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Abstract: Candida parapsilosis is the second most common cause of candidemia in some geographical
areas and in children in particular. Yet, the proportion among children varies, for example, from
10.4% in Denmark to 24.7% in Tehran, Iran. As this species is also known to cause hospital outbreaks,
we explored if the relatively high number of C. parapsilosis pediatric cases in Tehran could in part be
explained by undiscovered clonal outbreaks. Among 56 C. parapsilosis complex isolates, 50 C. para-
psilosis were genotyped by Amplified Fragment Length Polymorphism (AFLP) fingerprinting and
microsatellite typing and analyzed for nucleotide polymorphisms by FKS1 and ERG11 sequencing.
AFLP fingerprinting grouped Iranian isolates in two main clusters. Microsatellite typing separated
the isolates into five clonal lineages, of which four were shared with Danish isolates, and with no
correlation to the AFLP patterns. ERG11 and FKS1 sequencing revealed few polymorphisms in
ERG11 leading to amino-acid substitutions (D133Y, Q250K, I302T, and R398I), with no influence on
azole-susceptibilities. Collectively, this study demonstrated that there were no clonal outbreaks at the
Iranian pediatric ward. Although possible transmission of a diverse C. parapsilosis community within
the hospital cannot be ruled out, the study also emphasizes the necessity of applying appropriately
discriminatory methods for outbreak investigation.

Keywords: candidemia; Candida parapsilosis species complex; genotyping; AFLP; microsatellites

1. Introduction

In a recent study of the epidemiology of pediatric candidemia in Tehran, Iran, Can-
dida parapsilosis complex species isolates accounted for 24.7% of the cases [1]. C. parapsilosis
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is the second most common species in children although with some geographical vari-
ation [2,3]. However, C. parapsilosis is also the dominating Candida species on skin and
therefore associated with outbreaks [4–6]. Fluconazole-resistant C. parapsilosis isolates
have been increasingly reported in several countries, including but not limited to South
Africa [7], India [8], South Korea [9], Kuwait [10], Mexico [11], Italy [12], and Finland [13],
and has been associated with poor outcome and clinical failure [6,14,15]. Outbreaks involv-
ing fluconazole-resistant C. parapsilosis include azole-naïve patients and limit the use of
fluconazole as the first-line agent in developing countries [3,15,16]. Outbreaks may be due
to either a common reservoir or horizontal transmission of the pathogen. A recent study
from Brazil found isogenic fluconazole-resistant C. parapsilosis isolates from the hands of
healthcare workers, inanimate surfaces, and patient bloodstream infections [15].

Typing of isolates from patients and hospital environmental screening is essential in
outbreak investigations. Amplified Fragment Length Polymorphism (AFLP) fingerprinting
and microsatellite typing (Short Tandem Repeat, STRs) have been used as the most common
typing tools. A recent study suggested that the latter genotyping method provided a
better resolution compared to AFLP fingerprinting [17]. Nonetheless, further assessment
is warranted to substantiate this finding. In addition, sequencing of drug target genes
(primarily ERG11), have previously contributed to delineate clonal outbreaks [6,11,18]. We
thus sequenced drug target genes (FKS1 and ERG11) and performed genotyping of the
Iranian isolates using AFLP fingerprinting and STR typing.

In comparisons with other genetic markers, AFLP have led to inconsistent results
and lack of reproducibility [19]. As AFLP uses dominant markers, the information from
heterozygosity is lost, and in studies of outbreaks using AFLP markers, the grouping
is often based on “unweighted pair group method with arithmetic mean” (UPGMA) as
the clustering algorithm, which is insufficient for analyses of population structure. The
codominant STR markers allow the use of F-statistics and similar approaches to reveal
population structure. Codominant markers can also be analyzed with powerful Bayesian
clustering methods, such as STRUCTURE [20], but they often rely on assumptions, such
as Hardy–Weinberg equilibrium. These assumptions are clearly violated with organisms
that have clonal reproduction. C. parapsilosis has been considered an asexual organism [21].
Although evidence has been presented that it may also recombine sexually or parasexu-
ally [22], it remains uncertain to what extent mating and recombination occur. Population
structure of potential clonal or partly clonal populations can be evaluated by discriminant
analysis of principal components (DAPC). The advantage of this approach is that it is
based on a prior principal component analysis (PCA) that transforms allele information
to uncorrelated variables. This allows analyses of populations in linkage disequilibrium
where the markers potentially could be correlated [23].

The purpose of this study was to determine if the high percentage of C. parapsilosis
belong to a single clonal lineage and are therefore likely part of a hospital-associated
outbreak. This was achieved by applying DACP to SSR data. Furthermore, the study
compared genotyping by STR and AFLP markers to clarify which of the two typing
methods was more appropriate [14].

2. Materials and Methods

Isolates. A set of 50 C. parapsilosis and six C. orthopsilosis isolates from 42 and five can-
didemic pediatric patients, respectively, hospitalized in Tehran during July 2014–December
2017 were included. The clinical data (Table S1) and antifungal susceptibility data for these
isolates have been described previously [1,24]. Six isolates from the previous study [1]
were not stored and omitted for this study. Consecutive isolates from the same species and
patient recovered more than 30 days apart were considered as separate episodes occurring
in that patient. In addition, 34 isolates from 33 Danish (DK) patients were included as
comparators in the microsatellite typing.

Antifungal susceptibility testing was previously performed using the EUCAST E.Def
7.3 method as described in Mirhendi et al. [1].
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AFLP fingerprint analysis. The genotypic diversity of isolates was investigated by
AFLP as previously described [25]. AFLP data were analyzed by BioNumerics software
v7.6 (Applied Math, Sint Martems-Latum, Belgium). The reference and type strains of
C. parapsilosis (CBS 604, CBS 1818, CBS 1954, CBS 2195, and CBS 2917), C. metapsilosis (CBS
2315, CBS 2916, and CBS 10907), and C. orthopsilosis (CBS 10906) were included.

Microsatellite typing. Six short tandem repeat (STR) markers were used for microsatel-
lite typing of C. parapsilosis sensu stricto as previously described [26]. Two multiplex
PCR reactions were run to amplify the trinucleotide (3A, 3B, and 3C) and hexanucleotide
markers (6A, 6B, and 6C), respectively. Forward amplification primers were 5′ labelled
with FAM, HEX, and TAMRA as described [26], and all primers were acquired from TAG
Copenhagen A/S, Copenhagen, Denmark. Following modifications were applied. PCR
was run in 25-µL reaction volumes with 2 µL genomic DNA, 0.4-µM primer concentrations,
and 1 × Extract-N-Amp™ PCR ReadyMix (from Sigma (now Merck), Søborg, Denmark).
PCR amplification was run with 35 cycles and TM at 54 ◦C. Amplicons were diluted 35×
with distilled H2O and 1 µL diluted amplicons mixed with 12.2 µL distilled H2O and 0.8 µL
GeneScan™ 500 ROX™ size standard (Thermo Fischer Scientific, Roskilde, Denmark).
DNA fragments were denatured at 95 ◦C for 1 min, followed by rapid cooling on ice before
injection in the genetic analyzer ABI3500xL Genetic Analyzer (Thermo Fischer Scientific
(Applied Biosystems), Nærum, Denmark). For all six markers, at least three samples with
different sizes (except 6B, which only covered two fragment sizes) were amplified with
unlabeled forward primers and subjected to Sanger sequencing (Macrogen, Amsterdam,
Holland) in order to correlate fragment size to repeat numbers.

ERG11 and FKS1 sequencing of the C. parapsilosis complex isolates were done as
previously described [17].

Statistical analysis. The STR dataset was analyzed using the package poppr v. 2.9.3 [27]
in R v. 4.0.5 (R Core Team, Vienna, Austria). A genotype accumulation curve was plotted to
ensure that the number of loci captured the variation present in the two populations. The
mlg.filter function was activated to determine the true number of multi-locus genotypes
(MLGs) by using a genetic distance threshold determined using the cutoff predictor tool,
which finds a gap in the distance distribution. The analyses carried out in poppr included
a summary of diversity measures, Bruvo’s genetic distance [28], and minimum spanning
tree based on the distance matric.

The index of association (IA) was calculated in poppr to test for linkage disequilibrium
based on a clone-corrected dataset. The modification of IA that removes the bias of sample
size rd [29] was also calculated.

F-statistics were calculated using the GenAlEx. Overall FST, FIS, and Ht (gene diversity)
were calculated as well as population differentiation RST, which is based on a stepwise
mutation model [30]. The significance of the RST structure between populations was tested
using 1000 permutations.

DAPC was run using the adegenet package 2.1.15 (updated 2020) [23]) in R. DAPC
analyses were only conducted with de novo grouping, as a priori groupings based on
insignificant RST values between the two geographical samplings made little sense. Instead,
the find.clusters() function was used to determine the number of groups (K) de novo, with
optimal K selected as that with the lowest BIC value. The optimal number of PCs to use
in the DAPC was determined using the optim.a.score() and xvalDapc() commands and
1000 replicates. Root mean squared error by number of PC of PCA s (RMSE) was chosen as
the most important criterion for selecting the number of PC’s.

Ethical considerations. This study was reviewed by ethical committee members of
Tehran University of Medical Sciences and granted with the approval ethical code (IR
NIMAD REC 1396 245). Written consent forms were obtained from patients involved in the
candidemia project, and patients were assigned with numerical codes for anonymity pur-
poses.
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3. Results

A total of 50 C. parapsilosis and 6 C. orthopsilosis isolates from 47 candidemic pediatric
patients were included. The median age was 10.5 months (range 2 days to 10 years), and pre-
disposing factors included exposure to vancomycin and third-generation cephalosporins,
N = 47 (100%); admission at intensive care unit (ICU), N = 34 (74%); central venous catheter
(CVC), N = 41 (89%); total parental nutrition (TPN), N = 26 (57%); and underlying con-
ditions, such as prematurity, N = 12 (26%); cancer, N = 8 (17%); and metabolic disease,
N = 5 (11%) (Table S1). All five patients with C. orthopsilosis infections survived, while 46%
(19/41) of C. parapsilosis infected patients succumbed (p = 0.067).

AFLP fingerprint was first performed and provided two clusters of C. parapsilosis
(Table 1 and Figure S1): G1-P covered 44 isolates from 36 patients, and G2-P covered
6 isolates from five patients. Likewise, two clusters were defined for C. orthopsilosis: G1-Orth
and G2-Orth covering three isolates each from three and two patients, respectively. Four
patients (IR-Pt-2, IR-Pt-29, IR-Pt-32, and IR-Pt-39) had two or more isolates that belonged
to the same AFLP groups (G1-P, G2-P, G1-P, and G1-Orth, respectively). Eight reference
strains were included in the AFLP fingerprint testing, including seven C. parapsilosis and one
C. orthopsilosis. Of these, three C. parapsilosis (CBS 1818, CBS 1954, and CBS 604) belonged
to G1-P, four C. parapsilosis (CBS 2197, CBS 2915, CBS 2194, and CBS 2196) belonged
to G2-P, and finally, one C. orthopsilosis (CBS 10906) differed from the included Iranian
C. orthopsilosis isolates.

Table 1. Overview of the number and origin of C. parapsilosis complex isolates in each AFLP finger-
print cluster (further details are provided in Supplementary Figure S1).

Cluster No.
Isolates

No.
Patients Wards Involved Time Span of Obtained

Isolates
Reference Strains in

Cluster, Origin

G1-P 44 36

12 (PICU, NICU, NICU-OH,
CICU, EICU, Cardiac, Neurology,
Surgery, Immunology, Infectious,

GI, BMT)

2 years and
9 months

CBS 1818, CL
CBS 1954, IT
CBS 604, PR

G2-P 6 5 4 (NICU, EICU, PICU, Surgery) 2 years and
3 months

CBS 2197, DK
CBS 2915, NO
CBS 2194, AT

CBS 2196, DOM
G1-Orth 3 3 3 (Immunology, PICU, NICU) 1 month CBS 10906
G2-Orth 3 2 1 (PICU) 10 months No

G1-P and G2-P for C. parapsilosis and G1-Orth and G2-Orth for C. orthopsilosis, respectively. Reference strains
(CBS) were included and origins provided as land codes. Wards covered: ICU, intensive care unit; PICU, pediatric
ICU; NICU, neonatal ICU; NICU-OH, NICU open-heart surgery; CICU, cardiac ICU; EICU, emergency ICU; GI,
gastroenterology; BMT, bone marrow transplant.

Microsatellite typing revealed 29 unique genotypes (MLGs) among the Danish isolates
of C. parapsilosis and 41 (MLGs) among the Iranian isolates (Figure 1 and Table S2). A
genotype accumulation (saturation) curve of MLGs showed sufficient STR markers (six
loci) had been included (Figure S2). The calculated D value according to Simpson’s index
of diversity was 0.992. No apparent correlation was observed between AFLP fingerprinting
and microsatellite typing.
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ized in the same ward and during the same time period. In comparison, the 34 Danish C. 
parapsilosis isolates represented 29 unique genotypes, of which three were clusters: one 
with two isolates from the same patient and two (6.9%) consisting of three isolates from 
different patients. Neither the number of clusters among unique genotypes nor the num-
ber of isolates (from different patients) in clusters differed between Danish and Iranian 
isolates (p = 0.45 and p = 0.42, respectively). 
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the Iranian isolates (RST = 0.011, p = 0.14), and analysis of molecular variance (AMOVA) 
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Figure 1. Minimum spanning network (MSNs) inferred using STRs from Danish (blue) and Iranian
(yellow) isolates of Candida parapsilosis. The network is based on Bruvo’s distance matrix. Each node
represents a multi-locus genotype (MLG), with variable size depending on the number of individuals
within that MLG. The distance between the nodes represents the genetic distance between MLGs.

Ten isolates were in three clusters each, consisting of 2–5 repeat isolates from the
same patient (Figure S3). Twelve isolates were in six clusters (IR-C1 to IR-C6) (16.2%),
each consisting of two isolates from different patients. Thus, 12 out of 43 isolates from
different patients were in clusters (27.9%). Of note, one Iranian cluster involved patients
hospitalized in the same ward and during the same time period. In comparison, the
34 Danish C. parapsilosis isolates represented 29 unique genotypes, of which three were
clusters: one with two isolates from the same patient and two (6.9%) consisting of three
isolates from different patients. Neither the number of clusters among unique genotypes
nor the number of isolates (from different patients) in clusters differed between Danish and
Iranian isolates (p = 0.45 and p = 0.42, respectively).

Analyses of STR data revealed no population differentiation between the Danish and
the Iranian isolates (RST = 0.011, p = 0.14), and analysis of molecular variance (AMOVA)
showed 99% variation within populations and only 1% among populations (Table 2).
The lack of differentiation was also illustrated in the minimum spanning network (MSN)
based on Bruvo’s distance, where no structure that could separate the two samplings (DK
and Iran) was seen (Figure 1). The network showed no reticulations indicating lack of
recombination. This was also revealed by index of association IA and the unbiased index
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of association rd, which gave values significantly different from what is expected of a freely
recombining population (p < 0.001) (Figure S4).

Table 2. Summary AMOVA table. Probability, P(rand ≥ data), for RST is based on standard permuta-
tion across the full data set. Pops, populations; dF, degrees of freedom; SS, sum of square; MS, mean
squares; Est. Var., estimated variance. p-value shows no genetic differentiation between the Danish
and Iranian isolates. Furthermore, 99% of the variation lies within the two populations.

Source df SS MS Est. Var. %

Among Pops 1 268.378 268.378 1.604 1%
Within Pops 160 22,871.048 142.944 142.944 99%

Total 161 23,139.426 144.548 100%
Stat Value P(rand ≥ data)
RST 0.011 0.143

The Danish and the Iranian isolates had similar genetic diversities. Bruvo’s distance
was 0.3898 for the Danish population and 0.3706 for the Iranian. Both values differed sig-
nificantly from randomized data, again supporting that clonal reproduction is dominating.

The find.clusters in adegenets DAPC revealed K = 5 without a priori groupings, and
eight principle components (PCs) were retained for analysis based on the lowest root mean
squared error (RMSE). The scatter plot assigned all individuals to the five clusters with
high certainty (Figure 2). Most isolates were found in two clusters: cluster 2 and cluster 5,
which contained both Danish and Iranian isolates. One cluster (cluster 3) was only found
in Iran (Figure 3).
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Figure 3. Graphical translation of membership probabilities to the five clusters. The colors of the bars
correspond to the clusters in Figure 1. The vertical axis gives membership probability from 0 to 1. All
isolates except isolate 55 are assigned with 100% certainty. The black vertical line separates Danish
and Iranian isolates. The clusters are almost evenly distributed between Denmark and Iran except
cluster 3 (yellow), which is only found in Iran.

All isolates were susceptible to azoles, echinocandins, and amphotericin B and were
FKS1 (hot-spot) wild-type (Table S3). Thirty-eight isolates were ERG11 wild-type, and
twelve isolates (24%) had one or two homozygous mutations leading to the following
amino acid changes: D133Y, Q250K, I302T, and R398I. All six C. orthopsilosis isolates were
azole and echinocandin susceptible and displayed wild-type ERG11 and FKS1 (hot-spots)
sequences (Table S3).

4. Discussion

Previous studies have reported a relatively high incidence of C. parapsilosis infections
in the children’s ICU at Teheran University of Medical Sciences [1,24]. Since this oppor-
tunistic pathogen is known to cause hospital-associated outbreaks [31], this study applied
genotyping to determine the extent of clonality among the isolates and help to clarify
the possible occurrence of outbreaks in an Iranian pediatric setting. Indeed, AFLP finger-
printing initially suggested two potential clonal clusters, namely G1-P and G2-P, which
could have prompted presumptive conclusions possibly due to poor infection control and
a critical nosocomial clonal spread.

The results of the microsatellite analyses showed that the Iranian outbreak, which was
considered as two clones when assayed with AFLP markers, consisted of five clusters. This
can be explained by the low resolution of the current format of the AFLP that introduce
null-alleles resulting in binary data. Moreover, the mutation model behind AFLP markers
is based on frequency of mutations in restriction sites, whereas microsatellites have a much
higher mutation rate, and a stepwise mutation model that allows inclusion of repeat length.
This conclusion was supported by a previous study [14], which found an insufficient
resolution by AFLP and suggested that STR should be the preferred method for genetic
analysis to uncover outbreaks. Nevertheless, it remains to be understood if inclusion of
additional primers targeting more restriction recognition sites and/or use an electrophoretic
system capable of providing higher-resolution gel pictures would improve the performance
of AFLP.

Four out of five clusters were shared by Denmark and Iran. This is in agreement with
other studies showing no geographic differentiation of C. parapsilosis between France and
Uruguay [32] and illustrates the dispersal potential of the fungus. One cluster was only
found in Iran, indicating that new clusters may still occur locally.
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The clonal nature of the pathogen is obvious from the analyses of IA and rd. Though
the DACP analysis cannot distinguish clonal population structures from recombining,
the minor overlap between clusters and little uncertainty in cluster assignment indicate
clonality. The clonal diploid reproduction of the fungus will tend to increase the genetic
differentiation among populations compared to the parent population [21,33], as known
from parasite populations. This does not mean that the fungus is not able to undergo
recombination. The five clusters may well represent the outcome of genomic recombination,
which have also been shown by genomic studies where the genomes of C. parapsilosis strains
showed signs of recombination events [22].

We previously documented that an amino acid substitution in the HS1 of Fks1 was
found in an echinocandin-susceptible C. glabrata isolate [34] and later identified fluconazole-
susceptible C. parapsilosis isolate harboring Y132F in Erg11 (unpublished data). Therefore,
despite the lack of fluconazole and echinocandin resistance in the current study, sequencing
of ERG11 and FKS1 was included in order to further delineate molecular correlation
between the isolates and to map the genes in susceptible strains. FKS1 profiles were highly
conserved, while ERG11 showed common variants in more than one-sixth of the isolates,
which did not influence azole susceptibilities [1]. Furthermore, these variations (instead
of a single variant) did not support the hypothesis of a clonal outbreak as opposed to the
previously described Brazilian outbreak with a fluconazole-resistant Erg11 Y132F mutant
strain [31]. Microsatellite typing was introduced, and in contrast to the AFLP data, the
results showed a high genotypic diversity among Iranian isolates. More clusters were
found in the Iranian population compared to the Danish, but this difference did not reach
statistical significance. Thus, no clear evidence for a clonal outbreak was found as cause of
the high C. parapsilosis proportion in the Iranian study population compared to pediatric
candidemia in Denmark. Different levels of (hand) hygiene could be significant for the
incidence of C. parapsilosis infections, and nosocomial infections remain a threat but not
necessarily with the same strain. Additional sampling of other patients, hospital workers,
and units combined with genotyping of C. parapsilosis positive samples could have aided a
more detailed evaluation of potential transmission routes. Still, the source of candidemia is
primarily regarded as a patient’s own microbiota underlining the key role of hygiene to
avoid infection. Moreover, geographical differences in the Candida species distribution of
the normal colonizing mycobiota are poorly investigated. Therefore, it remains unknown
whether the difference in the C. parapsilosis proportion in Iranian and Danish pediatric
candidemia is due to differences in colonization of healthy people or due to differences in
infection control practices.

This study is associated with limitations. As the study was based on a single hospital,
the data may not be fully representative of C. parapsilosis blood stream infections in the
Iranian pediatric population. Moreover, the number of isolates in both groups was limited.
The Danish isolates were from the entire country and thus included several hospitals and
patients without any likely risk of transmission. Nevertheless, we found that two major
clusters were shared between Denmark and Iran. It is likely that if whole genome sequence-
based analysis had been adopted, some of these apparent clusters might consist of unique
isolates although this would not have altered the main conclusions of this study.

In conclusion, our study rejected the hypothesis of an outbreak at the Teheran pediatric
ICU department caused by two clones and underlined that AFLP fingerprinting alone
can potentially lead to inaccurate conclusions of clonal outbreaks and should always be
supported by other more discriminatory methods.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof8020183/s1, Table S1, Clinical data of included patients. Table S2, Microsatellite data.
Table S3, Antifungal susceptibility data and Fks1 and Erg11 profiles. Figure S1, AFLP fingerprint
data. Figure S2, Genotype accumulation curve. Figure S3. Minimum spanning tree. Figure S4, Test
for linkage disequilibrium.
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