs, while the preferred positive Gaussian curvature of shells and capsules leads to 

equilibrium states with finite subunit number.

To illustrate the self-limiting thermodynamics of shells and capsules, where target curvature 

radii are much larger subunit dimensions, consider the following minimal model. Spherical 

fluid capsules, shown schematically in Fig. 9A, are composed of subunits with nominal area 

a0 and a tapered shape that favors a preferred (target) spherical curvature radius RT. Here, 

we restrict the analysis to cases in which the curvature preference sufficiently disfavors 

locally anisotropic curvature (Lázaro et al., 2018a) to limit incomplete assembly to cap-

like aggregation states with positive Gaussian curvature. Competition between incomplete 

assemblies with positive and zero Gaussian curvature was recently considered in Ref. 

(Mendoza and Reguera, 2020). We assume the cap covers an axisymmetric “cap” domain 

of radius R from its pole up to the aperture angle Θ (see Fig. 9A). While a closed capsule 

with a preferred curvature RT has a target aggregation number nT = 4πRT
2 /a0, a capsule may 

realize a different aggregation number n = 2πR2(1 − cosΘ), provided that either it is open 

(i.e. Θ ≠ π) or is deformed from its preferred taper (i.e. R ≠ RT).

Taking the simplest possible model, we assume that the intra-shell order is fluid-like, such 

that the only elastic penalty derives from bending deformations away from target curvature, 

which we consider via a membrane-like bending energy

Ebend = B
2 ∫ dA 1

R − 1
RT

2
, (37)

where B is a bending modulus and the area integration is carried out over the incomplete 

shell. Additionally, we consider the line energy associated with open edge for an incomplete 

cap,

Eopen  = 2πRsinΘλ, (38)
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where λ is the energy per unit length of the exposed edge, associated with the fewer 

cohesive bonds as well as a difference in solvation of subunits at the edge. The aggregation 

energy as a function of n then takes the form

ϵ(n, Θ) = − ϵT + 2πB
nT

nT(1 − cosΘ)
2n − 1

2
+ 2πa0λ

n1/2
sinΘ

1 − cosΘ
(39)

where −ϵT is the “bare” aggregation energy for subunits in the bulk of undeformed capsules.

It is easy to see that the form of ϵ(n, Θ) in eq. (39) has a global minimum for closed capsules 

of the target size (i.e. n = nT and Θ = π). Nevertheless, the combination of bending elasticity 

and the edge energy of incomplete shells influences assembly for n ≠ nT. This can be seen 

by plotting the landscape of assembly energetics in the n/nT - Θ plane, as shown in Fig. 

9B. For very small aggregate sizes n/nT ≪ 1, caps lock into the preferred curvature, R → 
RT, described by the condition cosΘ → 1 − 2n/nT, shown as a dotted line in Fig. 9B. As 

n increases, the edge energy favors compression of the open caps to smaller curvature radii 

R < RT. The amount of this shape compression grows up to a critical aggregation number 

nS, beyond which the minimal energy capsule “snaps” discontinuously to a closed shell of 

suboptimal size, that is Θ → π for nS < n < n0.

Hence, the minimal aggregration vs. n generically exhibits two branches (Fig. 9C): an open 

cap for n < nS and an (edge-free) closed shell for nS < n < nT. The transition between 

these two branches can be understood in terms of “nucleation” of an open pore in an 

over-curved shell, where nT − nS corresponds to the size of the “critical nucleus”. The inset 

of Fig.9C shows that the critical preclosure size nS generically decreases with an increasing 

(dimensionless) ratio of edge energy and bending stiffness, λ ≡ a0nT/8π 1/2λ/B.

Notwithstanding the generic existence of a transition between open-cap and preclosed 

branches of the energy landscape, the transition does not lead to stable partial shells (i.e. a 

minima in ϵ(n) for n ≠ nT). Hence, while the open cap branch and its transition to the closed 

shell may have implications for assembly pathways and kinetics, the equilibrium distribution 

of self-limiting capsules is independent of the edge energy and generically governed by the 

energetics of the closed-shell branch. This fact has further generic consequences for the 

concentration dependence and dispersity of aggregate size, both of which are governed by 

the product of the convexity and cube of the target size, ϵ″ nT nT
3 /kBT , according to eqs. 

(19) and (20). The Θ → π limit of (39) shows that ϵ″ nT = Bπ/nT
3. Hence, the decrease 

of convexity with target assembly size precisely cancels that entropic factor of nT
3, such 

that the relative shift in mean aggregate size and relative dispersity, (n* − nT)/nT and 〈Δn2〉
1/2/nT, respectively, are limited only by the ratio of bending modulus to thermal energy, 

B/kBT, and independent of self-closing target size.9 Therefore, to regulate the self-limiting 

9This continues until the asymptotic limit of zero spontaneous curvature (nT → ∞), at which point the free energy per subunit is 
independent of size and the size distribution becomes an unlimited exponential (Helfrich, W., 1986) as shown for 1D assemblies in 
section II.A.2.
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size of self-closing assemblies in absolute terms, the rigidity of subunits and their angular 

interactions must grow with target size.

The predicted growth of size fluctuations with target size would seem to contradict 

observations of the best studied example of self-closing shells, icosahedral virus capsids. 

At conditions of optimal assembly, size polydispersity of viruses is remarkably small. In 

fact, this high degree of monodispersity has been exploited by using 3D crystalline arrays 

of virus capsids for optical applications requiring precise spatial periodicity (Brillault et 
al., 2017; Chen et al., 2016; Dang et al., 2011; Delalande et al., 2016; Judd et al., 2014; 

Malyutin et al., 2015; Minten et al., 2011; Park et al., 2015; Rother et al., 2016; Steinmetz 

et al., 2011; Young et al., 2008). While high-precision measurements of size-dispersity 

in capsids are challenging, electron microscopy structures that were obtained without the 

assumption of icosahedral symmetry show that as many as 40% of alphavirus nucleocapsid 

core particles exhibit defects (Wang et al., 2018, 2015), and hence some dispersity in shape. 

Notably some non-icosahedral structures, like immature HIV caspids, exhibit variations in 

number of subunits (~ 1000 GAG protein subunits) that are on the order of the mean capsid 

size (Briggs et al., 2009), although such effects may also be attributed to assembly kinetics 

(Dharmavaram et al., 2019). More recently, size distributions of hepatitis B virus (HBV) 

capsids (and capsids of other viruses) have been achieved near or at single-subunit precision 

using resistive pulse sensing (Zhou et al., 2018, 2011), mass spectrometry (Uetrecht et al., 
2011), and charge detection mass spectrometry (Lutomski et al., 2018; Pierson et al., 2016, 

2014). Although metastable defective capsids are observed (Lutomski et al., 2018; Pierson et 
al., 2016), these measurements show that at long times (potentially corresponding to a near 

equilibrium state) the population is dominated by icosahedral capsids with the native size10.

To place these measurements in the context of the results for the fluid shell model, we 

note that bending moduli for virus capsids have been estimated from the force-displacement 

curves measured in nanoindentation experiments in which virus capsids are compressed 

using an AFM tip11. Estimated bending modulus values vary from 10–200 kBT, but typical 

values fall in the higher end of the range, 100–200 kBT. (For comparison, bending moduli 

of lipid bilayer membranes are typically in the range of 10 – 20 kBT.) Using the result 

from above that Δn2 1/2 ≈ n0/ πB, with n0 = 120 and an estimate of B ~ 60kBT for HBV12 

gives a root mean squared size fluctuation of about 9 dimers, considerably larger than the 

long-time experimental estimates.

This discrepancy highlights two physical ingredients neglected in the model described 

above: the discrete subunit size and the fact that most virus capsids, as well as most other 

protein shells, are crystalline rather than fluid. As discussed below in section V.B, the 

10In fact HBV is dimorphic. Both in vitro and in vivo HBV capsid assembly yields mostly 120 protein dimer capsids with T = 
4 icosahedral symmetry in the Caspar Klug nomenclature (see section V.B), but also a few percent of T = 3 icosahedral capsids. 
However, size fluctuations around the dominant T = 4 population were shown to be insignificant at long times.
11It should be noted that estimating elastic moduli from the force-displacement curve is sensitive to the value chosen for thickness of 
the capsid shell, and the relationship between the atomic structure and the effective mechanical thickness remains at least some-what 
obscure (May et al., 2011; May and Brooks, 2011).
12The bending modulus is calculated from the 3D Youngs modulus E = 0:26 GPa obtained from nanoindentation measurements in 
Roos et al.(Roos et al., 2010), and assuming a thin shell model so that the 2D Youngs modulus and bending modulus are respectively 
given by Y = Et and B = Y t3/(12(1 − v2)), with t = 2.1 nm the effective shell thickness (Roos et al., 2010; Wynne et al., 1999) and v = 
0.4 the Poisson’s ratio (Roos and Wuite, 2009; Uetrecht et al., 2008).
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arrangement of proteins within icosahedral capsids can be mapped onto a triangular net. 

However, tiling a spherical topology with a triangular lattice requires the formation of 12 

five-fold sites, often consider as “defects” in a hexagonal packing. A number of equilibrium 

calculations have shown that the elastic energy of the defects themselves and inter-defect 

elastic interactions significantly affect the energy landscape of such shells (Bruinsma et 
al., 2003; Chen et al., 2007; Li et al., 2018, 2019; Mendoza and Reguera, 2020; Zandi et 
al., 2004). These effects are reflected in local minima in the aggregate energy at certain 

‘magic numbers’ of subunits (Zandi et al., 2004). Notably, these minima correspond to shells 

with high degrees of symmetry, with the in-plane bonding energies corresponding to shells 

with icosahedral symmetry. Thus, when including the energetics of this bond-ordering a 

size fluctuation of even one subunit can incur a significant energy cost (≳ 10kBT), since 

it requires disruption of the low-energy geometry, for example, through the introduction of 

a pair of 5- and 7-fold defects. In fact, the metastable structures observed in HBV capsids 

are typically found at discrete intervals corresponding to deviations of multiple subunits 

from the native capsid size (Lutomski et al., 2018; Pierson et al., 2016, 2014), suggesting 

that typical fluctuations correspond to insertion or deletion of multi-subunit oligomers (e.g. 

hexamers of the capsid protein) which would minimize disruptions to the capsid symmetry. 

For example, Fig. 10A,B show cryo-EM images and examples of 2D class averages 

respectively of in vitro assembly products of woodchuck hepatitis B virus (WHV) capsid 

proteins, which exhibit heterogeneous structures including icosahedral capsids, elongated 

closed shells, and shells with overlapping edges. Fig. 10C shows a hypothetical model of 

a non-icosahedral closed shell, in which insertion of additional hexamers leads to a prolate 

structure.

Computational models of icosahedral assembly have also identified ensembles of defective 

capsules in which additional hexamers were added to the icosahedral shell (Elrad and 

Hagan, 2010; Nguyen et al., 2009), although these models and the corresponding defective 

structures differ from the HBV system. Hence, for more realistic models that incorporate 

both bending and “bond-network” elasticity, we expect that these corrugations in the 

energy landscape (i.e. due to communicability with icosahedral symmetry) versus n will 

be superposed on the smooth landscapes illustrated in Fig. 9 for the fluid shell model, which 

may account for size fluctuations to be restricted for a limited set of low-energy values of n 
at or near to high-symmetry, or magic number capsomer arrangements.

2. Amphiphillic aggregates—Arguably the most common and well-studied class of 

self-limiting assemblies is amphiphiles. In the broadest sense, these refer to subunits with 

chemically dissimilar ends, which consequently favor distinct solvent environments. For 

example, lipids and surfactants possess oily hydrocarbon tails attached to a polar or charged 

head group (Israelachvili, 2011), which imparts a respective hydrophobic and hydrophillic 

character to either end of the same molecule (e.g. schematic in Fig. 11A). Dispersing such 

amphiphiles in a solvent that has higher affinity to one end of the molecule generically 

drives them to form aggregates that partially hide, or sequester, the solvophobic portions 

while maintaining exposure of the solvophillic portions. Examples of such aggregrates, 

spherical and cylindrical micelles, and bilayer sheets, are shown schematically in Fig. 11B–

C. Notably these structures curve upon themselves, but do so on a lengthscale that is limited 
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by, and comparable to, the size of the amphiphile itself, e.g. the molecular tail length in 

Fig. 11A. The tendency to exclude unfavorable solvent from the “core” of the aggregate, in 

combination with the packing constraints of filling this region with the solvophobic portions, 

requires each amphiphillic subunit to “span” the entire thickness of the aggregate, which is 

fundamental to their self-limiting assembly.

In this section we describe a simple model to capture the self-limiting assembling of 

amphiphiles, and high-light, in particular, how thermodynamic considerations of changes 

in aggregate thickness shape the preferred aggregate curvature, but also give rise to 

polymorphism in the dimensionality of aggregates (e.g. spheres, cylinders, membranes). 

For illustration, we review a model for the thermodynamics of surfactant aggregation, of 

the type shown in Fig. 11A, capturing central ingredients of the well-known packing model 

developed by Israelachvili and coworkers (Israelachvili, 2011; Israelachvili et al., 1976). 

While this model aims to capture molecular elements of low-molecular weight surfactants 

and lipids, the essential thermodynamic features carry over to other amphiphillic assemblies, 

such as block copolymers in selective solvents (Halperin et al., 1992; Jain and Bates, 

2003; Leibler et al., 1983; Zhang and Eisenberg, 1996). The thermodynamics of amphiphile 

aggregation incorporates three ingredients: (i) the thermodynamics of area per solvophillic 

head group; (ii) the thermodynamics of molecular extension; and (iii) the constraint of 

uniform density in the solvophobic core, which links the first two elements.

A simple model to describe the head-group energetics considers the per subunit energy to 

form aggregates with an area a at the solvent/core interface (Israelachvili, 2011; Israelachvili 

et al., 1976). The generic tendency to “hide” amphiphiles from the solvent is parameterized 

by a surface energy cost γa, where γ > 0 favors dense lateral packing of head groups. 

Competing against this lateral compression is the cost of inter-unit repulsive interactions, 

which in the simplest case are described by the two-body term in the virial series, giving a 

per subunit energy A2/a, where A2 > 0 (Tanford, 1974). These two terms can be combined 

into a single form

ϵint = γ a +
a0

2

a , (40)

where a0 = A2/γ is the optimal head group area.

In combination with the tendency to achieve optimal head group area are additional 

thermodynamics of tail packing in the core, and the costs to extend its length, ℓ. There are 

various models proposed for this effect, including a finite-maximum extension (Israelachvili, 

2011; Israelachvili et al., 1976) or instead treating the core as melt of flexible polymers 

(Ben-Shaul et al., 1984; Dill and Flory, 1980; Nagarajan, 2002; Nagarajan and Ruckenstein, 

1991). Here, we adopt a simplified model used by May and Ben-Shaul for the free energy of 

tail length ℓ that spans from the solvent/core interface into the center of the aggregate

ϵstretch  = k
2 ℓ − ℓ0

2, (41)

Hagan and Grason Page 27

Rev Mod Phys. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where k is an elastic constant for intra-subunit stretch and ℓ0 is a preferred length, which 

parameterizes the free energy cost of deformations from a preferred conformation state 

of the short tail. Here, we consider k and ℓ0 as a minimal description of the extensional 

thermodynamics, and like γ and a0, these parameters can be varied through a combination of 

subunit structure and physical-chemical conditions, e.g. temperature and solvent properties.

Extensional energetics are linked by packing constraints associated with occupying the 

core with a fixed density of solvophobic portions of the subunits (Israelachvili, 2011; 

Israelachvili et al., 1976). These constraints vary with the dimensionality of the limited 

directions in the aggregate: dL = 3, spherical micelles; dL = 2, cylindrical micelles; and dL 

= 1 planar bilayers13. By considering the ratio between the core volume and interfacial area 

of an aggregate of thickness (radius) ℓ, it is straightforward to show that the (solvophobic) 

volume per subunit satisfies

v0 = a ℓ
dL

. (42)

As aggregates change their shape and number, uniform density requires adjustment of a and 

ℓ to maintain constant v0. Using this constraint, we rewrite the assembly energy in terms of a 

single dimensionless thickness,

r ≡ ℓ
v0/a0

= dL
a0
a , (43)

giving

ϵ r, dL
γa0

= dL
r + r

dL
+ k

2 r − P−1 2 + ϵ0, (44)

where k = kv0
2/ γa0

3  is a scaled stretch modulus of the tail, and ϵ0 parameterizes the negative 

energetic gain to assemble. The parameter P was introduced by Isrealachvili as the packing 
parameter, a measure of the commensurability of the preferred shape with accessible 

aggregate geometries,

P ≡ a0 ℓ0
v0

. (45)

Written in this way, it is straightforward to understand how area and stretch thermodynamics 

compete to determine the optimal aggregate morphology. While area terms favor a thickness 

r = dL, stretch thermodynamics favor a thickness r = 1/P. Only for particular preferred 

headgroup areas and subunit lengths do these two values coincide, i.e. when P = 1/dL; 

otherwise there is at least some shape frustration between these terms. As a heuristic, 

we therefore expect aggregation to favor the dimensionality dL closest to 1/P, which 

13Note that dL refers to the number of limited directions, while we use d to refer to the dimensionality of the unlimited directions, e.g. 
d = 1 and d = 2 for cylindrical and lamellar aggregates.
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corresponds to the “tapered” geometry that most closely approximates the favored areal 

and thickness packing at uniform density.

A more complete picture of the polymorphism of aggregates is given by considering 

assembly landscapes that allow for transitions of micellar dimension. Fig. 11C shows the 

structure of a “wormlike” micelle, modeled as a spherocylinder composed of a length 

L of cylindrical micelle capped by two equal-radius hemispherical micelle caps. As L 
increases, the fraction of the aggregate in the dL = 2 (vs. dL = 3) packing increases, and 

thus consideration of the energy as a function of both n and L illustrates the landscape 

of aggregates intermediate to a uniformly cylindrical or spherical geometry. An example 

landscape is shown in Fig. 11D, for a packing parameter P−1 = 2.25 intermediate to spheres 

and cylinders, which exhibits two branches of local minima. In the spherical branch, L = 0 

and changes in number are accommodated purely through changes in micelle radius. The 

second, cylindrical, branch appears only above a threshold aggregate number (n ≃ 111v0
2/a0

3), 

beyond which further subunit addition is accommodated through increasing the length. 

The per subunit aggregation energies for these two branches are shown in Fig. 11E. 

Notably, an energy barrier separates the convex minimum of the spherical branch from 

the cylindrical branch, which asymptotically approaches the global minimum of ϵ at n → 
∞ via the 1/n falloff characteristic of 1D assembly. The origin of this “barrier” between 

spherical and cylindrical aggregates derives from the fact that the preferred radii of these 

two micelle types are different, and hence the confinement energy of the “endcaps” on the 

spherocylindrical micelle exceeds that of a minimal-energy (larger radius) sphere. We note 

that this spherocylinder geometry will overestimate the cost of endcaps relative to a more 

realistic model that includes, say, variation of the radial thickness along the micelle (May 

and Ben-Shaul, 2001).

As described in Sec. II.B.3, the existence of multiple low-energy branches of aggregation 

leads to a rich phase behavior, which can be analyzed according to the law of mass action 

eq. (5). As summarized in Appendix A, we analyze the polymorphic assembly of the 

model described by eq. (44), making several simplifying assumptions. Specifically, we adopt 

the continuum limit for n, calculate the optimal spherocylinder radius for each length L 
by minimizing the per-molecule energy eq. (44) as a function of r (i.e. neglecting radius 

fluctuations), and numerically calculate the mass fractions of spheres, spherocylinders, and 

membranes as functions of k, P, Φ from eq. (5).

Fig. 12A shows the phase diagram as a function of the packing parameter and total 

concentration Φ for a dimensionless stretching stiffness k = 1. Analogous to the phase 

diagram of the generic model in Fig. 7B, with increasing packing parameter the system 

undergoes dimensional transitions from spheres to spherocylindrical assemblies and finally 

to bulk lamellar aggregates (corresponding to packing dimensionalities of dL = 3, 2, 1). 

The infinite concentration limits of the phase boundaries (indicated by dashed lines in Fig. 

12A) correspond to the packing parameter values where the bulk free energy per subunit 

of two aggregate geometries are equal: ϵ3 = ϵ2 at the sphere/spherocylinder boundary, and 

ϵ2 = ϵ1 at the spherocylinder/lamella boundary, with ϵdL the optimal energy per subunit 

in the aggregate interior for aggregates with dimensionality dL. Notably, for values of 
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the packing parameter near each of these dimensional transitions, there is a concentration-

dependent dimensional transition. I.e., for packing parameter values close to the infinite-

concentration value for the spherocylinder-sphere transition 2.45 ≳ P−1 ≳ 2.3, spheres 

are favored at low concentrations, with a transition to spherocylinders occurring above a 

threshold concentration that diverges exponentially as the packing parameter approaches 

the transition value, i.e. P−1 → 2.45. An analogous behavior occurs at the spherocylinder/

lamella transition (Fig. 12 inset), but the range of P−1 values is exceptionally narrow due to 

the very large (yet finite) mean size of spherocylinder aggregates (see below).

In Fig. 12B, we show an overview of the polymorphic assembly in terms of the 

two control parameters of the amphiphile aggregation model, P−1 and k. Boundaries 

in the P−1 − k space are shown for infinite-concentration sphere/spherocylinder and 

spherocylinder/lamella transitions, indicated by blue and red lines respectively, with gray 

dashed lines corresponding to the values of these transitions in the extensionally “floppy” 

(k 0) and “stiff” (k ∞) limits14. We also show the region in P−1 − k space for which 

there is a concentration-driven sphere/spherocylinder transition (a secondary CMC), with 

color indicating the width in concentration space of the transition. More specifically, 

the color scale indicates the ratio of pseudo-critical concentrations, Φcyl/Φsph where 

spherocylinders or spheres, respectively, become the most populous subunit state (i.e. greater 

than 50%) at a given value of stiffness and packing parameter.

The emergence of the polymorphic, concentration-driven transition between spherical and 

spherocylindrical micelles captured in Fig. 12 can be understood in terms of the three 

ingredients of the secondary CAC behavior encoded in eq. (35): the energy gap between 

minimal-energy spheres and infinite cylinders Δϵ = ϵ3 − ϵ2, the finite aggregation number 

in spherical micelles nsph, and an energy barrier δ separating the spherical aggregates from 

spherocylinders (as in Fig. 11D). Below the blue curve in Fig. 12B, where Δϵ > 0, the 

physical origin of the intermediate concentration state of spheres is the higher (per subunit) 

entropy associated with their fewer subunits. This window of second CMC behavior widens 

in Φ as the gap between infinite cylinders and spheres vanishes to zero, which happens 

as the inverse packing parameter increases and approaches the blue curve in Fig. 12B. 

Likewise, from eq. (44) it is straightforward to see that the gap between dL = 3 and dL = 2 

vanishes as k 0, since the is no obstacle to achieving the optimal head group packing (a → 
a0) for any dL in the absence of extensional stiffness. Hence, the ratio of the second CMC 

(spheres to spherocylinders) relative to the first (monomers to spheres) grows large in both 

of these regimes.

The regime of second CMC behavior is restricted to lower values of extensional stiffness, 

and disappears above a threshold value of k, due to its effect on the energy barrier between 

spheres and spherocylinder micelles. In the limit of k → 0, the thickness of spheres and 

cylinders is determined purely by head group packing, and hence dL = 3 and dL = 2 

micelles have different radii, implying a finite frustration cost for the hemispherical endcaps 

14The transition values between dL and d1 + 1 are P−1 = (d(d − 1))1/2 and P−1 = dL − 1/2 in the respectively stiff (k ∞) and 
floppy (k 0) limits.
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of the spherocylindrical micelles. As summarized in eq. (35), the window of second CMC 

behavior is widened with increasing energy barrier between compact and 1D assemblies. 

With increasing k, this barrier diminishes, ultimately vanishing the in the k ∞ limit, 

because the high stiffness requires the micelle thickness to maintain ℓ = ℓ0 independent 

of dimensionality. Hence, as is the case for the “ladder model” of cylindrical micelle 

thermodynamics (Missel et al., 1980), in the absence of an energy barrier between spheres 

and elongated cylinders, there is only a single CMC to a state where mean aggregation 

number continuously increases with Φ.

Similar arguments apply to the spherocylinder/lamella transition, except that 

spherocylindrical aggregates have a very small translational entropy due to their large mean 

size, and thus are stabilized by entropy over a vanishingly narrow region of parameter space.

Evidence for the secondary CMC transition between spherical and cylindrical micelles has 

been reported for range of surfactant systems; see (Bergström, 2016) for a review. Many 

experiments report an indirect signature of an inflection point, and secondary upturn, in 

the mean aggregation number as a function of concentration. For example, the convex 

dependence of viscosity on concentration for certain ionic surfactants was interpreted by 

Porte in coworkers as a secondary CMC, and motivated their model with an energetic gap 

between spherical and cylindrical states for second CMC behavior (Porte et al., 1984). 

Elsewhere, experimental imaging of the concentration-dependence micelle morphologies 

has been used to probe second CMC behavior. For example, Figs. 12 C–F show cryo-

electron microscopy (cryo-EM) images of micelles formed by dimeric (gemini) surfactants 

(Bernheim-Groswasser et al., 2000). Above the first CMC, but still below a second threshold 

concentration, cryo-EM shows monodisperse spherical micelles Fig. 12. With increased 

concentration (Fig. 12D–F), cryo-EM shows the appearance of cylindrical, or worm-like, 

micelles. While these grow in length with concentration, they also retain coexistence with 

a population of spherical micelles. This, along with an observed gap in micelle sizes 

intermediate to spheres and the shortest cylinders, is consistent with the secondary CMC 

transition induced by an energetic gap between spheres and cylinders. As described above, 

and consistent with the apparently “bulbous” ends of worm-like micelles (Fig. 12F), such 

an energetic gap is a natural consequence of the mismatch between radii of spherical and 

cylindrical micelle packings.

To conclude the overview of amphiphillic aggregation, we briefly return to the question 

of convexity of the energetics described by (40) – (44) for spherical micelles (dL = 

3). It is straightforward to consider two simple limits to esimtate the dependence of 

convexity on target size. When k ≪ 1, energetics are dominated by head-group area terms 

and ϵT′′(k ≪ 1) ∝ γv0
2/3/nT

7/3. Whereas, the opposite limit is controlled by length elasticity, 

and ϵT′′(k ≫ 1) ∝ kv0
2/3/nT

4/3. Notably, as with the fluid capsule model in the previous 

section, convexity generically decreases with target size, however, not nearly as quickly. 

In particular, for the amphiphile model the product nT
3ϵT′′/kt is always increasing with nT (i.e. 

as nT
2/3 and nT

5/3 for small and large k, respectively). Hence, according to eq. (20) the relative 

number fluctuations of micelles decrease with mean size. This is in marked distinction with 

Hagan and Grason Page 31

Rev Mod Phys. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the predictions of the bending elasticity of the fluid shell model, for which ϵT′′ ∝ nT
−3 and size 

fluctuations grow in proportion to mean size. The origin of this relatively sharper minima of 

aggregation energetics, and correspondingly tighter control of aggregate size, can be traced 

to the fact the the closure radius is on the scale of the subunit thickness (i.e. Rclose ≈ t), 
or more specifically, the additional considerations of tail packing constant density in the 

micellar cores, which are absent for the membrane bending elasticity of fluid capsules.

B. Self-limited, open-boundary assembly

Here we describe a class of self-limiting assembly characterized by an open boundary, a 

surface that separates the aggregate interior from the solution of freely associating subunits. 

Unlike the SCA described above, in open-boundary assemblies (OBA) this free boundary is 

maintained in the target self-limiting states. Therefore, the target state has a finite surface 

energy associated with loss of short-range cohesion or differences in solvation at its exterior.

As described in Sec. III.A.1, a finite boundary energy alone generically favors unlimited 

aggregates. Hence, to be self-limited, OBA structures require additional interaction terms 

that grow with aggregate dimensions, and thus balance the generic tendency to minimize the 

boundary to interior ratio. We define this additional (non-surface) energetics as the excess 
energy, and its essential feature is a regime of super-extensive growth, meaning the total 

excess energy increases with size faster than the number of subunits n. Below we describe 

two example mechanisms that generate such a form of excess energy, but the key underlying 

feature is the existence of gradients in stress throughout the aggregate. Whereas SCA can 

realize finite target dimensions with uniform subunit shape and packing, in OBA long-range, 

gradient patterns of intra-aggregate stress are required for self-limitation and ultimately 

dictate the range of possible self-limiting sizes.

Before introducing these two physical mechanisms, which will illustrate the microscopic 

origins of excess energy accumulation, we begin with a generalized description of the 

thermodynamics of OBA.

1. Limits of self-limitation—To describe the aggregation energetics of OBA, we 

consider a structure with an open boundary that can grow in D possible spatial dimensions 

(directions). We let dL of these directions be potentially self-limiting, while in the remaining 

d = D − dL directions the structure undergoes unlimited growth. Denoting the limited and 

unlimited dimensions of the structure as W and L respectively, the scaling of aggregate 

volume gives n ∝ W dLLd. In the limit that L ≫ W, the amount of the open boundary 

then grows as Ab W dL − 1Ld.15 For example, consider subunits that can bind in all three 

spatial dimensions, i.e. D = 3. Quasi-cylindrical aggregates of such subunits accrue a surface 

energy cost deriving from their full boundaries, which are limited in two transverse spatial 

dimensions (dL = 2) and unlimited in the axial direction (d = 1); whereas finite-thickness 

planar aggregates are limited along the normal direction (dL = 1), but unlimited in the two 

in-plane directions (d = 2). Notably, such structures are self-limiting spatially, but do not 

15For D = 2, assemblies are sheet-like and the boundary corresponds to a 1D edge due to fewer (lateral) cohesive bonds, while for D = 
3, the boundary corresponds to the entire 2D surface surrounding the aggregate.
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necessarily have a finite or even well-defined peak aggregation number16. Nevertheless, 

equilibrium in these cases (e.g. finite-thickness “filaments” and “slabs”) derives from the 

optimal energy per subunit with respect to the self-limiting dimension(s) of the assembly.

Because surface subunits typically have fewer cohesive bonds with neighbor subunits 

and potentially more unfavorable contacts with surrounding solvent, an open boundary 

generically accrues a surface energy cost proportional to Ab. Parameterizing this cost by 

the boundary energy Σ and the “bare” aggregation energy for interior subunits −ϵ0, we may 

write a generic form for the per-subunit aggregation energy as a function of the self-limiting 

dimension W:

ϵ(W ) = − ϵ0 + Σ
W + ϵex(W ) . (46)

For simplicity, we absorbed a geometric factor associated with the dimensionsality of the 

boundary into the definition of Σ. The first two terms describe the short-range cohesive 

interactions, with a constant bulk energy gain and a surface energy penalty, while the 

final term defines the excess energy relative to the short-range model. An example energy 

of this form is shown in Fig. 13A. As we illustrate below, such an excess energy arises 

from effects such as long-range inter-subunit repulsions or elastic stresses that increase 

with aggregate size. In self-limiting assemblies, these “cumulative” effects give rise to an 

excess energy (per subunit) that increases monotonically in size; hence, ϵex(W) captures 

energetic effects that grow super-extensively with aggregate size. In any physical system, 

this super-extensive energy growth will only persist up to some threshold assembly size, 

crossing over from convex (e.g. power-law) growth at small sizes to some asymptotically 

saturating energy density as W → ∞. The large-W saturation of excess energy can occur 

for a variety of reasons. For example, long-range repulsions may be screened beyond 

some length scale. Alternatively, above a threshold excess energy cost, it will become 

energetically favorable for subunits to reorganize or deform to avoid further excess energy 

accumulation. Notwithstanding its microscopic origin, the effect of this saturating excess 

energy is to renormalize the per subunit energetics from its bare value to −ϵ0 + ϵ∞.

In OBA, self-limitation follows directly from the balance between the accumulating cost 

of ϵex(W) and the generic decrease of surface energy with increasing W. It is then 

straightforward to show that equilibrium assemblies satisfy the following “equation of state” 

that links the finite equilibrium size W* to the surface energy,

Σ = W *
2ϵex′ W * , (47)

with ϵex′ = ∂W ϵex. Stability criteria additionally require that ϵex′′ > 0, but the basic results 

of the competition between surface energy and excess energy accumulation are shown 

schematically in Fig. 13. Since the surface energy always drives assembly toward larger 

sizes, the equilibrium finite size W* generically increases with Σ given a fixed form of 

ϵex(W). Self-limitation can arise in two ways: either the equilibrium width can increase 

16Indeed, cylindrical aggregates have an exponential length distribution, while planar aggregates (e.g. plates and membranes) will 
correspond to a bulk state according to the analysis of Sec. II.A.2.
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continuously with Σ to the bulk state (i.e. W* → ∞), or as illustrated in Fig. 13B, self-

limitation will persist only up to a maximal finite size before a discontinuous transition to 

bulk assembly occurs. In the latter case, the energy density of the finite state eventually 

increases with surface energy, to the point where the energy densities of the finite and 

bulk (unlimited) states become equal; i.e. ϵ(W → ∞) = −ϵ0 + ϵ∞. For surface energies 

above this maximal value, the bulk (unlimited) state is favored. Hence, such systems can be 

characterized by a maximal self-limiting size, Wmax, and a maximal surface energy Σmax 

below which equilibrium structures are finite (e.g. Fig. 13B).

For a general OBA, it is then useful to consider the following question: What are the range 

of possible self-limited equilibrium states that a given system can exhibit? As described in 

Sec. II.B.2, provided that the concentration is well above the aggregation threshold (CAC), 

the mean aggregate size is determined by the minimum of the per-subunit energy ϵ(n). Thus, 

the answer to this generic question depends only on the excess energy and its accumulation 

with width17.

To see this, we reformulate the condition for equilibrium of the self-limiting state relative to 

bulk assembly, ϵ(W*) < ϵ(W → ∞), in terms of the surplus of energy in the bulk relative to 

the finite state,

Δϵ W * ≡ ϵ(W ∞) − Σ
W *

+ ϵex W * − ϵ0 (48)

= ∂
∂W *

W * ϵ∞ − ϵex W * , (49)

where we used the equation of state linking stable size to surface energy in eq. (47). The 

condition that Δϵ(W*) > 0 is required for equilibrium finite (self-limited) states can then be 

simply formulated in terms of the first integral of surplus bulk energy

A(W ) ≡ W [ϵ(W ∞) − ϵ(W )] = W ϵ∞ − ϵex(W ) − Σ, (50)

so the equilibrium of finite structures relative to bulk corresponds to the condition

∂A
∂W Σ

> 0. (51)

We refer to the function A(W ) as the accumulant, and note that graphically it corresponds 

to the area of the rectangular regions of the plot of ϵex(W) versus W high-lighted in Fig. 

14A, for the model (1) described by the blue curve. Notably, because the fixed-Σ partial 

derivative in eq. (51) is independent of surface energy, for a given form of excess energy the 

accumulant may be constructed for any value of surface energy, and analyzed as a function 

of W to consider potential finite-size equilibria at all values of Σ.

17Eq. 19 shows a small concentration-dependent shift of the optimal size n* below the size corresponding to the minimum of ϵ(n); the 
optimal size approaches the energy-minimizing size as Φ → ∞.
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According to eq. (51), finite-W equilibria correspond to the range of increasing A(W ). Fig. 

14 illustrates two models of excess energy, both of which are characterized by crossovers 

from power-law growth at small-W to asymptotic saturation to finite values of ϵex(W → ∞) 

= ϵ∞, but do so via different functional dependencies on the finite size W.

For model 1 (blue), the range of increasing A(W ) extends only up to a maximum, with 

corresponding width Wmax, indicating that a first-order transition between finite and bulk 

states occurs at Wmax and the corresponding value of Σmax
18. For model 2 (orange), the 

monotonically increasing range of the accumulant extends to W → ∞. This indicates that 

model 2 supports equilibrium self-limited states at all values of Σ, and only reaches bulk 

assembly in the limit of infinite surface cost. Hence, even if the excess energy saturates in 

the W → ∞ limit, self-limitation may still, in principle, extend to all possible size ranges, 

depending on the nature of the asymptotic approach to the bulk energy.

Given the form of the accumulant defined in eq. (50) and the condition eq. (51) for its 

increase, the possibility for self-limited states that extend continuously up to the bulk state 

(i.e. limΣ → ∞ W*→ ∞) can be deduced from the asymptotic form of the residual energy 

Δϵ(W) = ϵex(∞) − ϵex(W) as W → ∞. Following an argument made by (LeRoy, 2018; 

Terzi et al., 2020), we assume this residual vanishes as a power law ϵex(∞) − ϵex(W) 

~ W−v. It is then straightforward to show that when ν > 1, A(W ) decreases as W → 
∞. Such cases correspond to the first-order type self-limitation exhibited by model 1 in 

Fig. 14. Alternatively, when 0 < ν < 1, indicating a slower saturation of excess energy, 

the accumulant continues to increase as W → ∞, indicating the existence of self-limited 

equilibria extending up to the bulk state. The case of ν = 1 is marginal, and can exhibit 

either first- or second-order like behavior. Below, we describe models in the context of 

geometrically frustrated assemblies that can illustrate both types of behavior, either a 

continuous or discontinuous transition between the finite and bulk states depending on the 

mechanisms underlying the accumulation of excess energy.

2. Short-range attractions, long-range repulsions—As described in the previous 

section, self-limitation in OBA requires superextensive growth of the excess energy. 

In this first class of examples, the accumulation of excess energy derives from long-

range interactions between subunits, specifically, interactions characterized by short-range 
attraction and long-range repulsion (SALR) (Groenewold and Kegel, 2001; Sciortino et al., 
2004). Models of such systems usually consider isotropic pair-potentials u(r) that can be 

split into two parts,

u(r) = uSA(r) + uLR(r), (52)

where the short-ranged potential describes cohesive interactions uSA(r) < 0 between 

neighboring subunits, which act on scales comparable to the subunit hard-core diameter 

d; i.e., uSA(r ≫ d) ≃ 0. Outside of this cohesive range, the potential is dominated by a 

long-range repulsion uLR(r) > 0 that extends over sizes much larger than single particles. 

18Defining the accumulant in terms of the Σ = 0 energetics, i.e. A(W ) ≡ W ϵ∞ − ϵex(W ) , as in Fig. 14B, it can be easily shown 

that Σmax = A W max .
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Even when the repulsive interactions between neighboring subunits are much weaker than 

the cohesion, the fact that repulsive interactions extend far beyond the first shell of neighbors 

can lead to superextensive growth of repulsive energy with increasing assembly size. A 

model of this form has been applied to explain finite-sized aggregate formation in a broad 

range of systems (Dinsmore et al., 2011), including protein complexes (Cardinaux et al., 
2007; Foderà et al., 2013; Stradner et al., 2004), charged nanoparticles (Nguyen et al., 2007), 

colloidal particles in low-dielectric solvents (Sedgwick et al., 2004; Van Schooneveld et al., 
2009), dipolar mesophases (Seul and Andelman, 1995), and even models of “nuclear matter” 

(Caplan and Horowitz, 2017).

To illustrate the mechanism of self-limitation in this class of systems, we consider the 

following specific model: Short-range cohesive interactions lead to −u0 per neighbor 

contact, and aggregates maintain an (approximately) uniform density ρ0 ≈ d−3. For repulsive 

interactions, we assume that subunits are isotropic and repel according to a screened 

(Yukawa) repulsion,

uLR(r) = q2

r e−κr . (53)

Here q is the electrostatic charge per subunit, assumed to be fixed, and κ is the screening 

length, which arises from Debye-Hückel screening by mobile ions in solution, and truncates 

the far-field repulsions for r ≫ κ−1. For simplicity, we illustrate a simplified version of the 

theory by Groenowold and Kegel (GK) (Groenewold and Kegel, 2001). In our presentation, 

we consider the case where charge per subunit is fixed, a point which we revisit below. Our 

primary purpose is to illuminate a model with the minimal ingredients for a self-limiting 

equilibrium, and due its finite screening length, the long-range Yukawa potential provides 

a convenient example. For purposes of illustration, we consider spherical aggregates with 

radius R, whose interaction (free) energy can be described by

ϵ(R) = − u0
z
2 + 3Σ

R + ϵex(R) (54)

where 〈z〉 is the mean number of neighbor contacts in the bulk of the aggregate, and Σ 
≈ u0/d2 is the surface energy associated with fewer (short-ranged) cohesive contacts at the 

boundary. Here, the excess energy derives directly from the sum of long-range, pairwise 

repulsions in the aggregate volume V19,

ϵex(R) = q2ρ0
2V ∫

V
d3rd3r′uLR r − r′

= q2ρ0
2κ2 1 − 3(1 + κR)

2(κR)3 1 + e−2κR [κR − tanh(κR)] .
(55)

19The form of the self-energy can be readily calculated using Greens theorem, where the total repulsive energy can be written as 

∫Vd3rqρ(r)ϕ(r) with a potential that satisfies the linearized (Debye-Hückel) equation, (∇2 + κ2)ϕ(r) = 4πqρ(r). Solving this for 

spherically symmetric aggregates, ρ(r ≤ R) = ρ0 and ρ(r > R), yields the explicit form of screened electrostatic energy.
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The behavior encoded in ϵex(R) is plotted in Fig. 15B, and can be understood physically 

by considering the asymptotic limits of small and large aggregate size relative to the 

screening-length of the repulsive interactions, as shown schematically in Fig. 15A. For small 

aggregates,

ϵex R ≪ κ−1 ≃ q2ρ0
5 R2, (56)

which derives from the fact that, when repulsions extend over the entire aggregate, the 

per-subunit cost of the Coulomb self-energy of an aggregate of is roughly Q2/(nR) ∝ R2, 

where the total aggregate charge Q = qn ∝ R3. In the opposite regime, where aggregate sizes 

far exceed the screening length,

ϵex R ≫ κ−1 ≃ ϵ∞ 1 − 3
2κR + 3

2(κR)3 , (57)

where ϵ∞ ≡ q2 ρ0κ−2/2. This leading term R → ∞ derives from the fact that each subunit 

in the bulk of the aggregate experiences repulsive interactions with roughly ρ0κ−3 other 

subunits within a screening length, while the first correction accounts for the surface layer 

of thickness κ−1 with fewer neighbors within the screening length. Notably, the subleading 

1/R3 term can be associated with a square curvature cost (per unit area) for deforming the 

boundary shape from planar, which alters the distribution of repulsive particles near the free 

surface of the aggregate.

Fig. 15C shows the predicted equation of state for the self-limiting radius R* as a function of 

surface energy, Σ R* = R*
2ϵex′ R* /3. For small Σ, the balance between the “charging energy” 

of aggregates and surface energy leads to a growth R* ~ Σ1/3, which proceeds until the 

optimal aggregate size grows beyond the screening length. In the large aggregate regime, the 

asymptotic approach to ϵ∞ leads to an aggregate size that diverges continuously at a critical 

surface energy Σmax = κϵ∞/2. The origin of the second-order-like transition to the bulk in 

this model can be traced to the R ≫ κ−1 form of the excess energy in eq. (57). The leading 

correction to ϵex (R → ∞) = ϵ∞ goes as −1/R, that is, in the notation of the foregoing Sec. 

III.B.1, ν = 1. Hence, this leading correction at large R behaves like a negative contribution 

to the surface energy, Σeff = Σ − Σmax, due to the reduced electrostatic repulsion within a 

screening length of the surface. When Σ < Σmax, the effective surface energy is negative, and 

the aggregate equilibrium derives from the balance between the −1/R drive to create more 

surface and the sub-leading +1/R3 term, to give

R*
ϵ∞κ−3

Σmax − Σ , (58)

which diverges (continuously) as Σ → Σmax. This prediction, that there is a maximal 

cohesive surface energy for aggregates, but that their equilibrium self-limiting size extends 

to arbitrarily large values, is consistent with the plot in Fig. 15C(inset), which shows the 

accumulant of spherical aggregates to be monotonically increasing over the full range of R.
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The result that self-limitation can extend up to arbitrarily large sizes (i.e. Wmax → ∞) for 

this simplified model may be surprising, as it implies that the thermodynamics are sensitive 

to the finite size of aggregates over much larger size ranges than the finite interaction range, 

κ−1. That is, a subunit whose interactions extend only κ−1 can still “sense” that it should join 

an aggregate with a radius smaller than R* ≫ κ−1, but not a larger one. The resolution of 

this puzzle is that the physical term that restrains aggregate growth in this R* ≫ κ−1 regime 

derives from the square curvature cost of the free boundary (contributing as +1/R3 to the 

excess energy). Although repulsions are short-ranged compared to large aggregates (i.e. R 
≫ κ−1), they are sufficiently non-local to sense the curvature of the boundary, and thereby, 

the global radius of the aggregate. That is, repulsions in this regime give rise to precisely the 

type of square-curvature energetics that selects for finite sizes in self-closing assemblies in 

Sec. III.A.1; i.e., with a preferred boundary curvature that vanishes as Σ → Σmax
20.

While self-limited assembly due to a competition between cohesive boundary costs and 

accumulation of long-range repulsion is generic, the specific features of this simplified 

model, including continuously diverging finite size for R* ≫ κ−1, require several caveats. 

Foremost, the convexity of the assembly energetics decreases with aggregate size as ϵ*′′ n*
−3

for R* ≫ κ−1 for this model, similar to the case of self-closing shells in Sec. III.A.1. 

Thus, according to eq. (20), fluctuations in n grow with self-limiting size, and diverge 

at the threshold as 〈(Δn)2〉1/2 ∝ n* ~ (Σc − Σ)−3/2. Hence, for all practical purposes the 

self-limitation to finite and well-defined sizes will not persist to arbitrarily large structures.

Beyond this, the model is oversimplified and fails to incorporate a number of physical 

ingredients, which can influence the form of excess energy accumulation. For example, 

more realistic models would include: a finite compressibilty of the short-range cohesive 

forces, which allows for density variation with aggregate size and position within the 

aggregate; and for charged subunits in solvent, the effects of dielectric contrast between 

aggregates and the solvent, as well as variable degrees of charge condensation/dissociation 

as aggregates vary in size. Indeed, when initial applications of this GK model aimed to 

understand the aggregation of lysosyme proteins in low-salt aqueous solutions, comparison 

to scattering measurements of the aggregate size suggested that variable ionization of 

subunits could not be neglected (Zaccarelli, 2007). While to a first approximation, it 

was argued that subunit charging is independent of aggregation number (Groenewold 

and Kegel, 2001), the charge per subunit and the screening length, which varies with 

counterion concentration, both vary with total concentration of ionizable subunit species 

(Cardinaux et al., 2007). Hence, accounting quantitatively for the concentration dependence 

of aggregation for these electrostatic systems requires consideration of subunit charge in 

a self-consistent fashion, leading potentially to aggregation-dependent renormalization of 

repulisive interactions (Nguyen et al., 2007), not to mention additional effects associated 

with non-spherical aggregate shapes (Sciortino et al., 2005). Notably, the non-spherical 

nature of aggregates of charged particles is evident in confocal images of a colloidal analog 

to the aggregation of nanoscopic proteins (Sedgwick et al., 2004), as shown Fig. 15D.

20Consistent with this result, performing an analogous calculation for a planar slab geometry shows that the self-limited size diverges 
exponentially above a threshold value of Σ, due to the absence of such a curvature term.
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Finally, even beyond specific physical considerations of electrostatic SALR systems, the 

prediction of the simplified Yukawa model of diverging finite aggregate size assumes a 

spatially uniform bulk state, whereas models of systems with short-range attractions and 

long-range repulsions have been shown to form periodically-modulated aggregate phases, 

e.g. stripes, layers and spheres, at high concentration (Sciortino et al., 2004; Sear and 

Gelbart, 1999; Seul and Andelman, 1995; Zhuang and Charbonneau, 2016). That is, at 

sufficiently high densities, the uniform density bulk state is unstable to lower free energy 

periodic bulk states such that ϵ∞(periodic) = ϵ∞(uniform). If the stability of equilibrium 

self-limitation is reanalyzed in terms of a competition with a lower-energy, non-uniform 

bulk state, then the maximal size range of self-limiting equilibrium becomes finite (see e.g. 

the accumulant plot in Fig. 15D). The full thermodynamics of the transition between a dilute 

phase of self-limiting aggregates (above the CAC) to the long-range ordered bulk aggregate 

phases requires considerations beyond the ideal aggregation thermodynamics considered 

here.

3. Geometrically frustrated assembly (GFA)—The notion of geometric frustration 
(GF) originally emerged in the context of low-temperature, condensed matter systems 

(e.g. magnetic materials, spin models) (Vannimenus and Toulouse, 1977). It refers to the 

impossibility of propagating an energetically-preferred arrangement throughout space, due 

to global geometric constraints (Kléman, 1989; Sadoc and Mosseri, 2006). For bulk, infinite 

systems, GF leads to a rich phenomenology: extensive arrays of topological defects thread 

through the highly-degenerate bulk ground states that populate a rough energy landscape.

Recently has it been recognized that GF gives rise to new behaviors in self-assembling 

materials (Grason, 2016), deriving from two key features. First, the constituent subunits (e.g. 

polymers, colloids, proteins) are relatively “soft” and held together by weak, non-covalent 

forces. Second, assemblies need not reach bulk states, and thus have additional degrees of 

freedom associated with the (potentially) finite-size and shape of the assembled domain. 

Unlike bulk or rigid systems where GF must be resolved by defects (Sadoc and Mosseri, 

2006), in soft assemblies it can be tolerated, at least over some size range, by smooth 

gradients in the subunit shapes and packings. As an illustration, see the schematic of 

“warped jigsaw” particles in Fig. 16A, where the tapering of the particle shape favors 

curvature along one row of the lattice assembly (Grason, 2017). Provided particles or their 

interactions are sufficiently deformable, aggregates can accommodate frustration through 

strain gradients, leading to arrangements that are more (less) relaxed near to (far from) the 

free boundary of the aggregate.

This self-organization of long-range stress gradients is the defining characteristic of 

geometrically frustrated assembly (GFA), giving rise to the form of accumulating excess 

energy that can limit assembly size (Sec. III.B.1). The balance between the surface energy 

and the (superextensive) cost of GF can select equilibrium domain sizes that are finite, and 

in principle, arbitrarily larger than the subunits themselves.

To date, GFA has been implicated in the emergent structures of various soft matter systems, 

including self-twisting protein bundles (Aggeli et al., 2001; Brown et al., 2014; Cameron 

et al., 2018; Grason and Bruinsma, 2007; Hall et al., 2016; Turner et al., 2003; Yang et 
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al., 2010), twisted molecular crystals (Haddad et al., 2019; Li et al., 2020), chiral smectics 

(Hough et al., 2009; Matsumoto et al., 2009) and membranes (Armon et al., 2014; Ghafouri 

and Bruinsma, 2005; Gibaud et al., 2012; Kang and Lubensky, 2017; Sakhardande et al., 
2017; Selinger et al., 2004; Sharma et al., 2014; Zhang et al., 2019), particle-coated droplets 

(Bausch, 2003; Irvine et al., 2010; Meng et al., 2014; Yu et al., 2016), curved protein 

shells (Li et al., 2018; Zandi et al., 2004), and phase-separated lipid vesicles (Schneider 

and Gompper, 2005). Consideration of GF in these systems has primarily stemmed from 

experimental observations of assemblies that (A) terminate at finite size and/or (B) exhibit 

“defect-ordered” morphologies. Continuum models that consider the interplay between the 

elastic costs of “misfit” and domain formation have been developed to address a range 

of distinct frustration mechanisms, including frustration of 2D liquid crystalline/crystalline 

order on non-Euclidean manifolds (Bowick and Giomi, 2009; Nelson and Peliti, 1987), 

metric and orientational frustration of chiral fibers (Brown et al., 2014; Grason, 2015; 

Haddad et al., 2019), shape-frustration in stacking assemblies of curved layers (Achard 

et al., 2005; DiDonna and Kamien, 2003; Matsumoto et al., 2009), chirality frustration 

in crystalline (Armon et al., 2014; Ghafouri and Bruinsma, 2005) and liquid crystalline 

membranes (Kang and Lubensky, 2017; Selinger et al., 2001), and the assembly of non-

tiling polygonal particles (Lenz and Witten, 2017).

We first describe a heuristic model that highlights the common thermodynamic features of 

these apparently diverse realizations of GFA, which are encoded in a simplified form of the 

excess energy,

ϵex(W ) ≈ k
2 δ2(f, W ) + C

2 s − s0
2 . (59)

Here, k is a generalized elastic parameter for straining inter-element packing, as measured 

by a generalized (mean) strain δ(f, W), which itself varies with the finite size W of the 

domain and a parameter f that measures the “strength of frustration”. To be clear, local 

strains vary with position throughout the assembly, as we describe for a specific example 

below, but for simplicity we focus here on how the magnitude of strain varies with size and 

frustration. While frustration mechanisms vary considerably among distinct GFA systems, 

they all exhibit power-law growth of strain with domain size W. This can be modeled 

heuristically as

δ ≈ f(s)W η (60)

where η and f vary for different cases of GFA. For example, the orientational strains in 2D 

liquid crystal domains grow linearly with domain size (η = 1), whereas positional strains 

in frustrated 2D crystals grow quadratically (η = 2) (Grason, 2016; Niv and Efrati, 2018). 

The definition of “frustration strength” f depends on the specific GF mechanism; however, 

it can generally be expressed as a function f(s) of the local shape of inter-subunit packing 

(e.g. inter-subunit bend or twist), which we denote generically with the shape parameter s. In 

many cases, the frustration strength can be expressed as a simple power law of shape,

f(s) ≈ sμ (61)
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where μ is a positive exponent. For the example of a crystalline cap on a spherical surface 

(Grason, 2016), f corresponds to the Gaussian curvature, which is the square of the 1D 

curvature in this geometry and thus corresponds to a shape parameter with μ = 2. In the 

form of eq. (61), the strength of frustration generically vanishes, intuitively, in the limit 

that the shape “flattens” to s → 0. The second term in eq. (59) describes generic costs 

for deformations away from an ideal, misfitting shape with s = s0 ≠ 0, which incur elastic 

penalties described by the “shape modulus” C.

This basic form of eq. (59) implies a generic size dependence for the excess energy shown 

schematically in Fig. 16B. For small sizes, assemblies retain their preferred, misfitting shape 

(s ≃ s0) leading to a power-law growth of excess energy, ϵex(W 0) ≃ kf0
2W 2η/2, where 

f0 = f s0 = s0
μ is the frustration strength of the preferred shape. If power-law growth of 

ϵex(W) extended to all size scales, then the compromise between costs of GF and surface 

energy would select a finite equilibrium size W * f0
−2/(2η − 1) for any surface energy Σ. 

However, in any physical system, the excess energy can only accumulate up to some 

maximal size scale, beyond which the assemblies escape frustration through one of a number 

of competing morphological “modes” (Hall et al., 2016; Hall and Grason, 2017). These 

include, for example, the formation of topological defects that screen far-field frustration 

stresses (Grason, 2012; Li et al., 2019), as well as shape flattening, which refers to 

the smooth deformation of an incompatible (i.e. misfit) shape to a uniformly strained, 

compatible one (Grason, 2020). Because subunits and their interactions are generically soft, 

the excess energy required to escape frustration must be finite. Thus, as shown in Fig. 16B, 

ϵex(W) generically crosses over from power-law accumulation at small W to an asymptotic 

approach to this finite energy ϵex(W → ∞) = ϵ∞. In the minimal description of eq. (59), the 

cost of shape flattening is simply ϵ∞ = Cs0
2/2 per subunit.

Comparing power-law accumulation at small sizes to the asymptotic shape-flattened energy, 

one expects a crossover between these regimes at a characteristic “flat-tening” size 

W flat  ≈ (C /k)/s0
2(μ − 1) 1/η

. This size scale defines the maximum size for which assemblies 

will tolerate the accumulating frustration cost, beyond which deformation to an unfrustrated 

shape (s → 0) becomes energetically favorable. Intuitively, this length scale also sets a 

bound on the escape size, Wmax ≤ Wflat, since for W ≫ Wflat the bulk energy is simply 

renormalized by the cost of flattening. In general, the escape size is set by the lowest-

energy mode of relaxing frustration in the bulk state, which may be also involve “Wigner 

lattice” states of defects that neutralize the long-range cost of frustration (Li et al., 2019). 

Understanding the practical limit of self-limitation then requires considering all possible 

competing modes of relaxing frustration, and determining which of these has the lowest 

energy for a particular regime of assembly. Notably, this distinction between power-law 

growth of energy density with W vs. asymptotic approach to a constant value has been 

proposed, by Meiri and Efrati, to classify distinct regimes of GF itself, as respectively 

“cumulative” and “non-cumulative” frustration (Meiri and Efrati, 2021). The analysis of the 

accumulant in Sec. III.B.1 translates that criteria into directly into their thermodynamics 

consequences for equlibrium SLA.
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Notwithstanding which mode facilitates escape to the bulk, the heuristic picture of GFA 

implies a common phase diagram (Fig. 16C), spanned by the bare frustration strength f0 

on one axis, and the ratio of cohesion to intra-assembly stiffness Σ/k on the other (say for 

fixed subunit concentration and temperature). Above a critical frustration strength, there is 

a regime of self-limiting aggregates between the dispersed state (below the CAC) and the 

bulk state. Within the self-limited regime, the equilibrium domain size increases with Σ/k but 

decreases with frustration strength f0.

As a specific example of the origin and implications of GFA, we briefly discuss a well-

studied model for crystalline ribbons frustrated by chirality (Armon et al., 2014; Ghafouri 

and Bruinsma, 2005; Selinger et al., 2004). This model has been developed to understand 

the polymorphic assembly of chiral surfactant bilayers that adopt a variety of quasi-1D 

structures (Oda et al., 1999; Selinger et al., 2001; Zhang et al., 2019; Ziserman et al., 2011); 

i.e., they form 2D sheets that are much narrower in width than length, W ≪ L. Ghafouri 

and Bruinsma first described this mechanism of frustration (Ghafouri and Bruinsma, 2005), 

posing it as a competition of the bending cost of a chiral (anisotropic) membrane against the 

elastic costs of in-plane stretching for a 2D crystal with Gaussian curvature. More recently, 

this model has been extended (Armon et al., 2014; Grossman et al., 2016) to describe 

experimental observations of bola-amphiphile ribbons by Sharon and coworkers (Zhang et 
al., 2019).

For the purposes of this discussion, we present here only a simplified picture of the 

frustration and its effects in chiral ribbons, and provide a more detailed summary in 

Appendix B. As shown in Fig. 17A, we consider assemblies of ribbons of width W and 

much longer (unlimited) length L ≫ W. For the case of sufficiently narrow ribbons, it can 

be shown that the favored morphology is that of a helicoid: a strip whose width axis twists 

around a straight central ribbon at a uniform rate Ω. In this regime, the excess energy of the 

helicoidal chiral ribbon takes the following form (see Appendix B),

ϵex(W ) = Y a0
1440Ω0

4W 4 + Ba0 Ω − Ω0
2, (62)

where a0 is the area per subunit in the membrane, and Y and B are the respective in-plane 

stretching and out-of-plane bending moduli for the assembled membrane. Here Ω plays the 

role of a shape parameter in the heuristic model introduced above, and the second term has 

the form of a chiral bending energy that favors uniform twist Ω0 (Ghafouri and Bruinsma, 

2005; Helfrich and Prost, 1988). The first term derives from the elastic cost of in-plane 

deformation of the 2D lattice of the ribbon, and describes the accumulating elastic cost of 

frustration. It is intuitive to understand the growth of stretching energy with ribbon width 

by considering the contour length per helical turn of the longitudinal strip of the ribbon 

at a distance r from the center, (2π/Ω) 1 + (Ωr)2. Due to the resistance to shearing and 

stretching of local elements in the 2D solid, this motif leads to strains that grow with relative 

longitudinal extension compared to the midline, roughly ≈ (Ωr)2 to lowest order, and hence, 

it generates an elastic energy density of ~ Y (Ω2W2)2. It can be shown that the underlying 

source for stress gradients in such an assembly derives from the incompatibility of a 2D 

planar metric with the non-zero (negative) Gaussian curvature of the membrane, KG ≃ −Ω2 
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(Armon et al., 2014; Ghafouri and Bruinsma, 2005). In the language of the heuristic picture 

introduced above, we can identify the strength of frustration with KG, and hence η = μ = 2, 

due to the quartic growth of frustration cost with shape misfit Ω and width W.

An instructive, albeit oversimplified, analysis of the size-dependence of frustration in chiral 

ribbons considers only the relaxation of helicoidal twist for variable width. For small widths, 

the ribbon adopts a preferred twist, Ω* (W → 0) = Ω0, due to the vanishing cost of 

frustration as W → 0, and ϵex ≈ Y Ω0
4W 4. For large widths W → ∞, the balance between 

stretching and bending favors unwinding of the pitch, Ω* ≃ Ω0(Wun/W)4/3, where

W un ≡ 720B
Y Ω0

2

1/4
, (63)

defines a characteristic unwinding size. That is, for W ≪ Wun the ribbon retains roughly the 

twist preferred by chirality and the power-law (~ W4) accumulation in excess energy, while 

for much larger ribbons, the prohibitive cost of frustration causes the ribbon to unwind, 

expelling Gaussian curvature. Fig. 17D (dashed curve) shows the characteristic crossover in 

the excess energy of helicoidal ribbons, with an asymptotic flattening of the excess energy 

characterized by the exponent ν = 4/3, which implies self-limiting widths are not stable in 

the unwinding region (see section III.B.1). In terms of the accumulant analysis (inset Fig. 

17D), the escape of frustration by helicoid unwinding would imply a maximum self-limiting 

size of Wmax(helicoid) ≃ 2.1Wun.

How do we understand physical parameters that determine the range of possible self-limiting 

widths? Here, we note that it arises from the combination of two physical lengths. One of 

these derives from the ratio of bending to stretching moduli, B/Y ≡ t, which is typically 

of order of the thickness an elastic membrane. In other words, in can be expected that t is 

of order of the molecular (≈ nm) size of the constituent amphiphiles. The second length 

scale is the preferred pitch P0 = 2π/|Ω0|, which derives from the chiral preference for local 

skew packing of neighbor amphiphiles (Zhang et al., 2019). Unlike t, the size range of P0 is 

mesoscopic, on the order of 100s of nm. With these definitions, we see that the unwinding 

size scale, and hence the maximum self-limiting width, are the geometric mean of these two 

length scales W un  ≃ 11 tP0, one molecular and one mesoscopic. It can then be understood 

that frustration can limit the size of helicoids up to a size range intermediate to these 

molecular and mesoscopic sizes, that is, ribbons of order of 10s of nm in width.

As we describe in more detail in Appendix B, frustration escape in chiral ribbons is more 

complex than suggested by considering only helicoidal shapes. As chiral ribbons grow 

beyond a critical width W c = 2W un (Fig. 17B–C), they become mechanically unstable to a 

new class of shape equilibria, spiral ribbons (Armon et al., 2014; Ghafouri and Bruinsma, 

2005). With increasing width, this class of shapes approaches an isometric strip that is 

wound helically around a cylinder. Hence, unlike the helicoid, this more complex shape 

relaxation allows the assembly to retain some residual chiral twist while at the same time 

expelling the Gaussian curvature that includes in-plane stresses. Therefore, these spiral 
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shapes facilitate a more “efficient” escape of frustration than helicoidal unwinding (see Fig. 

17D).

Notwithstanding the quantitative frustration relaxation for large widths, it can be shown 

that the mechanical instability does not change the basic conclusion, that the scale of the 

self-limiting width is set by the geometric mean of the t and P0. That is, according to the 

accumulant analysis of the spiral ribbon branch (inset of Fig. 17D), Wmax ≃ 0.85Wun, and 

the instability only reduces the numerical prefactor of the unwinding scale. This is consistent 

with a recent experimental study of ribbon morphologies of bola-amphiphiles (Zhang et 
al., 2019) (Figs. 17E–G). In this system, the molecular size suggests t ≈ 3 – 4 nm, while 

skewed packing of chiral neighbors in the crystal leads to much larger pitches of 200 nm. 

The observation of helicoidal ribbons up to ≈ 50 nm (consistent with the geometric mean 

of molecular size and helical pitch) demonstrates that frustration stress can propagate far 

beyond molecular dimensions. Notably, when ribbons grow beyond this size, they do not 

grow to infinitely wide and untwisted sheets, but instead, transition to a second mechanism 

of self-limitation, forming closed tubules of finite diameter proportional to the pitch.

The preceding discussion has neglected relaxation of frustration by defects. For 2D solid 

chiral ribbons this can be justified because the critical width for defect formation in 

helicoids21 far exceeds the transition to a shape-flattening state, whose lower energy is 

facilitated by the soft bending modes of thin solids. This conclusion does not hold in 

general, even when the same morphologies arise, if the underlying mechanism of frustration 

differs. For example, chiral ribbons with only liquid-crystalline (LC) in-plane order (e.g. 

hexatic) would be described by the same shape (bending) elasticity, but with a frustration 

cost that arises from orientational strains from Gaussian curvature (Mbanga et al., 2012; 

Vitelli and Turner, 2004). Such angular strains grow with a weaker power-law ~ KGW than 

positional strain (Niv and Efrati, 2018), and hence, are an example of η = 1 strain growth. 

This “softer” growth of frustration energetics implies a shape flattening transition that takes 

place at a much larger size, proportional to the mesoscopic pitch |Ω0|−1. This is a size 

scale at which disclinations may also be expected to lower the ribbon energy, implying that 

frustration escape for LC ribbons likely falls into a different class than solid ribbons, one 

that may mix both smooth (shape flattening) and singular (defect-mediated) modes.

IV. KINETIC PATHWAYS TOWARDS SELF-LIMITING EQUILIBRIUM

As the primary focus of this review is the equilibrium ingredients and thermodynamics of 

SLA, the foregoing sections have not considered the non-equilibrium pathways by which 

such systems, starting from an out-of-equilibrium initial condition, may arrive at a self-

limited (equilibrium) distribution. However, the kinetics of assembly can have significant 

influence over the size distributions and resulting morphologies formed in experimental 

systems of SLA systems, since they are necessarily limited to observations at finite times. 

Hence, interpretation of practically all experiments must allow for the possibility of non-

equilibrium effects. In this section, we provide a basic introduction to a few of the key 

21This can be conjectured to be ∝ |Ω0|−1 based on standard arguments of Gaussian curvature “screening”, see e.g. (Bowick and 
Giomi, 2009).
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principles for understanding and modeling kinetics of SLA. Rather than an exhaustive 

review, our purpose is largely to illustrate how the language and formalism introduced 

in the foregoing discussions of equilibrium SLA “translates” to the basic conceptual and 

theoretical frameworks used for analyzing these same systems out of equilibrium. A reader 

will find a far more thorough and general description of the interplay between kinetics and 

assembly products, in both bulk and SLA processes, in several reviews (Agarwal and Peters, 

2014; Hagan, 2014; Sear, 2007; Whitelam and Jack, 2015).

Theory, computation, and experiments have shown that the ability of a self-assembling 

system to approach equilibrium within practical timescales depends on a delicate balance 

between thermodynamic and kinetic effects (Ceres and Zlotnick, 2002a,b; Cheng et al., 
2012; Endres and Zlotnick, 2002; Grant and Jack, 2012; Grant et al., 2011; Hagan, 2014; 

Hagan and Chandler, 2006; Hagan et al., 2011; Jack et al., 2007; Klotsa and Jack, 2011; 

Nguyen et al., 2007; Rapaport, 2008; Whitelam et al., 2009; Whitelam and Jack, 2015; 

Whitesides and Grzybowski, 2002; Wilber et al., 2009, 2007; Zlotnick, 2003; Zlotnick et al., 
1999). In a broad variety of systems, yields are nonmonotonic with the strength of cohesive 

interactions that drive assembly. Optimal assembly occurs when the cohesive free energy 

is on the order of 5–10kBT per subunit-subunit contact depending on the initial subunit 

concentration and valency of subunit contacts. To understand this behavior, we require a 

consideration of the kinetics of assembly.

To begin, we consider a typical bulk (in vitro) assembly kinetics experiment, such as, for 

example, solution assembly of reconstituted proteins into multi-unit structures. To prepare 

an initial state, the system is equilibrated under conditions that do not lead to assembly; 

i.e., the total subunit concentration is below the CAC (Φ < ϕ*) and thus the equilibrium 

aggregate distribution is peaked at monomers (see Fig. 4). In practice, this is accomplished 

by setting a low subunit concentration, a solution pH and salt concentration that ensure 

very weak subunit-subunit attractions, or sufficiently high temperature that the translational 

entropy of unassembled subunits dominates over inter-subunit attractions. The system is 

then rapidly quenched into a condition that favors assembly (Φ > ϕ*), either by increasing 

the subunit concentration Φ, or decreasing the CAC above the current concentration, by 

changing temperature or physicochemical changes that increase subunit-subunit interactions 

(e.g. changes to pH and salt concentration). That is, the new equilibrium state (post-quench) 

corresponds to a population of aggregates coexisting with monomers as described in Sec. 

II. However, the pre-quench distribution is out-of-equilibrium, consisting predominantly 

of unassembled monomers, and as such gradients in the system free energy will drive 

assembly toward lower free energy states with assembled clusters. Note that this scenario 

can equally well describe experiments of both unlimited (e.g. bulk crystals) and self-limited 

(e.g. capsules) assembly.

The study of assembly kinetics is concerned with the timescale required to approach the 

equilibrium state, as well as the structures and lifetimes of long-lived metastable states 

which may occur along the way. To understand the influence of kinetics on practical 

applications or biological function, these timescales must be compared to those that are 

accessible to an experimenter or a biological organism.
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A. Classical nucleation theory and assembly timescales

A useful starting point to understand the dependence of assembly timescales on control 

parameters is given by the framework of classical nucleation theory; see e.g. (Agarwal and 

Peters, 2014; Becker and Döring, 1935; Binder and Stauffer, 1976; De Yoreo and Vekilov, 

2003; Hagan, 2014; Hagan and Elrad, 2010; Oxtoby, 1992; Whitelam and Jack, 2015; Zandi 

et al., 2006) and (Oxtoby, 1992) for a review. In this approach, the assembly of a cluster 

is broken into two phases: nucleation and growth (often called ‘elongation’ in the context 

of finite structures). Nucleation refers to the process of overcoming a free energy barrier to 

form a small but relatively stable aggregate, while the second phase describes growth of such 

an aggregate to its final (optimal) size. We will see below that for most assembly reactions to 

be productive (i.e. observable on experimentally realistic timescales), nucleation must be the 

rate limiting process, and thus the assembly timescale can be estimated by calculating the 

nucleation rate.

1. Nucleation kinetics—Consider a general form of aggregation free energy for 

aggregates that describes assembly driven by short-range cohesive interactions, with possible 

additional terms to describe higher-order effects such as those that give rise to SLA:

ϵ(n) = − ϵmin + Δ0
n1/d + ϵex(n) (64)

where ϵmin is the bulk energy per subunit in the aggregate with optimal size, Δ0 accounts 

for surface energy (as in Eq. (6)) and following Sec. III.B.1 we define ϵex(n) as the excess 

energy relative to the bulk and surface effects, including effects that are super-extensive in 

n22. Note that this description may apply equally to either self-limiting (i.e. with a minimum 

at a finite n = nT and ϵT = −ϵmin from Sec. II.B) or unlimited (i.e. where ϵ(n) is minimal for 

n → ∞ and ϵT = −ϵmin per Sec. II.A.2) assembly. We begin the discussion by considering 

nucleation for the simplest case ϵex(n) = 0, i.e. unlimited assembly. We will see shortly that 

this analysis also qualitatively applies to most SLA examples, since nucleation occurs at 

small sizes, where the size dependence of the excess energy, ϵex(n) is much smaller than that 

of the surface terms, whose large values at small sizes constitute the generic origin of the 

nucleation barrier.

As noted in section II.A.2, small aggregates generically have a smaller cohesive energy than 

large aggregates, because the fraction of subunits at the aggregate surface with unsatisfied 

interactions (accounted for by the second term Δ0 in Eq. 6) decreases with aggregate size. In 

contrast, the bulk energy (ϵmin) dominates over surface terms for large aggregates. We define 

the ‘critical nucleus size’ nnuc as the crossover between these two regimes. Below nnuc 

disassembly is favored over assembly because the bulk cohesive energy driving assembly 

is outcompeted by this unfavorable surface energy and the greater translational entropy 

of unassembled monomers. Above the critical nucleus size, on the other hand, the bulk 

cohesion dominates and assembly is favored23.

22Here, the notion of excess energy is shifted by an unimportant constant relative to eq. (46).
23Specifically, critical nucleus denotes a structure for which either complete disassembly or growth to a large aggregate are equally 
probable. In general, for a particular system there will be an ensemble of critical nuclei that have different structures and (if size is not 
a complete reaction coordinate) different sizes, see e.g. (Pan and Chandler, 2004)
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Because forward assembly of pre-nuclei aggregates is unfavorable, growth of an aggregate 

to the critical nucleus size is improbable and nucleation is a rare event. In particular, we 

will see that productive assembly requires that nucleation is a rare event on the timescale 

of typical subunit-subunit association. This gives rise to a separation of timescales — 

pre-nucleated aggregates rapidly reach a quasi-equilibrium on timescales much shorter than 

the overall timescale required for the assembly process to approach equilibrium. Thus, based 

on this assumption, the aggregation distribution for sizes below the critical nucleus size nnuc 

can be modeled by a variant of the law of mass action

ϕn = n ϕ1e−βϵ(n) n = ne−βΩ(n)   for n < nnuc (65)

where Ω(n) = n[ϵ(n) − μ] with μ = −kBT ln ϕ1 is the size-dependent grand free energy of n-

mers (sometimes referred to as the ‘excess’ free energy) that accounts for the inter-aggregate 

interactions as well as the entropy cost incurred by subunits joining an aggregate. It is 

important to point out that this nonequilibrium description is a departure from from the 

thermodynamic one introduced in Sec. II, in which μ and ϕ1 are thermodynamically defined 

by the total concentration and temperature. Here, the chemical potential is used to define 

only the partial equilibrium of pre-nuclei with free monomer. Hence, in this usage, ϕ1 and 

hence μ and Ω should be understood as time-dependent quantities according to the depletion 

of free monomers as assembly proceeds. However, the quasi-equilibrium approximation 

assumes that these quantities vary slowly in comparison to the timescale required for the 

pre-nuclei aggregate distribution to reach this form.

By substituting Eq. (6) for the aggregate energy into Eq. (65), we see that (for d > 1) there 

will be a maximum in the grand free energy Ω(n) at a size nnuc = d − 1
d

Δ0
−ϵmin − μ

d
, owing 

to the competing drives of (negative) bulk assembly and (positive) surface growth. This 

corresponds to the critical nucleus size, since aggregate growth beyond nnuc will decrease 

the free energy. Here, the factor 
Δ0

−ϵmin − μ  gives a ratio of the unfavorable surface energy Δ0 

that impedes assembly to the net thermodynamic driving force for assembly −ϵmin − μ. This 

provides a natural measure for how far out of equilibrium are initial conditions

Δμ ≡ − ϵmin − μ = kBT ln Φ
Φs

≥ 0 (66)

where we have taken ϕ1 ≃ Φ since we are considering the initial conditions where nearly all 

subunits are free. We have defined Φs ≡ eβϵmin so the that ratio Φ/Φs approximately measures 

how far the total subunit concentration exceeds the CAC and is often referred to as the 

supersaturation.

The key argument of classical nucleation theory is that because aggregates of the critical 

nucleus size are rarefied, the nucleation timescale grows exponentially with the barrier 

height
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τnuc e−βΩ nnuc . (67)

There are several important points to make here. First, this is the initial nucleation timescale 

at the inception of the assembly; the nucleation timescale increases as assembly proceeds 

because free subunits are depleted and thus μ decreases, in turn, increasing Ω(nnuc). Second, 

Eq. (65) only applies up to nnuc; above the critical nucleus size the decreasing free energy 

implies that growth is relatively rapid and thus post-nuclei aggregates do not reach a 

quasi-equilibrium. Instead, there is a predominant flux of monomers (via association to 

intermediates) from the population of pre-nuclei toward larger aggregates, either toward 

system-sized aggregates in the case of unlimited assembly or toward a population of 

targetsized structures in SLA. Third, if the barrier height becomes too small (e.g. Ω(nnuc) ≲ 
10kBT depending on the relevant timescales), the separation of timescales that enabled the 

quasi-equilibrium approximation breaks down, and Eq. (67) will under-predict nucleation 

timescales since free subunits are rapidly depleted. Fourth, for SLA, additional corrections 

to this classical nucleation picture will arise (such as an apparent size-dependent surface 

tension) if the critical nucleus size approaches the finite system size due to the higher-order 

effects captured by the excess energy (Alder and Wainwright, 1962; Mayer and Wood, 1965; 

Reguera et al., 2003; Thompson et al., 1984). Fifth, this analysis has assumed that aggregate 

size n is a good ‘reaction coordinate’, meaning that it accounts for all relevant slow degrees 

of freedom and thus the dynamics and probability of an aggregate successfully nucleating 

can be determined as a function of n. In practice, a complete reaction coordinate must 

include other aggregate characteristics such as its surface area (Pan and Chandler, 2004). 

Sixth, a variety of other extensions to classical nucleation theory have been investigated, but 

it remains highly challenging to quantitatively predict nucleation rates (Auer and Frenkel, 

2001; Jacobson et al., 2010; Joswiak et al., 2013; Knott et al., 2012; Loeffler et al., 2013; 

Mcgraw et al., 1997; Peters, 2009; Prestipino et al., 2012; Statt et al., 2015; Zimmermann et 
al., 2015).

While the discussion so far has considered an aggregate energy form that drives unlimited 

assembly, in general the results are qualitatively similar for SLA with large target structures, 

since the interaction terms that eventually limit assembly grow superextensively and thus 

are small for small aggregates. As an example, here and throughout the remainder of this 

section, we consider the fluid capsid model of section III.A.1 for which self-closing leads to 

a finite assembly size nT. To simplify the presentation, we assume the limit of high bending 

modulus B → ∞, so the curvature radius of the assembling shell is fixed to RT = a0nT/4π, 

and the free energy becomes

ϵ(n) = − ϵmin + λ nT − n
n (68)

with the effective line tension associated with the boundaries of incomplete shells (which 

gives rise to the nucleation barrier) given by λ = 4πa0/nTλ, with λ the bare line energy. 

Notice that in the limit of small n, Eq. (68) reduces to a bulk cohesive energy ϵmin and a 

surface term ∝ n as anticipated above.
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This specific (B → ∞) model has been considered in the context of viral capsid assembly in 

Refs (Hagan and Elrad, 2010; Zandi et al., 2006). The grand free energy that corresponds to 

Eq. (68) is given by

Ω(n) = Δμn + λ n nT − n . (69)

which corresponds to a barrier height (Zandi et al., 2006) of

Ω nnuc = nTλ
2 Γ2 + 1 − Γ (70)

where Γ = Δμ/λ defines a measure of the dimensionless ‘quench depth’; i.e., the driving 

force for assembly in the initial state compared to line energy that impedes assembly (Zandi 

et al., 2006).

Fig. 18a shows the grand free energy as a function of aggregate size for several values of the 

target shell size nT, as well as for unlimited assembly into a flat disk, nT → ∞. Here we 

have plotted the portions of the free energy profiles below(above) the critical nucleus size as 

solid(dashed) lines to emphasize that the quasi-equilibrium assumption only applies below 

the critical nucleus. That is, ϕ(n) ∝ e−βΩ(n) for n ≤ nnuc, but for n > nnuc there is a constant 

flux of subunits toward complete shells and the nonequilibrium distribution of intermediate 

concentrations does not follow the law of mass action.

Notice that the free energy profiles for the self-limited cases are qualitatively similar to that 

of the unlimited case at small aggregate sizes, consistent with the analysis above. However, 

the shell geometry that gives rise to SLA does have quantitative effects — the shell curvature 

causes the length of the unfavorable free boundary to decrease relative to a flat disk (i.e. 

of equal area). Thus, the critical nucleus size and barrier height increase with target size, 

asymptotically approaching the flat disk limit. Note that, while in this case the self-closing 

physics giving rise to SLA decreases the nucleation barrier relative to the unlimited case, 

SLA effects can in general shift it in either direction. For example, the strain energy that 

gives rise to GFA in section III.B will increase the barrier beyond the surface costs. We 

reiterate though that the effects of SLA on nucleation are typically quantitative rather than 

qualitative.

Fig. 18b shows the grand free energy as a function of aggregate size for several values of 

the supersaturation, at fixed target size and line tension. We see that as the supersaturation 

decreases, the critical nucleus size and corresponding barrier height increase, since the 

translational entropy of free monomers increases and thus the net assembly driving force 

decreases. Note that the different curves corresponding to different supersaturation levels in 

Fig. 18a can be viewed from two perspectives. On one hand, each supersaturation level 

can correspond to the initial condition of a separate experiment with a different total 

subunit concentration Φ, with each curve corresponding to the aggregate free energy at 

the beginning of the experiment. In this interpretation, Eq. 67 describes the initial nucleation 

rate and its dependence on quench conditions. On the other hand, as a single experiment 

proceeds, the supersaturation is continually decreasing as free monomers are depleted by 

assembly, and curves at decreasing supersaturation levels reveal the instantaneous nucleation 
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rate as the experiment proceeds (and subunits are effectively removed from the pre-nuclei 

pool). Notice, then, that the barrier height increases as the reaction proceeds, and thus the 

nucleation rate decreases over time. For large target sizes nT ≫ 1, as the reaction proceeds 

the nucleation barrier eventually becomes so large in comparison to the thermal energy that 

assembly ceases on relevant timescales; thus, the reaction only asymptotically approaches 

equilibrium.

Finally, the curve corresponding to no supersaturation, Δμ = 0, corresponds to the 

equilibrium state with coexistence of shells and free monomers (hence the entire curve 

is plotted with a solid line). In this case the critical nucleus size is given by nnuc = nT/2, 

corresponding to a half shell. Notice that at equilibrium, intermediates are higher in free 

energy than free monomers or complete shells due to the unfavorable line energy at the 

boundaries and are thus present only at low concentrations (see also section II.B.2).

2. Growth—We define growth as the process by which a critical nucleus assembles to 

its final state, commensurate with the optimal aggregation size. In contrast to unlimited 

assembly (e.g. bulk crystal growth), for SLA there is a well-defined mean timescale for 

growth of the aggregate, since about nT − nnuc ≈ nT subunits must associate to reach the 

optimal size24.

The physical process of growth differs fundamentally from nucleation. Nucleation is 

a highly cooperative process — from Eq. (70), we see that the nucleation timescale 

decreases exponentially with subunit interaction strength ϵmin and decreases with subunit 

concentration according to ϕ1
nnuc. The latter condition reflects the fact that nnuc subunits 

must come together within a short timescale in order to create a stable nucleus. In contrast, 

because post-nucleus intermediates are relatively stable, the growth phase can proceed 

through independent additions of individual subunits or small oligomers. Thus, it can 

generally be expected that growth timescale τgrow depends only weakly on ϵmin. Moreover, 

it can be expected that τgrow varies inversely with subunit concentration τgrow ∝ ϕ1
−1, since 

the rate of addition should increase in proportion to concentration unless growth requires 

overcoming any secondary nucleation barriers. This latter prediction has been tested and 

confirmed experimentally for Hepatitis B capsid assembly by Selzer et al (Selzer et al., 
2014).

In general, the mean growth timescale can be estimated as

τgrow  =
nT

α

ϕ1fassem 
(71)

where we have assumed nT ≫ nnuc so that nT − nnuc ≈ nT. The quantity fassem is the 

association rate constant for subunit addition, averaged over the growth phase since it may 

vary with aggregate size. The factor in the numerator indicates that the growth timescale 

24However, even for a system with no minimum in its aggregation free energy, one can define a growth timescale to reach a given 
finite-size, which can be analyzed as described here.
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generically increases with optimal aggregate size (i.e. α > 0) since O nT  independent 

subunit additions must occur. The value of the exponent α will depend on factors such as 

the dimensionality, the aggregate geometry, and the relative stability of intermediates. For 

example, for growth of a globular aggregate in 3D (i.e. a crystal or the SALR system of 

section III.B.2), we expect α ≈ 1/3 if growth is proportional to the diffusion limited rate. For 

the capsid example that we consider in this section, we expect 1/2 ≤ α ≤ 2. In particular, 

if assembly is strongly biased over disassembly during growth and the assembly rate is 

proportional to the perimeter of the free boundary, we obtain α = 1/2 (Hagan and Elrad, 

2010). For moderately biased assembly, growth tends to occur along a single point on the 

perimeter, giving α = 1, while for weakly biased assembly (near the reversible limit), the 

growth timescale approaches that of a random walk, giving α = 2.

3. Beyond nucleation and growth—It is important to note that not all assembly 

processes can be adequately described by the nucleation and growth mechanism. In some 

systems there are additional timescales which may become rate-limiting. These include 

subunit conformational changes, or cooperative global rearrangements required to achieve 

the optimal self-limited structure. For example, strains must propagate across scales on the 

order of the size of the structure in the frustrated open-boundary assemblies described in 

section III.B. Similar behaviors may occur in self-closing aggregates; for example recent 

evidence suggests that assembly of empty HBV capsids proceeds by nucleation, growth into 

large but defective or disordered intermediates, followed by a ‘completion phase’ in which 

the intermediate rearranges into the icosahedral capsid structure (Chevreuil et al., 2020). 

Additional multi-step mechanisms are possible if we move beyond the scope of this review 

(SLA from a single species). For example, computation and experiments have shown that 

assembly around a substrate or template can proceed by an alternative ‘en masse’ pathway 

(Elrad and Hagan, 2010; Garmann et al., 2014, 2016; Hagan, 2008; Panahandeh et al., 2020; 

Perlmutter et al., 2014; Tsvetkova et al., 2012). In this process, subunits rapidly adsorb on 

a substrate in a disordered manner, and then cooperatively rearrange to form an ordered 

aggregate. While that process involves condensation and assembly of individual substrates, 

it is also possible for the assembling components to undergo bulk phase separation into 

a metastable liquid phase prior to assembly. For example in many virus families the host 

cell undergoes liquid-liquid phase separation to form a domain that is concentrated in viral 

proteins and nucleic acids, within which the nucleocapsid (capsid assembled around the viral 

RNA) assembles, e.g. (Brocca et al., 2020; Carlson et al., 2020; Fernndez de Castro et al., 
2020; Guseva et al., 2020; Kieser et al., 2020; Nikolic et al., 2017; Savastano et al., 2020; 

Schoelz and Leisner, 2017). A related mechanism occurs for unlimited assembly — it has 

been shown that crystallization can proceed by a two-step mechanism in which subunits 

first condense into a metastable liquid phase, followed by formation of an ordered crystal, 

see e.g. (Basios et al., 2008; Fortini et al., 2008; Gliko et al., 2005; Nicolis and Nicolis, 

2003; Schubert et al., 2017; Sear, 2009; Veesler et al., 2006; Whitelam, 2010; ten Wolde and 

Frenkel, 1997).

B. Interplay between thermodynamic stability, assembly rates and kinetic traps

Achieving productive assembly requires thermodynamic stability of the target structure, 

which implies that subunit interactions must be strong enough to overcome the translational 
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and rotational entropy losses incurred by the subunits forming an aggregate. Achieving 

productive assembly in finite time places even more restrictive conditions on interactions, 

based on the kinetics of assembly. Interactions must be strong enough to ensure that the 

nucleation timescale discussed above falls within relevant timescales. However, overly 

strong subunit interactions lead to kinetic traps, or metastable states which evolve toward 

equilibrium very slowly. These kinetic traps can be broadly classified into two categories. 

We discuss each category and its effects in turn, followed by a brief survey of open questions 

for optimizing assembly kinetics.

1. Overnucleation (i.e. monomer starvation)—First, the monomer starvation trap 

arises when nucleation timescales are short in comparison to growth timescales, or the 

time required for a nucleated aggregate to grow to its equilibrium size. In this situation, 

so many nuclei form that the system becomes depleted of monomers before most nuclei 

grow to completion. Subsequent evolution to equilibrium requires either redistribution of 

subunits from smaller to larger aggregates (Ostwald ripening), which incurs significant free 

energy barriers, or coalescence of large intermediates, which is rare and frequently leads to 

mis-assembled structures.

In the context of SLA, this condition becomes more stringent as the target assembly 

size increases, since about nT monomers will eventually be depleted during the growth 

of each nucleus, and the growth timescale typically increases with target size since the 

critical nucleus size depends at most weakly on nT. The parameter regimes that give 

rise to the monomer starvation trap can be understood from the different dependence 

of nucleation and growth timescales on subunit-subunit interaction strengths and subunit 

concentrations (Endres and Zlotnick, 2002; Hagan and Elrad, 2010; Zlotnick et al., 1999). 

In particular, from Eq. (67) the initial nucleation timescale for the capsid model is τnuc(Φ) 

~ exp[−βΩ(nnuc(Φ))] However, as noted above the nucleation timescale increases as the 

reaction proceeds due to monomer depletion. By evolving aggregates according to the 

kinetics described by Eq. (C1), we can integrate the cumulative depletion of monomers as a 

function of time, from which one can obtain median assembly time τ1/2 (defined as the time 

required for half of the subunits to be assembled, ϕ1(τ1/2) = Φ/2) (Hagan and Elrad, 2010) 

(see Appendix C for details):

τ1/2
τnuc(Φ)

nT
. (72)

The boundary between productive assembly (which we define as having initial nucleation 

times shorter than, say, 1 day) and monomer starvation can be estimated by the locus in 

parameter space at which the median assembly time and growth time are equal. Fig. 19 

shows this and boundaries between other kinetic regimes as a function of supersaturation 

and nT for the capsid model described above. For any optimal size, we see that as the 

total subunit concentration increases, the system transitions from a monomer-dominated 

equilibrium phase, to a state in which the monomer rich phase is only metastable with 

respect to aggregates, but assembly does not occur on relevant timescales due to a large 

nucleation barrier, to a window of productive assembly, and finally to the monomer 
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starvation regime. Notice that the concentration at which assembly becomes kinetically 

accessible can significantly exceed the CAC, showing that accurately inferring the CAC 

from experimental measurements can be challenging. Moreover, the region of productive 

assembly between the nucleation threshold and the monomer starvation trap narrows with 

increasing target size, due to the different dependencies of the nucleation and elongation 

timescales on nT. In particular, the median assembly time increases with nT a small sizes 

due to rim curvature as discussed above, but decreases as 1/nT at large sizes because the 

nucleation time saturates while each nucleus consumes nT subunits (see Eq. (72)). Further, 

the growth time increases with nT (Eq. (71) with α = 1)25.

2. Malformed assemblies—In the second class of kinetic traps, mis-assembled 

structures arise when incorrectly bound subunits do not have time to anneal before becoming 

trapped within the aggregate by binding of additional subunits. That is, subunit interactions 

must be reversible on the timescale of subunit association, even in the growth phase 

of aggregate assembly. This condition depends on both the cohesive interaction strength 

and initial monomer concentration, since the annealing time increases exponentially with 

interaction strength while the time interval between subunit association events decreases 

inversely with monomer concentration. Moreover, in the case of open-boundary assembly 

(and possibly some instances of curvature-controlled assembly), subunit association must 

occur sufficiently slowly and close to reversibility that strains due to frustration have time to 

propagate across the structure. Otherwise, defects or cracks that allow the system to escape 

frustration may occur. The conditions leading to such escape scenarios remain an open 

question in open-boundary assembly.

A similar trade-off between thermodynamic and kinetic considerations applies to the 

orientational specificity of subunit interactions. While some degree of orientational 

specificity is required to stabilize the target structure over other competing morphologies 

and to avoid mis-assembly, overly high specificity (e.g. extremely precise lock-and-key 

interactions) leads to small kinetic cross-sections for subunit association and thus low 

assembly rates (Whitelam et al., 2009).

3. Non-equilibrium protocols for optimal kinetics—Finally, we briefly note that it 

may be possible to achieve faster assembly and/or higher assembly yields of SLA over a 

larger region of parameter space by using non-equilibrium protocols in which assembly 

driving forces are varied over time, for example by varying the temperature, solution 

conditions, or concentration. An intuitive approach is to use strong subunit interactions 

for sufficient duration to rapidly form a desired number of nuclei, and then to reduce 

subunit interactions to a level where post-nuclei intermediates can undergo growth but 

further nucleation is suppressed by a large nucleation barrier. Several approaches have been 

developed to use feedforward for feedback control to optimize such time varying protocols, 

e.g. (Green et al., 2019; Grover et al., 2019; Klotsa and Jack, 2013; Pineros et al., 2018; 

Tang et al., 2016b, 2017). A simpler but highly effective strategy is to seed nucleation of 

particular structures, e.g. (Mohammed and Schulman, 2013). This is related to the more 

25Note that a similar analysis can be performed for crystallization in a finite-sized system, to tune nucleation and growth rates so that 
a single nucleus forms on accessible timescales but grows to system-size before additional nuclei arise.
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general context of harnessing non-equilibrium assembly pathways to achieve size-controlled 

aggregates out of equilibrium, which we return to in detail in the next section.

V. FINITE SIZES BY OTHER MEANS

In Secs. II.B and III, we overviewed the statistical thermodynamics of and known physical 

mechanisms for identical subunits to achieve equilibrium states with well-defined and finite 

dimensions. Here, we briefly survey two broad classes of mechanisms for achieving size-

controlled assemblies that fall outside of this basic paradigm: non-equilibrium size control 

and programmable assemblies multiple species.

A. Non-equilibrium mechanisms of size-controlled assembly

While Sec. IV showed that kinetic effects introduce limitations to the practical ability to 

achieve equilibrium SLA, in this section we consider how non-equilibrium effects can be 

exploited to achieve size-control of finite assemblies even when the equilibrium states are 

non self-limiting.

Such nonequilibrium mechanisms leading to size-controlled assembly distributions can be 

further classified into two categories. (i) In ‘kinetically-controlled’ assembly reactions, 

kinetic effects drive a system to a well-defined metastable state which is either sufficiently 

long-lived for practical applications or can be subsequently stabilized by additional 

reactions. Examples of such kinetically-controlled reactions include polymer/particle 

synthesis processes (de Pablo et al., 2019), nonequilibrium formation of finite size droplets 

in microemulsions (Woltornist et al., 2015, 2017), flow-driven aggregate breakup (Conchuír 

and Zaccone, 2013) and kinetically arrested coarsening (Siggia, 1979). (ii) The second class, 

typically referred to as ‘non-equilibrium assembly’ mechanisms, requires continual energy 

input into the system to stabilize the self-limited size distribution. These mechanisms use 

energy consumption to modify the aggregatesize-dependence of subunit association and/or 

dissociation rates. In both equilibrium and nonequilibrium mechanisms, a stable assemblage 

requires that association and dissociation rates are equal at a finite aggregate size. The 

resulting fixed point must also be stable, requiring that dissociation rates exceed association 

rates at larger aggregate sizes, and association rates are larger for smaller aggregates. These 

conditions are guaranteed in an equilibrium system by the criteria for self-limited assembly 

sizes discussed in section II.B.2. However, additional nonequilibrium mechanisms to modify 

association or dissociation rates can also lead to stable finite sizes. For example, a number of 

biological mechanisms have been proposed in which assembly sizes are regulated by energy-

consuming processes, such as active assembly and disassembly by molecular machines, or 

coupling between protein conformational states and phosphotransfer reactions (e.g. changes 

in a proteins phosphorylation state or hydrolysis of a bound, nucleotide triphosphate). 

Similarly, assembly/disassembly rates can be modulated by externally controlled gradients 

in monomer concentrations or nucleation factors, as occurs during embryogenesis (Briscoe 

and Small, 2015).

In a well-studied example, the lengths of microtubules or actin filaments are regulated by 

a suite of accessory proteins that modulate assembly and disassembly rates at filament 

ends, as well as molecular motors that actively remove subunits from filament ends or 
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sever filaments in their interiors (Desai and Mitchison, 1997; Mohapatra et al., 2016; 

Pollard, 2016). Moreover, the subunits themselves undergo conformational changes powered 

by hydrolysis of nucleotide triphosphates (ATP or GTP). The hydrolysis event shifts 

subunits into geometries that are incompatible with the global filament structure, thus 

inhibiting further assembly and/or weakening the existing structure. These nonequilibrium 

processes not only allow stable finite-length distributions, but also structural dynamics, 

such as actin treadmilling and microtubule dynamical instability, that allow the cellular 

cytoskeleton to rapidly respond and reconfigure to environmental cues. Using models 

ranging from idealized one-dimensional filaments to geometrically realistic particle-based 

dynamical simulations (Bollinger and Stevens, 2018; Fai et al., 2019; Hemmat and 

Odde, 2020; Mohapatra et al., 2016; Tong and Voth, 2020), researchers have identified 

multiple mechanisms by which active filament assembly/disassembly processes and energy-

driven subunit conformational changes can lead to 1D filaments which exhibit dynamical 

instabilities and/or with well-defined stable sizes. In contrast, recall from section II.A.2 that 

equilibrium 1D filaments generically exhibit exponential length distributions.

Other biological structures thought to be subject to non-equilibrium size regulation include 

COP protein bound vesicles in the eukaryotic secretory system (Foret and Sens, 2008), 

neuronal synapses (Broadhead et al., 2016; Burlakov et al., 2012; Lisman and Raghavachari, 

2006, 2015; Liu et al., 2017; Miermans et al., 2017; Shomar et al., 2017; Tang et al., 2016a), 

transcriptional regulatory complexes (enhancers) (Cho et al., 2018; Chong et al., 2018; 

Hnisz et al., 2017; Sabari et al., 2018), and other phase-separated liquid domains (Weber 

et al., 2019; Zwicker et al., 2014, 2015). The key characteristic of all of these systems is 

that the finite size of the assembled structure depends on continual energy consumption; 

e.g. through the replacement of ‘inactive’ subunits with ‘active’ ones by the disassembly of 

GDP bound tubulin subunits and reassembly of GTP bound tubulin at a microtubule end, 

or the continual dephosphorylation and re-phosphorylation of subunits by phosphatases and 

kinases within a neuronal synapse (Lisman and Raghavachari, 2006, 2015).

More broadly, it has been known since Turing’s seminal paper (Turing, 1952) that 

combining imbalances in diffusion rates with interconverting molecular species (e.g. through 

chemical reactions) can lead to compositional inhomogeneities with well-defined, steady 

state sizes, e.g. (Halatek and Frey, 2018; Haselwandter et al., 2011, 2015). More recently, 

advances in stochastic thermodynamics (Seifert, 2008, 2012) have demonstrated that active 

processes can play important roles in regulating the structures and functions of assembly 

and self-organization (Marsland and England, 2018; Nguyen and Vaikuntanathan, 2016). 

Moreover, theoretical and experimental studies suggest that spatiotemporal patterns with 

well-defined domain sizes can occur in some active matter systems, whose constituent 

components consume energy at the particle scale to drive motion, e.g. (Bär et al., 2020; 

Bechinger et al., 2016; Doostmohammadi et al., 2018; Marchetti et al., 2013; Needleman 

and Dogic, 2017; Shaebani et al., 2020).

B. Addressable assembly of programmable subunit mixtures

In Sec. III above, we reviewed two broad categories of self-limiting assemblies, both of 

which achieve equilibrium finite-size assemblies from a single species of subunit. Here, we 
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briefly describe an emerging class of self-assembling systems that also realizes equilibrium 

finite-size assembly, but which falls (at least partly) outside of these two categories.

We refer to this class of systems as addressable assemblies (AAs) following the terminology 

introduced in (Jacobs and Frenkel, 2016; Jacobs et al., 2015). AAs are formed by mixtures 

of multiple assembling subunit species (say species A, B, C, D etc.), each with specific 

interactions that selectively bind to a subset of all subunit species (e.g. A binds selectively 

only to D, while B binds to itself as well as C). The core design principle of AAs is: one can 

“program” the matrix of species interactions to match the 3D adjacency matrix of a desired 

structure, perhaps uniquely, such that this target structure becomes the equilibrium assembly 

state in mixtures of controlled subunit stoichiometry (Hormoz and Brenner, 2011). That is, 

each particle has an “address” (or set of addresses) where it sits in the 3D target assembly.

Examples of AAs include colloids and nanoparticles functionallized by single-stranded 

DNA tethers that mediate interactions via complementary base pairing (Jones et al., 2015), 

as well as “DNA bricks” assembled by mixtures of oligmeric DNA strands whose sequences 

are designed to interleave ends into 3D patterns via complementary base pairing (Ke et al., 
2012). Each of these systems has been considered and studied for its potential to selectively 

design and assemble target superstructrures that terminate at specifically predetermined 

dimensions (Zeravcic et al., 2014). In the sense that the self-limiting target structure can 

be designed to be stress-free with each cohesive bond ideally satisfied, finite AAs can be 

thought of as multi-species analogs to self-closing structures, albeit with more complex 

bond networks. As an example, rectangular beams with precisely defined and finite cross-

sectional dimensions were assembled using the programmable DNA bricks (Ke et al., 2014). 

The different values of target finite dimension each required mixtures composed of different 

numbers of distinct oligomeric species. For example, finite width beams of 6 × 6, 8 × 8 and 

10 × 10 dsDNA helices across were assembled, respectively, from mixtures containing 60, 

112 and 180 distinct oligomers. Generically, equilibrium termination at specific size via AA 

requires a number of distinct subunit species nS that grows with the finite target size W* 

(Ong et al., 2017), presumably with some power law nS W *
β (e.g. β = 2 if distinct subunits 

are required in every 2D cross-section of a beam).

The unbounded growth of the number of subunit species with target size for such an 

implementation of AA would seem to limit its practical applicability, due to the cost (in 

terms of design, synthesis, and processing) and limited scalability of the programmable 

mixture. This raises a basic question about AA: Are there optimal strategies that minimize 

the complexity (e.g. number of distinct species) of a subunit mixture needed to achieve 

self-limiting AAs of a given topology, and how do these scale in the limit of large target 

size? The self-assembly of viral shells, or capsids, may provide clues for how to approach 

this question.

Capsids are “crystalline” shells composed of protein subunits (capsomers) that self-assemble 

to enclose the viral genome. Since the enclosed genome has to code for the capsomers 

themselves, it has been understood since Crick and Watson’s seminal paper (Crick 

and Watson, 1956) that such assemblies should be economical. I.e., a viral capsid 

is under selective pressure to enclose the largest possible volume using the minimal 
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number of distinct capsomer types. Caspar and Klug (CK) proposed that viruses achieve 

this optimization by exploiting symmetry principles (Caspar and Klug, 1962). In their 

well-known construction, quasi-spherical capsid structures are mapped to high-symmetry 

triangulations of the sphere, in which each triangle is constituted by 3 capsomeric subunits 

(Prasad and Schmid, 2012). Based on this reasoning, CK conjectured that “optimal” capsids 

correspond to sub-triangulations of the icosahedron. Each CK structure can be classified 

by the number T = h2 + k2 + hk of sub-triangles per each of the 20 triangular faces of 

the icosahedron, where h and k are positive integers. Since regular triangulations of the 

sphere are not possible beyond those corresponding to Platonic solids, CK noted that higher 

triangulation numbers require capsomers to accommodate different local environments, 

corresponding to variations in neighbor spacing, orientation, and the number of neighbors. 

In CK capsids, the triangulation number T is the number of symmetry-inequivalent 

capsomer positions.

In this way, we might view CK capsids as a highly-symmetric and economical limit of AA. 

While the complete shell could be assembled from 60T distinct and specifically interacting 

capsomeric subunits, the large number of symmetry elements of the icosahedral net implies 

that there are many redundancies in such a design, and in fact, the same unique target 

structure could be realized from specific interactions of only T distinct units. This approach 

has been adopted by the protein design community, enabling researchers to engineer proteins 

that assemble into icosahedral shells of various sizes (Bale et al., 2016; Butterfield et 
al., 2017; King et al., 2014; Lai et al., 2014; Mosayebi et al., 2017). Recently, the CK 

design principles have been repurposed for the de novo design of triangular DNA origami 

particles with precisely defined geometry and edge interactions that selectively assemble 

into T icoshedral shells (Sigl et al., 2020). Notably they show such capsids can be uniquely 

programmed and assembled from even a fewer number of distinct subunit species, ⌈T/3⌉, 
because each triangle can have three inequivalent edges.

In its simplest implementation, a CK capsid can be assembled by synthesizing a distinct 

subunit species for each of the T symmetry-equivalent positions. While some small viruses 

follow this approach, it becomes increasingly impractical as the target capsid size grows, 

since the number of distinct species scales linearly with the capsid area. In practice, 

there are two mechanisms to reduce the number of distinct subunits that need to be 

synthesized by a virus (or by any other manufacturer). In many viruses, the capsid protein 

interconverts between different ‘quasi-equivalent’ conformations with slightly different 

interaction geometries that accommodate the different local symmetry environments in 

the capsid, thus enabling assembly of capsids with T > 1 from a single subunit species 

(Caspar and Klug, 1962; Johnson and Speir, 1997). More broadly, it has been shown 

that such high symmetry constructions correspond to free energy minima of assembled 

structures with spherical topologies with relatively generic types of short-range cohesive 

subunit-subunit interactions, although the free energy minimum symmetry depends on the 

size of the assembled structure (Chen et al., 2007; Zandi et al., 2004). Correspondingly, 

CK-like capsids emerge naturally from the assembly of elastic structures from subunits 

resembling the tapered subunits discussed in section III.A.2 (Chen et al., 2007; Fejer et al., 
2010; Lázaro et al., 2018a,b; Reguera et al., 2019), and many of the principles discussed 

in that section can be extended to systems that form CK capsids. However, the assembly 
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dynamics of such structures remains an open question — how does the ‘right’ subunit 

conformation end up in the appropriate location within an assembling capsid (Berger et al., 
1994; Elrad and Hagan, 2008; Li et al., 2018; Morton et al., 2010; Panahandeh et al., 2020, 

2018; Perkett et al., 2016; Perlmutter and Hagan, 2015; Stockley et al., 2013; Twarock et 
al., 2018; Zandi et al., 2020)? More recently, the CK construction has been extended to 

account for other viruses in which capsomers accommodate more extreme differences in 

local environments and other symmetry classes (Luque and Reguera, 2010; Twarock, 2004; 

Twarock and Luque, 2019). In a second strategy, finite shells are assembled from a single (or 

few) subunit types which do not adopt explicitly distinct conformations, but are sufficiently 

deformable to accommodate different local symmetry environments by the formation of 

inhomogeneous strains within the capsid structure. It is easy to imagine that these two 

strategies (different conformations with specific interactions or subunits with deformable 

interaction geometries) could be combined to extend the size and complexity of a shell that 

can be assembled by the CK mechanism.

Returning to the context of AA, CK constructions and their extensions can be viewed as 

limiting cases of AA in which one uses symmetry to putatively minimize the number of 

distinct subunits types need to enclose a given volume. The CK framework suggests that 

there is a trade-off between the complexity of the mixture of distinct subunits and the 

complexity, or asymmetry, of the target assembly (i.e. fewer symmetry elements in the 

target structure implies more subunit species). This idea can be extended more broadly to 

designing self-limiting AAs that target other, non-spherical topologies. In this context, a 

more precise, and potentially useful notion of “economy” may be to consider the ratio of 

target finite size to number of subunit types W*/nS, and ask what are the analogs to CK 

designs for arbitrary topologies that maximize this ratio in the limit of increasing W*.

VI. CONCLUDING REMARKS: SELF-LIMITING ASSEMBLY BY DISCOVERY 

AND DESIGN

In this review we have attempted to provide a unified theoretical perspective on assembly 

processes that, while occurring in chemically and physically diverse systems, share the 

common thread of autonomously terminating at a well-defined equilibrium finite size. 

Starting from the framework of ideal aggregation theory, we showed that the necessary 

conditions for such self-limited assembly are linked to the existence of a minimum in the 

size-dependent aggregation energetics ϵ(n). In contrast, systems which do not meet these 

conditions generically assemble bulk structures such as crystals. We saw that properties 

of self-limited assembly reactions can be identified from the functional form of ϵ(n), 

including the onset of aggregation with increasing subunit concentration and the size of 

fluctuations around the optimal aggregate size. Systems with multiple local minima in ϵ(n) 

can exhibit polymorphic self-limited assembly, with concentration-dependent transitions 

(secondary CACs) between different aggregation states. We saw that the small, but non-zero, 

translational entropy of the aggregates plays a key role in driving secondary CACs.

The existence of local minima at non-trivial sizes nT ≫ 1 implies that the energetics of 

assembly, as mediated by the shape and interactions between subunits themselves, requires 
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the ability to “sense” the aggregate size on scales comparable to the optimal size. Surveying 

known examples of equilibrium SLA from identical subunits, we argued that there are 

two broad classes of physical mechanisms that achieve this. Either the subunit interaction 

geometries encode a target assembly geometry that “returns to itself” after a characteristic 

number of subunits, or instead, there is a source of intra-assembly stress gradients that 

can propagate up to the finite-size scale of the assembly. An important feature of the 

latter mechanism is that it enables finite-sized aggregates that have open boundaries. We 

presented generic descriptions for understanding each of these mechanisms, including how 

to assess the limits to the finite size that can be achieved. Toward that end, we considered 

mechanisms by which the system can “escape” finite size, resulting in bulk assembly 

products. For example, a system can curtail the accumulation of stress gradients with 

assembly size by expelling strain to its periphery or by locally relaxing strain through 

defects. We presented distinct physical mechanisms that can give rise to accumulating stress 

gradients: the interplay between short-range attractions and long-range repulsions, or an 

incompatibility between the preferred local subunit packing and the large-scale assembly 

geometry. We also presented example experimental systems that may correspond to each of 

these SLA mechanisms.

In part, our purpose in spotlighting the relatively rarefied conditions required for equilibrium 

self-limitation is to reframe broadly open challenges in understanding and engineering SLA. 

One such challenge could be described as the experimental inference of SLA. That is, for 

a given set of experimental observations of assembly, is it possible to determine if finite 

aggregates are the result of equilibrium self-limitation? This is a particularly vexing issue 

for experimental observations of both synthetic and biological assemblies that appear to 

be finite and well-defined. While it is often desirable to link the observations to specific 

microscopic models that recapitulate aspects of finite assembly a posteriori, such models 

often require assumptions about the interactions and energetics of complex subunits that 

are poorly understood. Thus, it is challenging to rule out alternative mechanisms of kinetic 

trapping of assembly in such systems. As one example, in living tissues collagen forms 

fibrillar assemblies that appear to have well-defined diameters reaching up to microns, well 

beyond the nm-scale width of a single pro-collagen molecule (Ottani et al., 2002). Moreover, 

the mean diameter varies considerably between tissue types. Fibers in tendons have mean 

diameters in excess of ≳ 1 μm, while those found in corneal tissue have a tighter distribution 

around ≲ 50nm (Wess, 2008). Such observations combined with the functional needs of 

these different tissues (Meek, 2009), high stiffness vs. optical transparency respectively, 

suggest a need to regulate the assembly of the same subunits to form architectures of tunable 
finite size. Indeed, physical models have proposed mechanisms of geometric frustration 

deriving from the chiral organization within fibers as a means of imposing a self-limited 

diameter (Brown et al., 2014; Grason and Bruinsma, 2007; Turner et al., 2003; Yang et 
al., 2010). While these explanations are plausible and broadly consistent with observations 

of finite-diameter collagen fibers and other fibrous biofilament structures, these physical 

models require knowledge of parameters describing chiral inter-molecular forces and inter-

molecular mechanics, which are difficult to predict under conditions relevant to assembly 

(Grason, 2020). Without direct knowledge of these inter- and intra-molecular parameters, 

not to mention the non-equilibrium conditions of assembly, at best, such models can 
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plausibly explain the finite size of fiber diameters. Developing generalizable experimental 

methodologies that strictly prove (or disprove) mechanisms of equilibrium self-limitation, 

particularly from complex biomolecular subunits for which the intermolecular aggregation 

energetics is poorly understood, remains a more distant and unmet goal.

A related challenge is to use advances in synthetic techniques to design and engineer 

self-limiting assemblies that target a priori finite dimensions. Great advances have been 

made in designing shape-controlled particles (Glotzer and Solomon, 2007; Sacanna and 

Pine, 2011) whose symmetries and interactions direct assembly to targeted structures. 

However, assembly targets have thus far been largely restricted to various bulk structures 

(albeit with complex unit cells), or 1D or 2D aggregates of uncontrolled ultimate size. 

Alternately, the field of “supramolecular chemistry” has leveraged chemical synthesis of an 

outstanding variety of architecturally- and compositionally-defined macromolecules to direct 

their assembly. The chemical control over these “precision amphiphiles” has significantly 

increased the ability to rationally design and form periodic mesophases, thermotropic 

supramolecular crystals, or liquid crystals (Su et al., 2020). However, while the symmetries 

of these phases have become increasingly complex, they remain bulk structures. Synthetic 

advances in amphiphile assembly have largely focused on imbuing micellar assemblies with 

functional properties, such as controlled uptake and release of drugs (Geng et al., 2007; 

Oltra et al., 2014). While micellar assemblies are finite-size in terms of diameter, as in the 

case of traditional surfactants, the finite size remains limited to the size of the molecules that 

span the aggregate core. Thus, notwithstanding tremendous advances in synthesizing shape- 

and interaction-controlled subunits, controlling the finite-size of target superstructures, 

particularly on size scales much larger than the subunits themselves, remains a relatively 

un-explored aspect of engineered assemblies. While recent advances in methods such as 

DNA nanotechnology seem to pave the way to geometric control of subunits needed to 

realize bioinspired capsules and tubules (Benson et al., 2015; Rothemund et al., 2004; Sigl 

et al., 2020; Tian et al., 2014), it remains to be explored what the experimentally realizable 

upper limits to finite sizes are, and what mechanisms of self-limitation are needed to reach 

this limit.

A further challenge is to design supramolecular structures that do not have a single finite 

size but, rather, can exist in multiple different sizes, all of which are stable. Such classes of 

structures enable essential functions in biology. For example, recent evidence suggests that 

a neuronal synapse changes size during long-term memory storage, but then must remain 

stable at that size over the lifetime of a memory (Lisman and Raghavachari, 2006; Tang 

et al., 2016a). Designing such variable-size stable structures is also becoming of interest 

to nanomaterials science, since materials capable of “learning” or “remembering” multiple 

stable configurations (Murugan et al., 2015; Zhong et al., 2017) could adapt their structures 

to store information, self-heal, or respond to environmental cues. Despite this interest and 

insights from biology, the principles underlying such variable-size stable structures remain 

far from clear. In this context, it would be of interest to extend the considerations in section 

II.B.3 of secondary CACs, to understand more broadly how the interplay between aggregate 

translational entropy and interaction energies can lead to controllable transitions between 

structures with different finite number sizes and/or dimensionalities. Similarly, can these 

principles be combined with the concepts of nonequilibrium assembly to design subunits 
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that are preprogrammed to organize into nanoscale machines capable of autonomously 

manipulating matter or performing other functions currently found only in living organisms?
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Appendix A: Polymorphic amphiphile assembly phase diagram

Here we summarize the calculation of the polymorphic assembly phase diagram for the 

amphiphile model in Fig. 12. The aggregate energy for each of the dimensionalities is given 

by Eq. (44). To determine the phase diagram, we calculate the following law of mass action 

for subunit populations:

Φ = ϕ1 + Φ3 + Φ2 + Φ1 (A1)

with ΦdL the mass fraction of subunits in spherical, cylindrical, or planar aggregates for dL = 

3, 2, 1 respectively, and ϕ1 the free monomer population

Adopting the continuum limit, the mass fraction of subunits in spheres is given by

Φ3, cont . = ∫0
∞

dr4πr2n0ϕ3(r)

ϕ3(r) = nsph(r)exp − ϵsph(r) − μ nsph(r) (A2)

with ϵsph(r) = ϵ(r, 3) from Eq. (44), nsph(r) = 4
3πr3n0, and n0 = v0

2/a0
3 a dimensionless number 

density.

Likewise, the mass fraction in spherocylinders is

Φ2 = ∫LB
∞

dL∫0
∞

dr2πrn0ϕ2(r, L)

ϕ2(r, L) = nsph(r) + ncyl(r, l) × exp − ϵSC(r, L) − μ nsph(r) + ncyl(r, L) (A3)

with LB set by the minimal length of the stable spherocylinder branch (calculated below), 

ncyl(r, L) = n0πr2L, and

ϵSC(r, L) = nsph(r)ϵsph(r) + ncyl(r, l)ϵcyl(r)
nsph(r) + ncyl(r, L) (A4)
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with ϵcyl(r) = ϵ(r, 2) from Eq. (44). Note that the first term in the numerator of Eq. (A3) 

corresponds to the “endcap energy” arising from the hemispherical cap at either end of the 

spherocylinder. We make the simplest assumption, that the radius of the hemispherical cap 

is equal to that of the cylindrical portion of the micelle, so that solvophobic tails remain 

shielded from solvent contact at the cylinder-endcap connection. More realistic models 

consider lower energy shapes that smoothly connect “bulbous” ends to cylindrical cores 

(May and Ben-Shaul, 2001).

Finally, Φ1 is the mass fraction in layers, and is calculated below.

To proceed, recall from section II.B.2 that for the case of a minimum in the aggregate size 

around an optimal size nT, fluctuations vanish in the limit of large nT or ϵ″ nT. Specifically, 

consider a generic aggregate energy function ϵ(n) with a minimum ϵ* at the optimal size nT. 

The mass fraction of subunits in aggregates is then given by

ΦT = ∫
0

∞
dn n exp[μ − ϵ(n)] . (A5)

Performing a saddle point as in section II.B.2 then results in

Rfluc = ΦT
ΦT nT

= 2π
ϵ″ nTnT

(A6)

with ΦT nT = nTe− ϵ* − μ nT the mass of subunits in aggregates if fluctuations are neglected. 

Thus, we see that when ϵ″ nTnT ≳ 1 the width of the distribution smaller than a subunit, 

and fluctuations are negligible. For spherocylinders, we see that the contribution due to 

fluctuations in the radial direction r diminishes with length as Rfluc ~ L−1/2. Thus, even for 

narrow spherocylinders, fluctuations become negligible in the large-length limit.

With this in mind, we account for polydispersity in micelles as follows. We first calculate 

the optimal radius for spherical aggregates, rsph by minimizing ϵsph(r) for given values of 

k and P. We then numerically calculate the location of the barrier between the spherical 

and spherocylindrical branches of Eq. (A4), as LB = arg max
L

min
r

ϵSC(r, L) ; i.e., the length at 

which a spherocylinder of optimal radius has a maximum energy per particle. The number of 

particles at the barrier is then given by nB = nsph(rB) + ncyl(rB) with rB = arg max
r

ϵSC r, LB

the optimal radius at the barrier.

To calculate the mass of spherical micelles, we numerically integrate the expression in Eq. 

(A2). To maintain the assumptions of section III.A.2, we perform the integral over the range 

n ∈ nsph, nB  with nsph = nsph rsph , although the result is largely insensitive to increasing 

these integration bounds. We then include fluctuations only when they exceed the size of a 

single subunit by setting
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Φ3 = max Φ3, cont . , nsphe− ϵsph nsph − μ nsph . (A7)

where the second argument is simply the concentration of micelles at the optimal size.

For spherocylinders we make the simplifying assumption that radial fluctuations can be 

neglected at all lengths, and take the optimal radius rSC(L) = arg max
r

ϵSC(r, L) as a function 

of spherocylinder length L. In practice, we found that the numerics are more tractable if 

the integral is performed over particle number n rather than spherocylinder length L, so we 

calculate the optimal spherocylinder length LSC(n) = arg max
L

ϵSC rSC(n, L), L  with rSC(n, L)

determined from the volume of the spherocylinder: nsph rSC + ncyl rSC, L = n. To make the 

integral numerically tractable, we perform the integral to a predefined (large) size nmax, 

beyond which we assume that the effect of changing radius from the hemispherical caps 

is negligible, so that the optimal radius is given by the minimum of the cylinder energy, 

rSC ≈ rcyl = arg max
r

ϵcyl(r), and the energetics becomes simply the 1D energetics of the form 

in sec. II.A.2:

Φ2 ≈ ∫nB

nmax
dn Φ2 rSC n, LSC(n) , LSC(n) + Φ∞ nmax (A8)

with the contribution from the spherocylinders with sizes larger than nmax given by

Φ∞ nmax = e−ϵcape μ − ϵcyl nmax1 + ϵcyl − μ nmax

ϵcyl − μ 2 (A9)

with ϵcyl = ϵcyl rcyl  the energy per particle within the cylindrical region and 

ϵcap = nsph rcyl ϵsph rcyl − ϵcyl  the total extra energy that arises due to the unfavorable 

hemispherical caps.

Finally, the fraction of subunits in layers Φ1 is calculated by noting that the free subunit 

chemical potential can never exceed the chemical potential of a subunit in a sheet, 

ϕ1 ≤ eϵlayer with ϵlayer = min
r

ϵlayer(r), where ϵlayer(r) = ϵ(r, 1) from eq. (45). Thus, the amount 

of subunits in layers and the corresponding free subunit concentration are given by mass 

conservation as

Φ1 = max Φ − Φ3 − Φ2 − eϵlayer , 0

ϕ1 = Φ − Φ3 − Φ2 − Φ1, (A10)

effectively treating layers as an unlimited bulk phase, with negligible edge energy.
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Phase boundaries in Fig. 12A are calculated from Eq. (A2) – Eq. (A10) by determining 

the total subunit concentration at which the fraction of subunits in an aggregate of 

a given dimensionality exceeds 50%. That is, the concentrations corresponding to 

transitions between monomers/layers, layers/spherocylinders, and spherocylinders/spheres 

are calculated as the lowest total concentration at which Φ(Φ1 = 0.5), Φ(Φ2 = 0.5), and Φ(Φ3 

= 0.5) respectively. The concentrations in Fig. 12 are normalized by the CAC for cylinders, 

ϕ* = eϵcyl. Note that ϕ* is the only result within this section that depends on the cohesive 

energy strength ϵ0; the relative concentrations corresponding to the transitions depend only 

on the elastic and boundary energy terms.

The CAC ratio shown within the spheres/spherocylinders coexistence region in Fig. 12B 

is computed as Φ(Φ3 = 0.5) /Φ(Φ2 = 0.5). The infinite-concentration transitions, shown as 

solid red and blue lines in Fig. 12B, are calculated respectively from ϵlayer (k, P ) = ϵcyl (k, P )
and ϵcyl (k, P ) = ϵsph (k, P ).

Finally, the boundary of the spheres/spherocylinders coexistence region (solid green line in 

Fig. 12B) is estimated as the minimum concentration at which either the height of the barrier 

between the sphere and spherocylinder branches goes to zero (i.e. corresponding to δ = 0 

in Eq. (34) of section II.B.3) or the point at which the transition concentration from spheres 

to spherocylinders becomes equal to the threshold concentration for assembling cylinders in 

the absence of other aggregates Eq. (35).

Appendix B: Continuum elastic theory of frustrated chiral ribbons

Here we present details of the “narrow ribbon” theory of frustrated chiral ribbons. As the 

model has been described elsewhere (Armon et al., 2014; Ghafouri and Bruinsma, 2005; 

Grossman et al., 2016), our primary aim is to present provide more details on the physical 

ingredients of the model, and further to describe how the elastic instability of wide helicoids 

quantitatively alters the picture of “frustration escape” presented in the Sec. III.B.3.

Following the approach of (Ghafouri and Bruinsma, 2005), we consider a simplified theory 

that describes the shape of ribbons in terms of the surface curvature tensor Cij along the mid-

line of ribbons, written in terms of coordinate directions xe and xp that point, respectively, 

along and perpendicular to the wide direction of the ribbon (see e.g. Fig. 17A). Specifically, 

this assumes that the in-plane curvatures vary little away from the mid-line of the ribbon, 

which is strictly valid when the ribbon widths are narrow with respect to their curvature 

radii. Since the ribbons effective “flatten” in shape as they grow wider, this narrow-ribbon 

approximation provides at least a qualitative picture of the ribbons’ thermodynamics over 

the entire range of the widths.

The excess energy derives from two elastic contributions,

Eelast = Eintrinsic + Eextrinsic, (B1)

where the first term depends on the intrinsic geometry, or metric distortions away from a 

planar 2D lattice, while the second term describes the elasticity of the extrinsic geometry of 
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the ribbon, i.e., a generalized form of its bending energy expressed as quadratically in terms 

of curvature elements Cij. The former term is captured by a 2D elastic energy,

Eintrinsic = ∫ dA σijuij, (B2)

with uij and σij ≈ Y uij as the respective in-plane stress and strain of the 2D crystal ribbon 

order, and Y as the 2D Youngs modulus of the crystal (Seung and Nelson, 1988). Assuming 

that the crystalline packing favors uniform inter-subunit spacing, there is a geometrical and 

mechanical coupling between in-plane stress and out-of-plane deflections described by the 

so-called compatibility equation,

∇⊥
2 σii = − Y KG, (B3)

where σii = σpp + σee and KG ≃ CeeCpp − Cep
2  is the Gaussian curvature (neglecting 

variations of KG across the ribbon width). Assuming approximately uniform negative 

curvature, it is straightforward to show that Eintrinsic /(W L) = Y KG
2 W 4/1440 (Ghafouri and 

Bruinsma, 2005; Grason, 2016).

The extrinsic energy takes the form of the generalized bending energy

Eextrinsic = 1
2∫ dA BppCpp

2 + BeeCee
2 + 2Bep Cep − Ω0

2
(B4)

where Bij are bending coefficients for different curvature elements. Here we consider the 

case of B = Bpp = Bee = Bep; relaxing this restriction does not alter the qualitative behavior. 

Symmetry considerations (i.e. lack of inversion symmetry) argue that chirality at the subunit 

scale generates a linear coupling to the off-diagonal curvature component, which we define 

as the ribbon twist,

Ω ≡ Cep (B5)

and hence Ω0 can be associated with the preferred rotation, or twist, of the tangent plane 

along the edge or pitch axis (Helfrich and Prost, 1988). At a subunit scale, this preferrence 

for mesoscopic twist derives form a energetic preferrence for locally skewed packing of 

molecules in the membrane (Zhang et al., 2019), although a predictive understanding of 

the relationship between preferred pitch and structure of constituent chiral molecules is a 

notoriously complex and long-standing issue in and of itself, see e.g. (Harris et al., 1999).

Combining these together and dividing by the number of subunits per ribbon n = WL/a0 

gives the excess energy

ϵex(W ) = Y a0
1440 CppCee − Cep

2 2W 4 + Ba0
2 Cpp

2 + Cee
2 + 2 Cep − Ω0

2 , (B6)

where again, the curvature components in this expression are taken to correspond in to the 

ribbon shape at the mid-line, and further assumed to be constant along the length of the 
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ribbon. Reconsidering the comparison to the heuristic description in Eq. (59), inspection 

of the chirality-frustrated ribbon energy in Eq. (B6) shows that Gaussian curvature plays 

the role of frustration strength (i.e. f → KG ≃ det(Cij)), while the shape parameter can be 

captured by the curvature tensor (i.e. s → Cij) with a preferred (tensorial) shape component 

that is non-zero only along the off-diagonal elements.

The shape equilibrium of the ribbon varies with width from the roots of the equations

∂ϵex
∂Cee

= ∂ϵex
∂Cpp

= ∂ϵex
∂Cep

= 0 (B7)

for fixed W. The shape equilibrium is characterized by two branches. The first is the 

helicoidal branch,

Cee = Cpp = 0

Cep + Y W 4

720BCep
3 = Ω0

 (helicoid) . (B8)

This is the branch of equilibria discussed in the main text. Helicoid twist tends to its 

preferred value for narrow ribbons Cep (W ≪ Wun) ≃ Ω0; and the helicoid unwinds 

in the wide limit as Cep(W ≫ Wun) ≃ Ω0(Wun/W)4/3, where the unwinding size 

W un  ≡ 720B/Y Ω0
2 1/4

, defined in eq. (63, characterizes the crossover width between the 

these two regimes.

The second branch corresponds to a symmetry-breaking transition to a spiral ribbon shape,

Cee = Cpp = ± Cep
2 − Ω0

2 W un/W 4

Cep = Ω0/2
 (spiral ribbon) . (B9)

Note that this branch only exists above a critical width W c = 2W un, for which Cee and Cpp 

are real.

The critical value corresponds to an elastic instability. For W < Wc the helicoid branch is 

stable, and no spiral equilibrium exists. For W ≥ Wc, the helicoid branch becomes unstable, 

and the stable branches become the two degenerate spiral states, which differ by signs of Cee 

and Cpp. The shape equilibria and excess energy of both branches are plotted in Fig. 17B 

and C respectively.

Notice that for wide ribbons, the Gaussian curvature of both branches vanishes: for 

(unstable) helicoids, KG = − Cep
2 W ≫ W un ≈ − Ω0

2 W un/W 2/3; and for (stable) spiral 

ribbons, KG W ≥ W c = − Ω0
2 W un /W 4. The difference in power law suggests a much more 

rapid expulsion with Gaussian curvature with increasing width of spirals. Notwithstanding 

the faster “frustration escape” of spiral ribbons, the accumulant analysis shown in the inset 

of Fig. 17C predicts that the maximum self-limiting size preempts the mechanical stability 

with W max = 0.85W un < W c = 2W un. Hence, a generic prediction of this narrow ribbon 
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model is that self-limiting ribbons can only be helicoidal in shape (Armon et al., 2014; 

Ghafouri and Bruinsma, 2005).

Appendix C: Assembly timescales and kinetic traps

From Eq. (67) the initial nucleation timescale for the capsid model is

τnuc (ϕ) ≈ exp −βΩ nnuc (ϕ)
Zϕfassem  nnuc (ϕ) . (C1)

with Z = βλ
πnT

1 + Γ2 3/4
 the Zeldovich factor that accounts for the time the system spends 

in the vicinity of the critical nucleus and fassem(nnuc) ≈ fassem.

The median assembly time is then given by using Eq. (C1) to integrate the cumulative 

depletion of monomers as a function of time, approximately accounting for reversibility of 

the reaction as in (Hagan and Elrad, 2010), resulting in

τ1/2 ≈ 2nnuc (Φ) − 1/ nnuc (Φ) − 1 fT
τnuc (Φ)

nT
(C2)

in which we made the approximation that the critical nucleus size remains constant over 

time, nnuc(ϕ1(t)) ≈ nnuc(Φ) ≡ nnuc(Φ).
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FIG. 1. 
Functional, finite-sized assemblies of proteins in biology: (A) protein shells of clathrin (left) 

and viral capsids of Herpes simplex (right); (B) photonic nanostructures form by keratin 

aggregates in feather barbs of Plum-throated Continga (inset); and (C) finite-diameter fibers 

in reconstituted fibrin clot. Figures are adapted from (Heuser, 1980) (A, left) and (Baker et 
al., 2000) (A, right); (Prum et al., 2009) (B); and (Weisel, 2007).
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FIG. 2. 
Schematic illustrations of two classes of SLA described in Sec. III: (A) Self-closing 

assembly, in which inter-subunit rotations lead to cohesive assembly into closed, boundary-

free aggregations; and (B) Open boundary (self-limiting) assembly, in which intra-aggregate 

stress accumulates with assembly and restrains the cohesive drive toward unlimited size.
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FIG. 3. 
(A) Examples of d-dimensional (linear, planar and spherical) short-range cohesive 

aggregation. (B) Plots of the aggregation distributions (relative counts of n-mers) for d = 

1 (top) and d = 2 (bottom) for monomer concentrations increasing to saturation (i.e. ϕ1 = 

ϕs) for Δ0 = 1 kBT. While the dispersity (and mean size) of linear aggregates diverges as ϕ1 

→ ϕS, it remains finite for d ≥ 2 at saturation. (C) The equation of state (ideal aggregation 

theory) for the free monomer population ϕ1 as a function of the total concentration Φ 
for linear, planar and spherical aggregates for Δ0 = 2.75 kBT. For d = 2 and d = 3 the 

free monomer concentration saturates at a finite Φ where ϕ1 = ϕS. For linear aggregation, 

saturation is not reached in the ideal theory.
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FIG. 4. 
(A) A schematic plot of the aggregation (free) energy per subunit is shown as a continuous 

function of aggregation number n. The dashed line shows a harmonic expansion around a 

local minimum at the target size n = nT. (B) Schematic plots of the aggregate distribution for 

a model of the type sketched in (A).

Hagan and Grason Page 85

Rev Mod Phys. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. 
(A) Plots of a “two-state” model composed of only monomers (n = 1) and aggregates 

of a single peak size (n = n* ≈ nT) as functions of the total concentration Φ and 

for different finite aggregate sizes. The critical aggregation concentration (CAC), here 

ϕ*, characterizes the concentration range beyond which aggregates dominate the subunit 

population. (B) Assembly behavior of hepatitis B virus (HBV) capsid protein in vitro as 

a function of concentration. The plot shows the concentration-dependence of the fraction 

of subunits (protein dimer) in two states: free subunits and assembled capsids composed 

of 120 subunits. Notice that as the total concentration crosses the CAC (labeled KD,app), 

the concentration of free subunits is nearly constant, with almost all additional subunits 

assembling into capsids. Figure in (B) reprinted from (Ruan et al., 2018).
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FIG. 6. 
(A) A schematic plot of the aggregation energetics for a case with two local minima 

corresponding to small and large finite aggregates, containing nS and nL respective subunits 

in their target sizes. The solid curve shows a case where small aggregates are the global 

minimum of ϵ(n), while the dashed curve shows a case where the larger aggregate is the 

global minimum. The latter case can lead to secondary CAC transitions between small 

and large aggregates, as shown in (B), which plots the monomer, small aggregate and 

large aggregate populations as functions of total concentration for large aggregates that are 

slightly energetically more favorable than small ones eβ ϵL − ϵS = 0.8 . In this case, small 

aggregates dominate at intermediate concentrations, but ultimately are overtaken by a second 

population of large aggregates above a second CAC. (C) An assembly state map for the two 

finite aggregate model, as a function of the (per subunit) energy difference between small 

and large aggrates and total concentration. The color scale shows the mean aggregate size, 

while the solid lines indicate boundaries between states dominated by monomers, nS-mers, 

and nL-mers. Dashed lines indicate where subdominant aggregates reach the monomer 

concentration. Plots in (B) and (C) show results of the two finite aggregate model for nS = 

10 and nL = 50.
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FIG. 7. 
(A) A schematic plot of polymorphic aggregation energetics with three competing branches 

of assembly: finite aggregates (blue) with a local minimum at nF, 1D aggregates (orange), 

and bulk aggregates (n → ∞ energy shown as red dashed line). In this case, the infinite 

1D aggregate has a lower per subunit energy than finite aggregates, and there is a barrier 

(in total energy) δ that separates these states at n = nF, i.e. the double arrow in (A) 

corresponds to δ/nF. (B) Phase diagram for concentration-dependent size selection. The 

dominant aggregation state is shown for a system with coexistence among finite aggregates 

with nF = 100 subunits, separated by an energy gap ϵF − ϵ1D and a barrier of δ, eq. (34), 

to 1D aggregates. There is an additional per subunit energy gap of ϵ1D − ϵbulk = 0.0005kBT 
between 1D and bulk aggregates. The horizontal axis gives the energy gap between spheres 

and cylinders, and the vertical axis gives the total concentration relative to the CAC for 

finite aggregates ϕF* ≃ eβϵF/nF. The boundaries between monomers, finite and 1D aggregates 
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are determined by crossovers in the most populous aggregate type from eq. (30), while the 

point of bulk saturation is determined by the point when μ = ϵbulk. In this example, the 

energy per subunit in finite aggregates is fixed at ϵF = −10 kBT and the endcap energy of 

spherocylinders is Δ0 = 20 kBT. The maximum energy gap for which 2nd CAC behavior 

occurs (Δϵmax ≈ 0.14 kBT, eq. 35) is indicated on the x-axis.
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FIG. 8. 
(A) Schematic of spherical (shell) assembly with two independent self-closing directions of 

assembly. (B) Schematic of tubule assembly with one self-closing direction (circumferential) 

and one unlimited direction (axial) of assembly.
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FIG. 9. 
(A) Schematic geometry of a “fluid capsule” of tapered subunits, which assumes partial 

shell geometries of spherical caps with aperture angle 0 < Θ ≤ π. (B) A contour map of 

the energy density landscape of the capsule model as a function of aperture angle and the 

ratio of subunits n to the preferred number in the ideal closed shell nT. Low (high) values of 

ϵ(n) appear as purple (red). The dotted line shows a partial shell with the target curvature, 

while the solid line indicates the minimal energy cap, whose curvature radius is slightly 

compressed by the line tension of the boundary. Beyond a threshold cap size n = nS ≃ 0.4nT, 

this open cap becomes unstable to preclosure, and the minimal energy branch runs along 

Θ → π. This landscape corresponds to a dimensionless line tension λ = 0.1. (C) Plots of 

the minimal energy branches of assembly: incomplete caps are shown as colored curves 

(metastable portions are dashed), and the closed shell (Θ → π) is shown as a black curve. 
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The inset shows the size nS corresponding to the preclosure, or “snap”, transition between 

stable open caps and closed shells as a function of line tension.
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FIG. 10. 
Examples of well-formed and defective woodchuck hepatitis B virus (WHV) capsids, 

adapted from Ref. (Pierson et al., 2016). (A) Portion of a representative cryo-EM image 

of empty WHV capsids assembled in vitro in the absence of RNA (from capsid proteins with 

the C-terminal RNA binding deleted, wCp149). The population of capsids is structurally 

heterogeneous; the black arrow indicates an example of a T = 4 icosahedral capsid, while 

the white arrows indicate examples of defective capsids. (B) 2D class averages of (1) 

icosahedral and (2–4) defective particles. Red arrows in (2) and (4) indicate locations 

where the capsid shell has overgrown and overlaps itself. (C) Schematic model of a T = 

4 icosahedral HBV capsid, with the monomers forming the 12 five-fold vertices colored 

green, and others colored blue. (D) Hypothetical model of the structure of a capsid that 

is non-icosahedral but closed, with an elongated structure containing 150 protein dimers 

(the icosahedral capsid has 120 dimers). Here the green dimers are in pentamers or extend 

between pentamers and hexamers, and the blue dimers are in hexamers or extend between 

two hexamers. Images reprinted from (Pierson et al., 2016).
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FIG. 11. 
(A) A cartoon model of a (single-tailed) surfactant molecule. (B) A schematic of a spherical 

micelle with the thickness of the solvophobic core (ℓ) and the area per head group (a) 

highlighted. A wedge-like portion of the micelle is cutaway to illustrate the interior packing 

of tails. (C) A spherocylinder model of a worm-like micelle, which has a cylindrical portion 

of length L capped by two hemispherical micelles of equal radius. (D) An energy landscape 

for spherocylinders described by the model in eq. (44) with P−1 = 2.25 and k = 0.1. The 

dashed orange line shows the (L = 0) spherical micelle branch and the dashed pink line 

shows the (L = 0) worm-like micelle branch, whose corresponding energy as a function of 

reduced aggregation number is plotted in (E).
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FIG. 12. 
(A) An assembly state phase diagram for the amphiphillic aggregate model in eq. (44) for 

dimensionless stiffness k = 1 and v0
2/a0

3 = 10, where ϕ* is the nominal CMC for cylinders. 

Solid lines mark the boundaries between the most populous aggregate type, and dashed lines 

indicate the boundaries in the infinite Φ limit. The inset shows a zoom in near the boundary 

between cylinders and bilayers, illustrating an extremely narrow window of secondary CMC 

behavior due to the large mean (finite) size of cylinders. (B) Summarizes the polymorphic 

assembly of the amphiphile model in the plane of stiffness k and inverse packing parameter 

P−1, for v0
2/a0

3 = 10. Regimes of single CMC behavior are shown as solid red, white, and blue 

for bilayers, cylinders, and spheres, respectively. The regime of polymorphic concentration-

driven sphere-to-spherocylinder transitions is colored on a blue-green scale according to the 

ratio of second CMC (spheres to spherocylinders) to the first CMC (monomers to spheres). 

(C-F) show cryo-transmission electron micrographs of micelles formed by dimeric (gemini) 

surfactancts, at 25° C at increasing weight percent: (C) 0.26%; (D) 0.5%; (E) 0.62%; and (F) 

0.74% (scale bars equal 100 nm). The coexistence of cylindrical micelles of increasing total 

length for (D-F), and absence of lengths intermediate to spheres and the shortest cylinders is 

consistent with a concentration-dependent second-CMC. The inset of (F) shows the bulbous 

ends of a cylindrical micelle (scale bar, 25 nm), consistent with an energy barrier between 

spherical and (long) cylinders due to a mismatch in preferred radius. (C-F) are adapted from 

(Bernheim-Groswasser et al., 2000).
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FIG. 13. 
(A) A schematic plot of the aggregation energetics (per subunit) for self-limiting open 

boundary assembly, where the blue, red, and black curves respectively show the surface 

energy density, excess energy, and total energy density. The dashed curve shows power-law 

growth of excess energy at small size. The red point highlights the equilibrium self-limiting 

width W*, and the inset shows the variation of this equilibrium width with increasing 

surface energy Σ, assuming fixed ϵex(W). (B) A schematic plot of the equilibrium width as 

a function of Σ, where the dashed portion indicates the possibility of a finite-width branch 

that is metastable relative to the bulk state W → ∞. The boundary between equilibrium 

self-limiting and bulk states is marked by a maximum self-limiting size Wmax, denoted as 

the escape size.
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FIG. 14. 
(A) Schematic plots of excess energy versus width for two different models of OBA: model 

1 (blue); and model 2 (orange). Both crossover from power-law growth at small size to 

saturating excess energy at large size, but do so with different functional forms (notably, 

the asymptotic approach to ϵ∞ is slower in model 2 compared to model 1). The area of 

the blue rectangles graphically illustrates the definition of the accumulant in eq. (50). (B) 

Accumulant A(W ) as a function of width for the two models shown in (A). Regions of 

increasing A(W ) correspond to possible ranges of equilibrium self-limiting sizes for a given 

form of ϵex(W). That is, values of W for which A′(W ) > 0 correspond to energy minima of 

ϵ(W), which are lower in energy than the bulk state ϵ(W → ∞), for a particular value of 

the surface energy Σ give by eq. (47). Hence, model 1 shows an upper limit for maximal 

self-limiting size Wmax, while model 2 exhibits stable self-limiting equilibria at all sizes.

Hagan and Grason Page 97

Rev Mod Phys. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 15. 
(A) Schematics of aggregates of particles interacting via short-range (i.e. contact) 

interactions and long-range repulsions, with a screening length κ−1, which can be large 

or small compared to the aggregate size R. (B) Excess energy of spherical aggregates versus 

radius, showing a crossover from power-law growth for R ≪ κ−1 to an asymptotically 

saturating bulk energy for R ≫ κ−1. (C) Plot of the equilibrium finite radius R* of the 

SALR model versus surface energy Σ, showing a continuous divergence to the bulk at a 

finite Σ = Σmax. The second-order-like transition from finite-to-bulk states predicted by this 

model (solid curve) is consistent with the monotonically increasing form of the accumulant 

plotted in the inset, where this result assumes the bulk state has uniform density. Assuming 

instead, that the bulk state has a lower energy, non-uniform density (e.g. a periodic aggregate 

morphology (Zhang et al., 2019)), the transition will be first-order, as illustrated by the non-

monotonic accumulant shown as a dashed line. (D) shows a confocal microscope image of 

clusters of charged colloidal particles (radius 660 nm) adapted from (Stradner et al., 2004). 

In these experiments short-range attractions are induced by depletion forces generated by 

inert polymers in suspension, while electrostatic repulsions are maintained at relative long 

range due to the low-concentration of mobile ions in host organic solvent (Van Schooneveld 

et al., 2009).
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FIG. 16. 
(A) A heuristic “warped jigsaw” model for GFA, after (Grason, 2017), in which directional 

interactions promote curvature along rows of a locally preferred 2D “lattice”. Assembly 

in both bonding directions leads to “misfits”, as in the tetrameric aggregate. (B) A 

schematic plot of the excess energy (per subunit) for the warped jigsaw model, due to the 

superextensive build-up of elastic costs of misfits. Intra-assembly strains are illustrated via 

particle color, from unstrained (yellow) to highly-strained (red). The excess energy shows 

the characteristic crossover from power-law growth at small aggregates to an asymptotic 

approach to a strained bulk state (in this case envisioned as “shape flattening” of jigsaw 

particles). (C) A schematic phase diagram for a generic model GFA in eq. (59), considered 

(at fixed concentration and temperature) as a function of the ratio of surface energy to elastic 

stiffness and a measure of the “strength” of frustration, f0.
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FIG. 17. 
(A) A schematic of a chiral, crystalline ribbon, where colors indicate the local extensional 

strains required by negative Gaussian curvature, from low (blue) to high (red). (B) Plots of 

the equilibrium shape relaxation of the narrow ribbon model of (Ghafouri and Bruinsma, 

2005) as a function of increasing ribbon width, for curvature components Cij and Gaussian 

curvature KG, which is approximately uniform over the ribbon. The solid branches show 

the minimal energy configurations, while the dashed line indicates the (unstable) helicoidal 

equilibrium. Widths are scaled by the characteristic length Wun, defined in Eq. (63). (C) 

shows schematics of the shape equilibrium, in particular the shape transition from helicoids 

to spiral ribbons at a critical width Wc. (D) and (E) plot the respective excess energies 

for helicoidal (dashed) and helicoid-spiral shape branches (solid). While both shape modes 

predict an asymptotically relaxed frustration energy and a finite self-limiting width, spiral 

ribbons expel KG at much faster rate, leading to a narrower range of self-limitation. 

(E-G) show transmission electron microscopy images of ribbons assembled from chiral 

bola-amphiphiles adapted from (Zhang et al., 2019). The panels illustrate morphologies 

evolving with assembly time (scale bars 100 nm): in (E), helicoids are observed after 24 

hours; in (F) spiral ribbons are observed after one week; and finally, in (G), closed tubules 

are observed after 5 months.
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FIG. 18. 
The grand free energy Ω for the capsid model with fixed curvature RT (Eq. (70)), as a 

function of partial capsid size n. (A) shows Ω(n) for indicated complete capsid sizes nT, 

with the limit nT → ∞ corresponding to unlimited assembly (a flat disk). The calculation 

is performed for a chemical potential difference Δμ = −ϵT − μ = −4kBT, and a per-subunit 

binding free energy ϵT = −15kBT, corresponding to a subunit-subunit contact energy of 

7.5kBT and tetravalent subunits (e.g. (Ceres and Zlotnick, 2002b; Zlotnick et al., 2000)). We 

set the line energy to λ = ϵT/2a0
1/2, corresponding to one unsatisfied contact per subunit on 

the partial shell rim. (B) shows Ω(n) as a function of the chemical potential difference Δμ for 

ϵT = −15kBT and complete capsid size nT = 120. In (A) and (B), the solid lines correspond 

to sizes for which the quasi-equilibrium approximation described in the text applies (i.e., 

n ≤ nnuc) and thus the concentration of intermediates is approximately given by ϕ(n) ∝ 
e−βΩ(n). The dashed lines correspond to sizes n > nnuc for which this assumption is not 

Hagan and Grason Page 101

Rev Mod Phys. Author manuscript; available in PMC 2022 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



valid and the intermediate concentrations cannot be described by a quasi-equilibrium (except 

approximately for the case Δμ = 0).
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FIG. 19. 
(A) Assembly ‘phase diagram’ for the capsid model (B → ∞ model of the fluid capsule 

model). The boundaries between the different kinetics regimes discussed in the text are 

shown as a function of capsid size and supersaturation Φ/Φs = e−βΔμ. The calculation was 

performed using Eqs. 68, 5, 71 with α = 1, and C2. We set ϵmin = −15kBT and λ = ϵT/2a0
1/2

as in Fig. 18. (B), (C) TEM images of in vitro assembly of empty capsids from CCMV 

capsid proteins. (B) corresponds to productive assembly, while (C) corresponds to assembly 

of long-lived partial shells (the monomer starvation trap) that occurs under stronger subunit-

subunit interactions. Images in (B) and (C) reproduced from (Zlotnick et al., 2000).
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