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Abstract

Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive label-free 

analysis of chemical and biological samples. While much recent work has established 

sophisticated automation routines using machine learning and related artificial intelligence 

methods, these efforts have largely focused on downstream processing (e.g., classification tasks) of 

previously collected data. While fully automated analysis pipelines are desirable, current progress 

is limited by cumbersome and manually intensive sample preparation and data collection steps. 

Specifically, a typical lab-scale SERS experiment requires the user to evaluate the quality and 

reliability of the measurement (i.e., the spectra) as the data are being collected. This need for 

expert user-intuition is a major bottleneck that limits applicability of SERS-based diagnostics 

for point-of-care clinical applications, where trained spectroscopists are likely unavailable. While 

application-agnostic numerical approaches (e.g., signal-to-noise thresholding) are useful, there is 

an urgent need to develop algorithms that leverage expert user intuition and domain knowledge to 

simplify and accelerate data collection steps. To address this challenge, in this work, we introduce 

a machine learning-assisted method at the acquisition stage. We tested six common algorithms to 

measure best performance in the context of spectral quality judgment. For adoption into future 

automation platforms, we developed an open-source python package tailored for rapid expert user 

annotation to train machine learning algorithms. We expect that this new approach to use machine 

learning to assist in data acquisition can serve as a useful building block for point-of-care SERS 

diagnostic platforms.
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Introduction

Surface-enhanced Raman scattering (SERS) is a powerful label-free detection and analysis 

technique that exploits the near-field enhancement of inelastically scattered Raman signal 

via nanostructured plasmonic surfaces.1 SERS is highly sensitive, capable of even single 

molecule detection, with broad applicability in detection and monitoring of disease, 

particularly for cancer. While many proof-of-concept SERS studies emerge annually, and 

technologies to enable point-of-use and even wearable devices are now a reality, widespread 

adoption of the technique to replace or supplement existing sensing platforms has not come 

to fruition. A major bottleneck of this goal is that application of SERS currently requires 

expert users to collect and interpret data.

In a typical SERS data acquisition process, whether it is a clinical diagnostic platform 

or a characterization of an unknown chemical entity, hundreds to thousands of spectra 

are typically collected, preprocessed, and subjected to downstream analyses, e.g., principal 

component analysis (PCA), hierarchical clustering, or other types of classification routines. 

Much literature has been devoted to the pre-processing considerations,2–4 including de-

noising, smoothing, baseline correction algorithms, background subtraction methods, and 

cosmic ray removal.

Machine learning (ML) and artificial intelligence (AI) methods (e.g., convolutional neural 

networks, or CNNs, deep neural networks, random forest classifiers, etc.) have been widely 

applied to various classification tasks following preprocessing. For instance, such methods 

have enabled classification of small molecules5 and their mixtures,6 various minerals,7 

bacteria,8,9 and viruses.10 Discrimination of esophageal cancer,11 non-small-cell lung 

cancer,12 and nasopharyngeal and liver cancer,13 has also been demonstrated. CNNs have 

been applied to Raman/SERS spectra of circulating biomarkers as well, such as extracellular 

vesicles (EVs) in prostate,14 lung,15 and pancreatic cancer,16 as well as general cancer 

biomarker identification.17 Diabetes mellitus detection,18 applications in cytopathology,19 

AI-based discrimination of tumor suppressor genes,20 nitroxoline quantification,21 and 

caffeine and associated metabolites detection22 have also been proposed. Overall, many ML 

algorithms have emerged to complement or replace traditional methods (e.g., multivariate 

classification) for data analysis in vibrational spectroscopy.

While it is apparent that ML greatly improves prediction accuracy and automated spectral 

processing improves the efficiency of SERS platforms in general, we posit that progress 

in developing SERS-based diagnostics is not limited by the lack of state-of-the-art ML 

algorithms, but instead by the absence of automated data collection and sampling protocols. 

For example, following spectral preprocessing steps, the user has to decide which spectra 

are adequate for further downstream analyses (e.g., biological sample classification for 

diagnostic purposes). A question remains at this stage, whether the analyte of interest and 

the SERS substrate have been sampled exhaustively enough to produce meaningful and 

statistically representative data. This step arguably creates the largest barriers to automation 

of SERS platforms as it (1) requires significant user expertise and domain knowledge, (2) 

assumes minimal user bias, and (3) relies on several related, but not identical measurements. 

Recognizing the ability of ML algorithms to translate user intuition to diverse classification 
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problems,23,24 it is clear that ML methods will provide high value to aid in such expert-

driven sampling decisions, even during measurement. To the best of our knowledge, such 

approaches for SERS data collections have not yet been reported in the field.

Surface-enhanced Raman spectroscopy data are highly dynamic in nature,1,25–27 manifesting 

in the heterogeneous fluctuation of spectra, even for a single analyte measured on a high-

quality, geometrically ordered substrate.28,29 For typical measurements, multiple spots need 

to be sampled many times to account for heterogeneity, arising from pre-measurement 

parameters (sample exposure time, data collection frequency, laser power, etc.), spatial 

differences in analyte concentration and orientation, ionic composition of the solution, 

osmotic and elastic potentials and material-related heterogeneities of the SERS substrate 

itself, impurities present on the surface,30–32 etc. These issues, unfortunately, have led to 

doubt in the ability to perform truly quantitative SERS.1,33–38

In light of the above discussion, the main objective of this work is to develop a robust and 

automated ML-SERS approach to ‘‘sufficiently’’ sample the substrate, i.e., to automatically 

collect a statistically representative quantity of high-quality spectra for a given substrate 

and analyte(s). Such an approach offers minimal operator intervention for SERS spectra 

acquisition, increasing the efficiency of measurement and reproducibility of the downstream 

analyses.

The hierarchical data sampling scheme currently used in SERS experiments (Fig. S1, 

Supplemental Material) is designed to collect representative spectra with high signal-to-

noise ratios. For a given sample, spectra are collected at separate spots (e.g., x, y 
coordinates) to capture the spectral diversity of the sample. To increase the signal-to-noise 

ratio and reduce variance, multiple spectra at each spot are typically collected and averaged. 

By excluding negative spectra from the averaging, the signal-to-noise ratio can be increased. 

Manual exclusion of negative spectra can be accomplished by an expert but is cumbersome 

due to the thousands of spectra generated in a typical SERS experiment. Automatic ‘‘bad’’ 

(i.e., negative) spectra identification is thus a significant objective to improving SERS 

experimental data. As a valuable step towards this goal, in this study, we develop a suite 

of ML algorithms to classify spectra as either ‘‘good’’ or ‘‘bad’’ (i.e., negative) and 

critically assess their performance. The highest performing XGBoost model was identified 

and utilized to characterize both in-sample and out-of-sample datasets. This model was then 

utilized to characterize an out-of-sample dataset and offer the potential for automated data 

collection, removing the need to monitor the collection procedure completely.

Methods

Sample Preparation

Two commercial plasmonic substrates were chosen for this study, from Moxtek (Moxtek 

Inc., USA) and Plasmore (Plasmore S.R.L, Italy). A well-characterized SERS standard 

reporter, Rhodamine 6G (R6G), was selected as a model compound for surface scanning. 

Two different concentrations were prepared in ultrapure water to demonstrate a high (3 

mM) and low (10 nM) R6G concentration. The plasmonic substrates were characterized 

by scanning electron microscope (SEM), using a ThermoFisher Quattro S (ThermoFisher 
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Scientific, USA). For SEM measurement, substrates were mounted on metal studs using 

two-sided black carbon tape, and the following imaging parameters were applied: working 

distance 11.4−12.0 mm, spot size 2.5, accelerating voltage 10.0 kV, and chamber pressure 

100 Pa.

SERS Spectra Acquisition

The SERS spectra were acquired using a custom-built inverted Raman scanning confocal 

microscope with an excitation wavelength of 785 nm and a 60×, 1.2 numerical aperture 

(NA) water immersion objective on an inverted IX73 Olympus microscope. Raman spectra 

were captured via an Andor Kymera3281-C spectrophotometer and Newton DU920P-BR-

DD charge-coupled device (CCD) camera. Initial in situ data processing and cosmic ray 

removal were carried out using Solis v.4.31.30005.0 software. All SERS measurements were 

acquired using exposure time 1 s per scan with a laser power of ~10−20 mW. Moxtek 

or Plasmore substrates were scanned on a 20 × 20 pixels area thus yielding total 400 

spectra per one scanned area. The step size was adjusted to 400 nm, resulting in the total 

scanned area of 8 µm × 8 µm. To simulate a real scanning procedure performed by a 

non-trained operator, the scanned areas were selected randomly without any pre-search for 

‘‘good’’ signals. Unless elsewhere otherwise described SERS spectra preprocessing was 

performed using custom scripts written in Matlab v.2020a (The Mathworks, Inc.). Spectral 

preprocessing included penalized least-squares (PLS) background correction, smoothing, 

and normalization. Where stated throughout the study, these preprocessed spectral sets were 

further subjected to principal component analysis (PCA) based on the corresponding Matlab 

built-in functions.

Results

Sample Collection

High and low concentrations of a common SERS-active reporter molecule, R6G, were dried 

out on to two high-quality, lithographically formed commercial SERS substrates (Moxtek 

and Plasmore), as schematized in Fig. 1. SEM micrographs displaying the plasmonic 

nanostructures on either surface are shown in Fig. 1b. In total, five samples were prepared. 

Two different concentrations of high 3 mM and low 10 nM R6G concentrations were 

prepared on either Moxtek or Plasmore substrates. Substrates were either scanned using 

10 mW laser power for high concentration or 20 mW laser power for low concentration. 

A fifth sample was created to investigate the effect of laser power on the recorded SERS 

signals, therefore a ‘‘low’’ concentration Plasmore was also scanned using lower 10mW 

power. Prepared substrates were subjected to SERS measurements using a custom confocal 

scanning Raman microscope to yield several random 20 × 20-pixel areas (total scanned area 

of 8 µm × 8 µm). Figure 1c shows a representative spectra average and standard for high 

concentration of R6G deposited on a Moxtek substrate.

A conventional approach to classify spectral data is to carry out PCA following manual 

selection of quality spectra (and/or through iterative use of PCA to screen out low quality 

or outlier data). An example of this process is illustrated in Fig. S2, Supplemental Material. 

Use of thresholds or intuitive interpretation using PC score plot and principal component 
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loading spectra are relatively systematic methods to guide the spectra selection procedure. 

However, for more complex datasets featuring mixtures of chemicals, where the PCs do not 

cleanly correspond to single entities, it is tedious and time-consuming to apply such manual 

selection routines for hundreds or thousands of spectra, and further adds a notable source 

of inter-operator bias. Therefore, we endeavored to explore application of ML algorithms to 

recognize quality spectra following expert user training.

Data Organization and Parsing for ML Input

To utilize the spectra data for ML, we established a python-based data pipeline that converts 

plaintext Raman spectrum files as input, preprocesses the spectra, and converts them into a 

binary format that can be utilized for visualization, data labeling, and model training. The 

three stages of the data pipeline are shown in Fig. 2. All code utilized for this data pipeline is 

available under the open-source MIT license on GitHub (see Data Accessibility Statement).

The first stage converts plaintext Raman spectrum files into a binary NetCDF file. The 

NetCDF format (short for network common data form) is a machine independent data 

storage scheme designed for efficiently saving multi-dimensional scientific data, and well 

suited for storing spectral datasets.39 An essential part of this stage is the baseline correction 

and smoothing, which was performed with the airPLS baseline correction algorithm and 

Whittaker smoothing function, respectively, using code ported to Python 3.40,41 This 

modified code is available on GitHub in compliance with the LGPL license.

The second stage of the pipeline utilizes expert data labeling to train the ML models in the 

third stage. To implement a supervised learning algorithm for ‘‘good’’ and ‘‘bad’’ spectra 

classification, labels need to be associated with each spectrum. Given the need to quickly 

and easily label thousands of spectra for training (2000 different individual spectra needed 

to be labeled for this study), a python-based labeling program was created. This program 

takes a series of netCDF files as input, displays each spectrum to the user and allows for 

rapid labeling, and then saves the dataset with the applied labels. A screenshot of the Labeler 

program interface is shown in Fig. S3 (Supplemental Material). The premise is to establish 

three different bins for the classification purposes: (a) ‘‘good’’ and chemically representative 

R6G spectrum (also termed as ‘‘positive’’ in this context), (b) ‘‘maybe’’ adequate R6G 

spectrum where a clear decision could not be made by an expert user, and (c) ‘‘bad’’ 

(also termed as ‘‘negative’’ in this context), unrepresentative R6G spectrum (e.g., very low 

signal-to-noise ratios, or S/N). Labeling was based on expert user intuition and experience, 

focusing on feature-rich spectra with clear sharp peaks and minimal noise. For this study, the 

Labeler program was used to tag a total of 1995 spectra (940 good, 936 bad, rest 119).

Model Selection and Performance Analysis

Following the labeling task, the acquired spectra were evaluated using an assortment of 

popular ML-assisted classification routines. The labeled datasets were shuffled and split into 

train, validation, and test sets (72.25%, 12.75%, and 15%, respectively). The percent positive 

and negative in each subset was calculated and found to be within ± 5% of 50% for both 

classes. Building on the hypothesis that existing ML classifiers are well-suited to distinguish 

between good and bad spectra, we evaluated six distinct methods: logistic regression 
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stochastic gradient descent (LR-SGD), support vector machines stochastic gradient descent 

(SVM-SGD), decision trees (DT), linear discriminate analysis (LDA), random forest (RF), 

and XGBoost (XGB). The first five models are implemented within the Scikit-learn 

package,42 whereas a custom package for XGBoost is used.43 For each model, performance 

is assessed by calculating resulting receiver operator characteristics (ROC) curve and 

associated area of the curve (AUC). The ROC curve quantifies the diagnostic ability of 

a classifier for different discrimination thresholds, while the AUC is independent of the 

classification cutoff, and thus can give a better overall picture of a model’s performance.44

After hyperparameter tuning using the AUC score (walkthrough can be found in our Jupyter 

notebooks on GitHub), all six models were assessed by training on the training dataset 

and their performance validated using the validation set. The ROC plots and associated 

classification metrics for these six models are shown in Fig. 3. A full description of 

the calculation for these classification metrics can be found in section 1.4, Supplemental 

Material. Associated calibration plots are shown in Fig. S4 (Supplemental Material).

The LDA model was the worst performing in all categories, likely due to the large number 

of features and lack of regularization. The next worst performing model (by AUC) was the 

DT model, which consisted of a series of Boolean decisions arranged into a tree structure. 

This was followed by an LR-SGD and SVM-SGD. Unlike the default logistic regression and 

SVM solvers, the SGD classifier was not affected by the high correlation between adjacent 

features (inherent to spectral data, adjacent wavenumber shifts are correlated) and was able 

to provide stable solutions. Despite their simplicity, the SGD-based models performed well, 

with the SVM-SGD providing the highest precision of all tested models. The final two 

tree-based models tested were RF and XGB. The RF model outperformed XGB by 0.0006 

AUC units, yet the XGB model was better correlated and scored higher in the accuracy, 

recall, Matthews correlation coefficient (MCC), and F1 categories (Fig. S4, Supplemental 

Material). The confusion matrix for the XGB model is shown as an inset in Fig. 3a. These 

results are consistent with other studies45 which identify XGBoost as a top performing 

algorithm for binary classification tasks. Therefore, we focus on the XGBoost algorithm in 

the remainder of this work.

Testing Model Performance

Recognizing the favorable performance of XGB on the validation set, we proceed to 

investigating the efficacy for insample and out-of-sample tests sets. The in-sample test sets, 

which involve intermixing the spectra from all samples into the test, train, and validation 

sets, give a better overall picture of the model performance by capturing the spot-to-spot 

heterogeneity of the spectra. The true in-sample performance of XGB is estimated by 

training it on the combined train and validation set and assessing its ability to predict the 

labels of the 282 spectra in the test set. The metrics derived for the performance of the 

XGB model are shown in Table 1. Representative classifications for the XGB model on 

specific spectra are shown in Fig. S5 (Supplemental Material). Overall, we observe good 

performance of the model with 95% accuracy.
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Variable importance

In this experiment, no feature engineering or variable selection was attempted, such that the 

entire 1024 features of the spectra (i.e., 1024 data points, arising from the CCD dimensions 

collecting the photons following dispersion) were used to train the XGB algorithm. We note 

that this feature makes the ML approaches for analytical spectroscopy methods like SERS 

notably powerful as there is no need to perform a priori dimensionality reduction (e.g., 

PCA) but rather the full feature space can be used in the training phase. To determine what 

features were most important in predicting the label of the spectra the importance score for 

different regions were aggregated together and plotted together. These bar charts give the 

overall importance of a certain region to the prediction (Fig. 4). Unsurprisingly, the region 

1510–1350 cm−1 has the highest importance, as the peaks present in positive spectra tend 

to cluster around that region. Interestingly, the region 200–400 cm−1 also has some high 

importance. It is likely that the intensities of these variables give an indication of the overall 

noise of the spectra, and act as a proxy for estimating the signal-to-noise ratio.

Out-of-Sample Testing

To test the out-of-sample performance of XGB, the model was trained on four out of the 

five substrates and then used to predict the labels of the left-out test substrate (Table 2). 

The hyperparameters were previously tuned using data from the test substrates, but the data 

were otherwise unseen by the model. This process was repeated for all five samples. The 

predictions were assessed with standard metrics (Table 2).

To further evaluate out-of-sample performance, we overlay the labeled data onto their spatial 

coordinates in Fig. 5a, given that these datasets were collected by scanning over a 20 by 20-

pixel grid (8 µm × 8 µm) in even increments (400 nm pixel width, approximately diffraction 

limited). Green represents a ‘‘good’’ spectrum label, while red represents a ‘‘bad’’ spectrum 

label and purple represents an ambiguous ‘‘maybe’’ spectrum where a label could not be 

accurately assigned by the expert user. For each of these labeled samples, the model was 

used to predict the corresponding labels, with colors again plotted in Fig. 5b. Ambiguous 

spectra were excluded from training the model and were not predicted by the model but are 

still shown in purple. Incorrect predictions of false negatives and false positives are coded by 

warm colors, light red, and pink, respectively. Similarly, the true negative was represented by 

a cool color, i.e., light blue and the true positive by a dark blue. More generally, a perfect 

prediction would correspond to all true positives and/or true negatives, which corresponds to 

blue shades.

The performance of the XGB model on the in-sample and out-of-sample test set 

demonstrates that the categorization of spectra can be automated. With the in-sample test 

set, the XGBoost model achieves an AUC score of 0.99 similar to its performance on the 

in-sample validation set, indicating minimal overfitting. The 95% accuracy and similarly 

high precision and recall score prove that the majority of the predictions are correct. The 

out-of-sample performance is lower and more variable, yet still high. The average out-of-

sample AUC score is 0.85 ± 0.12 and an average accuracy is 0.87 ± 0.12 demonstrating that 

the model is still highly successful at classifying spectra in unseen substrates in different 

conditions. After learning the labeled spectra from four R6G samples collected at various 
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concentrations, substrates, and power, the model is able to correctly predict the label for 

spectra 87% of the time. This feat unambiguously shows the potential of ML-assisted 

sampling to automate spectra categorization.

Discussion

Here we introduced ML-assisted SERS spectra classification methodology to streamline 

acquisition and efficiently classify recorded spectra. The exclusion of negative signals from 

the SERS analysis already takes place during normal experimentation. When scanning a 

substrate, the majority of signals are negative (e.g., noisy, not representative of the typical 

sampled areas, out of focus, capture cosmic rays). Typically, a trained experimentalist makes 

the determination of when a ‘‘good’’ signal is collected. Although subjective, this strategy 

utilizes our impressive pattern matching ability, which is challenging to replicate with 

structured algorithms. This technique excludes the majority of negative spectra by avoiding 

their initial collection, but it is not perfect and negative spectra occasionally creep into the 

recorded dataset. Although experimentalists can easily distinguish between good and bad 

spectra, the large datasets collected using typical SERS experiments make manual excluding 

the negative spectra post-collection onerous. In addition to presenting a barrier to large data 

set collection, these expert user-driven decisions also limit the application of SERS in a 

clinical setting. For SERS technology to transfer from the research laboratory to the clinic, 

these subjective labor intensive steps must be eliminated.

The scholarly literature encompassing automatization endeavors of Raman and SERS 

measurements predominantly demonstrates approaches to automate either (i) the collection 

or (ii) the data preprocessing phase, e.g., baseline correction, cosmic ray-induced spike 

removal, noise reduction, scaling and normalization, background subtraction, including 

various thresholding techniques to harness signal-to-noise ratio for spectra selection.2–4 The 

main limitations of the current preprocessing techniques are that they either rely on tuning 

the processing parameters (e.g., fitting parameters) or require calculating and thresholding 

the S/N, which is not possible if the underlying analyte signal is not known or highly 

fluctuating. Work by Dallaire et al. discusses the importance of spectral quality for further 

downstream analyses.46 In particular, they also note the caveat in current literature reports; 

the spectral quality assessment is largely made offline based on qualitative visual inspection 

instead of using unbiased and systematic quantitative criteria. The authors elaborately 

demonstrate the effectiveness of excluding ‘‘bad’’ spectra in cancer detection application.46 

Therefore, there exists a clear niche to design robust workflows to select spectra for the 

downstream analyses. In essence, our strategy is independent of the spectral preprocessing 

approaches and S/N thresholding, rendering it a promising means to be applied in a wide 

variety of different platforms.

The underlying reasons why a SERS spectrum may be classified as ‘‘good’’ or ‘‘bad’’ 

are likely arising from either (1) variations in local analyte concentration or (2) the SERS 

hotspot phenomena, i.e., localized regions of extreme electromagnetic fields that are highly 

dependent on underlying substrate geometry and analyte orientation.47–49 Even at the single 

junction scale, hotspots are highly dynamic in spatial dimension and in time,28 and thus 

majorly contribute to the dynamic nature of the observed SERS signals. A pertinent yet 
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rarely addressed phenomenon is the spot-to-spot SERS reproducibility. Variation of EF 

across hotspots is conventionally determined by the substrate uniformity, i.e., the controlled 

sizes and spacings of the plasmonic features, and also by the total number of hotspots in the 

detection area. It is possible that this ML approach can help in elucidating the characteristics 

of SERS hotspots as well as the spectra variability. For example, ML methods can be used 

for efficient SERS substrate development, since the role of various physical and chemical 

parameters can be systematically evaluated at the substrate engineering phase. Essentially, 

our approach can be adapted to characterize the signal-to-noise across a given sample and 

over time. Until now this development and optimization has traditionally been carried out 

by finite element modeling (FEM), but the complementary ML approaches can greatly 

contribute to these processes by allowing for rapid and concise scrutiny of many spectra.

ML algorithms are able to codify human intuition by learning from labeled training data 

and are well-suited to identify noisy, feature-poor spectra. The use of a ML algorithm 

has several advantages over a traditional structured algorithm. A trained ML model 

requires no parameter tuning once trained and can learn from the extensive experience 

of trained experimentalists. With the availability of open-source ML packages,42 training 

and integration are straightforward. A plethora of different classes of ML algorithms exist 

and new ones are frequently being invented. Of the existing classes, they can roughly be 

divided into two domains, classical ML algorithms and deep learning algorithms. Classical 

ML algorithms include tree-based algorithms such as random forest and XGBoost, as well 

as more established classifiers like support vector machines. Deep learning algorithms 

encompass the tremendous diversity of multilayered neural network models, such as CNNs. 

Both classical and deep learning models can achieve similarly high performance, but classic 

ML algorithms can perform well on smaller datasets, whereas deep learning architectures 

typically require tens of thousands of data points to converge. In this current work, the 

complete dataset consisted of only 2000 different spectra, thus the tested models were 

confined to classical models, yet the methods presented here are easily extendable to deep 

learning models when working with larger datasets.

Amongst all the models tested here, the XGBoost model performed best across both the in-

sample and Wout-of-sample datasets. Its performance in this dataset matches our expectation 

that it is performing akin to a user expert making an intuitive decision. To detail this, 

consider the major inter-sample variation in the fraction of expert assigned positive labels, 

likely due to the inhomogeneous covering of dried R6G on the SERS substrates. In sample 

one, 90% of the spectra are negatively labeled and the classifier predicts a negative label 

for all of them. In sample 5, the reverse situation occurs; 98% of the spectra are positively 

labeled and the XGB model assigns a positive label to all the spectra. In these extreme cases, 

XGB is essentially learning from the out-of-sample labels and not taking into consideration 

the unique characteristics of the substrate. In this case, an expert experimentalist would 

adjust their own threshold of classification based on the observed signal-to-noise in a 

specified sample. For example, if many weak signals were observed, the threshold for 

collecting a spectrum would be lower than in the case where the majority of spectra had an 

apparent high signal-to-noise ratio. In the intermediate case of sample 4 with a 60% positive 

rate, the algorithm performs well (AUC = 0.80), although lower than in the test case (AUC = 
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0.99). Nevertheless, the algorithm is still successful in categorizing samples with a range of 

positivity rates.

For the purpose of this study to develop versatile and efficient ML-assisted tools for SERS 

spectra classification, we chose a known chemical standard molecule R6G. This model 

compound provided a combination of adequate spectral complexity and variability (e.g., 

uneven distribution of solution on the substrates resulting in varying degrees of noise) to 

simulate a typical SERS experiment and subsequent spectra processing. Regarding broader 

generalizability to more complex analytes such as biological matrices, the best performing 

ML models (RF and XGBoost) in this work are nonparametric models that do not make any 

assumptions of the functional form of the classifier. This flexibility ensures that the shape 

of the dividing lines between the classes, i.e., hyperplanes, deployed by these models can 

take arbitrary forms, contrasted to logistic regression models where hyperplanes would be 

linear. Thus, even complex spectra can be efficiently separated from each other since the 

success of classification does not depend on the complexity or level of noise in the spectral 

data but instead on the experimentalist’s capability to consistently label spectra as ‘‘good’’ 

or ‘‘bad’’, based on their own interpretation of data quality, e.g., S/N or presence of trace 

element peaks.

Additionally, our analyses demonstrated that the ML algorithm is robust at classifying 

out-of-sample spectra, even across different substrates. However, this experiment does not 

provide proof that the model is generalizable to all situations, and users wishing to adopt 

this methodology would need to train new models on a given substrate/analyte pair of 

interest using the Labeler app. In general, the main limitation of the current approach 

will be the need to re-train the ML models for varying instrument- and measurement-

related parameters. For example, it is likely that the model is dependent on a given 

laser power, magnification, and acquisition time. However, if experimental parameters are 

standardized, our out-of-sample performance experiments suggest that inter-substrate and 

-sample performance is stable. While here we tested highly ordered SERS substrates, we 

expect that our ML classification approach would perform equally well on SERS platforms 

comprising nanoparticles in colloidal solutions, even though they typically exhibit more 

geometrical and topological variation.1,50 Such nanoparticle-based SERS experiments are 

typically carried out either directly in colloidal solutions or after nanoparticles precipitate or 

self-assemble on supports. This ultimately leads to a ‘‘metastable’’ environment, especially 

for colloidal solutions that are highly dynamic. Yet the optical near-field signal amplification 

is dependent on the local plasmonic field at any given point in the sample, thus we expect 

individual spectra to still be produced that can be classified as ‘‘bad’’ or ‘‘good’’. As long 

as the experimentalist can carry out concise pre-classification and model training with the 

Labeler app, the classification performance is conserved despite the geometry or constituent 

properties of the underlying substrate.

Future work using this approach will involve automatically tuning the classification 

threshold based on the number of positively classified spectra in a sample. We also will 

explore the feedback of this trained algorithm to control stage movement and automate 

measurement of full datasets.
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Conclusion

This work describes application of an ML algorithm to address a central challenge for 

adapting SERS to automated platforms: the current dependency of expert user-driven 

endpoints for sampling. The elimination of bad spectra from a collected dataset can 

increase the signal-to-noise ratio by reducing the variance. Especially in SERS applications, 

it is desired to collect and analyze as homogeneous sets of spectra as possible, which 

is accomplished by the ML-assisted spectra selection. By applying this algorithm to the 

acquisition stage, the labor required to collect many spectra can be reduced making 

collecting larger and more comprehensive datasets feasible. Furthermore, by automating 

the acquisition stage of the SERS experiment, another barrier to the clinical application of 

this technology can be broken down. Given the exponential growth of acquired data (e.g., 

spectra, images, or videos), there is an immense demand for integrating reliable, automated, 

and fast analysis methods to the experimental procedures for SERS instrumentation. We 

envision that the workflow described here will allow for more robust automated SERS 

analyses. We foresee that the introduced platform can be further expanded to quantitative 

analyses of chemicals as well as complex biological and clinical samples such as patient-

derived EVs or crude serum for modern diagnostic purposes.
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Figure 1. 
Experimental workflow of the ML-SERS platform. (a) Rhodamine 6G was used as a SERS 

reported molecule on plasmonic Moxtek (1) or Plasmore (2) substrates. Varying solutions 

of R6G were pipetted (~20 µL total) onto the surface and 20 × 20 pixels surface areas 

were scanned. (b) SEM micrographs illustrate the structure of the Moxtek and Plasmore 

substrates. (c) Representative SERS spectrum of R6G; the highlighted peaks at 620, 780, 

1198, 1367, and 1513 cm−1 are characteristic spectral features of R6G.

Rojalin et al. Page 15

Appl Spectrosc. Author manuscript; available in PMC 2022 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Open-source data pipeline developed for this study. The first stage of the pipeline converts 

and processes raw spectra files into a binary NetCDF file format. The second data labeling 

stage employs a custom Python “Labeler” app, allowing an expert Raman user to quickly 

assign labels (e.g., “good”, “bad”, or “maybe”) to the spectra serialized in the netCDF files. 

After labels have been assigned, the last stage of the pipeline is model training, where the 

binary files are loaded into NumPy arrays to train and test various ML models.
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Figure 3. 
(a) ROC curves for six tested models, logistic regression (LR-SGD), support vector 

machines (SVG-SGD), decision trees (DT), linear discriminate analysis (LDA), random 

forest (RF), and XGBoost (XGB). Random guessing is represented by the y=x line, whereas 

higher performing models lie closer to the left corners of the plot. Inset: Confusion matrix 

for XGBoost algorithm trained on train and validation set and tested on the test set. The 

trace of the matrix indicates correct predictions, while the offset values indicate incorrect 

predictions. (b) Comparison of hyperparameter-tuned model performance on validation data 

set.
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Figure 4. 
Relative importance of different wavenumber regions for the XGBoost model trained on the 

in-sample train and validation data. Each bin contains the sum of the importance scores of 

the wavenumbers in the range (start wavenumber, end wavenumber). An R6G spectrum is 

overlaid for reference, where it is apparent that relative importance correlates with spectral 

features of R6G.
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Figure 5. 
(a) Visualization of the sampled region from the five substrates used in experiment along 

with the corresponding labels. Red squares represent a negative spectrum, green squares 

represent a positive spectrum, and purple squares represent spectra with ambiguous labels, 

which were excluded from fitting and prediction. (b) Comparison of actual and predicted 

labels for five test samples. The comparison is represented by the color. False positive (red), 

false negative (pink), true positive (light blue), true negative (dark blue), and ambiguous, 

maybe labeled, spectra (purple) pixels are shown.
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Table 1.

Model performance parameters for the XGBoost algorithm trained on the training set and validation set and 

tested on the test set.

Accuracy Precision Recall F1 MCC AUC

0.95 0.93 0.97 0.95 0.87 0.99
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