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Abstract: This review provides a summary of recent progress in the development of different nano-
platforms for the efficient synergistic effect between photodynamic therapy and chemotherapy. In
particular, this review focuses on various methods in which photosensitizers and chemotherapeutic
agents are co-delivered to the targeted tumor site. In many cases, the photosensitizers act as drug
carriers, but this review, also covers different types of appropriate nanocarriers that aid in the delivery
of photosensitizers to the tumor site. These nanocarriers include transition metal, silica and graphene-
based materials, liposomes, dendrimers, polymers, metal–organic frameworks, nano emulsions, and
biologically derived nanocarriers. Many studies have demonstrated various benefits from using
these nanocarriers including enhanced water solubility, stability, longer circulation times, and higher
accumulation of therapeutic agents/photosensitizers at tumor sites. This review also describes
novel approaches from different research groups that utilize various targeting strategies to increase
treatment efficacy through simultaneous photodynamic therapy and chemotherapy.

Keywords: nano-platforms; nano photosensitizers; synergistic effect; combination of photodynamic
therapy/chemotherapy; drug delivery systems; cancer
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1. Introduction

In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths were projected to occur
in the United States alone [1]. Common treatment strategies utilized to treat various cancers
include surgery, radiotherapy, and chemotherapy, which can be invasive and result in
serious short- and/or long-term side effects [2]. For instance, the mechanism-of-action in
many traditional chemotherapeutics interferes with cell division and is often associated
with severe systemic adverse effects such as myelosuppression, mucositis, alopecia, and
others. Other therapeutic options have their own drawbacks. Surgical resection of certain
tumors results in a high recurrence rate. Radiation therapy can be effective, but the cu-
mulative radiation dose puts a hard limit on radiotherapy [3–5]. Due to the complicated
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burdens that these treatments can have on patients, new protocols and technologies are
needed to improve treatment options and patient outcomes [6]. Photodynamic therapy
(PDT) is one of these new promising approaches [7]. PDT is a treatment that involves the
delivery of a photosensitizer (PS) through topical or other systemic options and is followed
by irradiating the targeted tissue with a specific wavelength of light that is tailored to the
given photosensitizer [8]. Among the various types of photosensitizers, those that can
absorb visible or infrared light are more favorable due to the lower toxicity of infrared in
comparison with ultraviolet light. PDT can also be used before, after, or in combination
with more traditional treatment strategies. One advantage of many PSs is that they do not
accumulate in the nuclei of the cells, preventing them from being carcinogenic by them-
selves [6]. Furthermore, it significantly reduces side effects traditionally observed when
compared to chemotherapy or radiotherapy [9]. However, its efficacy against metastatic
cancers vs. primary tumors is still questionable as it requires light irradiation, and thus the
location of any secondary tumors must be known to be effective [10].

Some studies have recently investigated the efficacy of combining chemotherapy and
PDT [11]. For example, different in vitro studies have shown that the combination of pho-
tosensitizer with chemotherapeutic agents such as meso-tetrahydroxyphenylchlorine and
cisplatin were more effective than either therapy alone [12–14]. Therefore, in this review,
recent advances in the combination of photodynamic therapy and chemotherapy are covered.

1.1. Principles of Photodynamic Therapy

In 1903, von Tappeiner and Jesionek proposed the first published report on the use of
PDT as a treatment for skin tumors by using tropical eosin and exposing it to light [15,16].
They observed that oxygen was a significant part of the events found by Raab and co-workers,
and introduced the term “photodynamic action”. Research on using PDT as a treatment for
different tumors continued into the 1950s and 1960s by some research groups [17]. In these
reports, PDT had a great advantage compared to conventional therapies as they demonstrated
that they could limit toxicity to the tumor site, therefore protecting healthy cells to reduce off
target effects. Since then, PDT has been applied to the treatment of non-malignant diseases
in the field of dermatology, ophthalmology, urology, immunology, etc. [18].

1.2. Mechanism of Photodynamic Therapy

In PDT, a photosensitizer should be excited by a specific wavelength of light that causes
two different types of reactions to occur: type I and type II photochemical reactions [19]. As
shown in Figure 1, a photosensitizer’s electrons can be excited from the ground state to the
excited singlet state via light, which can cause three different situations. First, the exited
electron can decay back to the ground state and emit fluorescence. Second, an intersystem
crossing can occur to form a triplet state that is more stable than the singlet state. This
triplet state can either decay back to the ground state via emitting phosphorescence or it
may interact with the environment to generate radicals.

Type I reactions occur where the triplet state forms radicals with biomolecules such
as lipid radicals that can further react with other biomolecules and then oxygen to form
reactive oxygen species (ROS) such as hydroxyl radicals and hydrogen peroxides. Ad-
ditionally, these excited electrons can react directly with molecular oxygen to produce
the superoxide anion radical, which can form other ROS species [20]. Type II reactions
occur if the energy of the excited photosensitizer is transferred to a triplet oxygen in the
ground state to generate a singlet oxygen. Even though both reactions (I and II) can be
damaging to cells, it has been proposed that reaction type II may be more important in vivo
for PDT. There are a large number of biomolecules such as proteins, lipids, and nucleic
acids that react with radicals generated by PDT. This phenomenon damages biomolecules
and subsequently damages tumor cells so that necrosis, apoptosis, or autophagy occurs.
Additionally, immune responses against tumor cells may be activated by PDT-induced
vascular injury [21–23]. Furthermore, chemotherapy can help PDT to be more efficient.
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This combination can provide long-term tumor control because of its synergistic effect on
improving the efficiency of cancer treatment.
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1.3. Photosensitizers

Although pharmaceutical companies have conducted a lot of research, finding an
appropriate and effective photosensitizer is still a significant challenge, and there are only
a few photosensitizers that are currently approved for the clinical treatment of cancer [24].
There are four different factors that can contribute to the efficiency of a photosensitizer:
1O2 yield (singlet oxygen), the distribution of PSs, depth penetration of the light, and
molecule stability. The generation of singlet oxygen is a very important factor for PDT
because of its extreme cytotoxicity in PDT [25]. Additionally, heavy atoms such as bromine
and iodine can be incorporated into photosensitizers whereby interactions between triplet
oxygen and native radicals can be inhibited, which increases singlet oxygen generation.
One major hurdle to overcome when finding a suitable PS for therapeutic treatment is the
lack of stability of many photosensitizers. This fact has led to a lot of research that aims to
modify the structure of photosensitizers to increase their stability or improve their efficacy.
Modification can also increase either the efficiency of converting light into singlet oxygen
by adding electron donor molecules that improve the efficiency of the photosensitizers’
light absorption and/or increase the targeting ability of photosensitizers by adding ligands
such as folate, peptide, and biotin [26].

2. Combination of Photodynamic Therapy and Chemotherapy

There are three different types of photosensitizers, which are presented in Table 1.
Photosensitizers can be utilized as carriers to deliver various types of therapeutics to
the targeted site. Therapeutics may be conjugated via chemical bonds or adsorbed to
the surface of the PS via van der Waals forces [27]. Some photosensitizers such as the
Ru(II) arene complex, [(η6-p-cymene)Ru(2,3-bis(2-pyridyl)-benzoquinoxaline)(pyridine)]2+,
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can act as a dual functional agent where these PS materials are both the photosensitizer
and the chemotherapeutic [28]. Additionally, drug delivery systems that have been re-
ferred to as third generation photosensitizers have been used to improve the efficiency of
photosensitizers such as enhancing the drug’s accumulation in the tumor site.

Table 1. Advantages and disadvantages of various nano-particles for cancer treatment.

Combination of PDT and
Chemotherapy Type of Carriers Advantages Disadvantages

Without external carriers
Photosensitizers as carriers 1. Faster synthesis process

2. Simple compound
3. Cost-effective

1. Possible toxicity
2. Less-selectivity
3. Fast eliminationPhotosensitizer-drug materials

With external carriers

Transition metal based
nano-platforms

1. Biocompatible
2. Targeted drug carrier
3. Selective
4. Enhancing drug’s accumulation in the tumor site
5. Tissue penetration
6. Long time plasma half-life (stability)

1. Complex compound
2. Longer synthesis process
3. More cost
4. Complex elimination routes

Silica

Graphene

Liposomes

Dendrimers

Polymers

Metal–organic frameworks

Biological nanocarriers

Nano emulsions

2.1. Combination of Photosensitizers and Chemo-Drugs without External Carriers
2.1.1. Photosensitizers as Carriers

Many photosensitizers have been reported as drug carriers (Table 2).

Table 2. Combination of photosensitizers and chemo-drugs without external carriers.

Reference Photosensitizer (Carrier) Drug

[27] citric acid/CuS@Fe3O4 Doxorubicin
[28] [(η6-p-cymene)Ru(2,3-bis(2-pyridyl)-benzoquinoxaline)(pyridine)]2+ Ru (II) segments
[29] Porphyrin Oxaliplatin-adamantane
[30] Zinc phthalocyanine Coumarin
[31] Cyclometallated Ir(III) complex Camptothecin
[32] Cu2−xSe Doxorubicin
[33] NaYF4:Yb/Tm-TiO2 Doxorubicin
[34] Silver nanoparticles Doxorubicin
[35] ZnO nanorods Daunorubicin
[36] MnO2-Pt@Au25 Platinum (IV) prodrugs
[37] Zinc phthalocyanine Ganetespib
[38] Polyelectrolytes-NaYF4:Yb/Tm Doxorubicin
[39] AgFeO2 Quercetin
[40] MnFe2O4 Curcumin
[40] Cr2Fe6O12 Curcumin
[41] Ti3C2 MXene Doxorubicin
[42] Ti3C2 MXene Metformin
[43] MoS2 Doxorubicin
[44] Boron-dipyrromethene Lenvatinib
[45] porphyrin-containing Janus macromolecular brush Doxorubicin
[46] mPEG-Hydrazone-Br2-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene Doxorubicin
[47] Ir(III) Paclitaxel
[48] Fe3O4@MnO2-Chlorin-e6 Traditional Chinese medicine

For example, in 2019, Cui and co-workers [49] demonstrated a semiconducting poly-
mer containing grafted polyethylene glycol. This polymer not only showed photodynamic
activity, but it was also a suitable carrier to conjugate other chemotherapeutic drugs such as
bromoisophosphoramide. This work was the first reported about hypoxia-activatable pho-
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totherapeutic polymeric prodrug systems. This is a semiconducting polymer nano-prodrug
(SPNpd) that can efficiently generate singlet oxygen (1O2) under near-infrared (NIR) photo-
irradiation and activate its chemotherapeutic action in a hypoxic tumor microenvironment.

Lim and coworkers also [29] reported a nanocarrier that formed via host–guest in-
teraction between oxaliplatin-adamantane prodrug and porphyrin as a photosensitizer to
achieve stimulus-responsive combination therapy [50]. Oxaliplatin and porphyrin were
separately modified with β-cyclodextrin and adamantane to synthesize the amphiphilic
host−guest system for self-assembly into therapeutic nanoparticles. This redox-responsive
system aids oxaliplatin-adamantane to be inactive until it accumulates in tumor cells. This
phenomena can decrease the side effects on healthy cells.

MXenes

MXenes are a relatively new class of two dimensional (2D) materials that consist
of transition metals (M) and carbides, nitrides, or carbonitrides (X). The chemical for-
mula of MXenes is Mn+1XnTX (n = 1, 2, or 3), where M is an early transition metal
(e.g., Ti, Mo, Cr, Zr, Sc, V, Ta, Nb or Hf), X is carbon and/or nitrogen, and TX stands
for the terminal functional groups (e.g.,= O, OH, and F) found on the surface of MXene
flakes [51–54]. The type and ratio of functional groups depends on the preparation method,
post-synthesis steps, and the storage conditions of MXenes. The terminal functional groups
with hydrophilic nature endow MXenes with highly hydrophilic properties. Several unique
properties such as their excellent conductivity, impressive mechanical properties, and good
thermal conductivity makes MXenes highly suited for various applications such as electro-
chemical energy storage, water purification, electrocatalysis, optoelectronics, biomedicine,
and sensors [55–58].

Certain properties of MXenes make them more suitable for biomedical applications
compared to other 2D nanomaterials. The hydrophilic nature of MXenes, due to the func-
tional groups on the surface, enhances their dispersibility in biological samples. Addition-
ally, the planar 2D structure of MXenes endows them with a very high surface-to-volume
ratio, providing abundant sites for attaching various molecules such as therapeutics, tar-
geting moieties, and other surface modification to improve biocompatibility. Dai and
coworkers [59] synthesized MnOx/Ti3C2 composites through a simple redox reaction of
KMnO4 (a strong oxidizing agent), which can react with OH groups on the surface of
Ti3C2 nanosheets and generates paramagnetic MnOX species simultaneously. Further
modification with soybean phospholipids (SP) enhanced both the stability of MnOx/Ti3C2
composite nanosheets, but more importantly, the photo-thermal-conversion performance
for killing tumor cells via PTT. Moreover, MnOx/Ti3C2 nanocomposites demonstrated
high biocompatibility, which broadens the potential biomedical applications that surface
modified MXenes could be used for. In addition, Liu and coworkers [60] (Figure 2) reported
Ti3C2-IONPs MXene composites synthesized by in situ growth of superparamagnetic
Fe3O4 nanocrystals on the surface of Ti3C2 MXenes. This composite exhibited a higher
photo-thermal conversion efficiency than bare Ti3C2. It also showed high biocompatibility
in vitro and in vivo without causing observable toxicity to cells and mice. MXenes also
have strong optical absorption in both first and second NIR (NIR-I and NIR-II) biological
windows [61,62], and they exhibit high photo-thermal conversion efficiency, providing
potential applications of MXenes for photoacoustic imaging (PAI) and cancer phototherapy
(both PDT and photo thermal therapy).
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Preparation of MXenes: The outstanding properties and great potential applications
of MXenes have led researchers to explore novel synthesis methods of new MXenes [63–65].
More than 100 different MXenes have been studied theoretically by computational models,
and more than 30 different types have been produced and studied experimentally [66,67].
These compounds can be synthesized similar to other 2D materials via top–down and
bottom–up approaches. However, the top–down approach is generally used to synthe-
size MXenes in order to enable large-scale production and minimize costs. MXenes are
experimentally synthesized by selectively etching the “A” element from the MAX phase
that has the chemical formula Mn+1A Xn, where M is a transition metal, A is an A-group
(group 13–16) element, and X is carbon and/or nitrogen [68]. MAX phases are composed
of A layers sandwiched between hexagonal transition metal carbides and nitrides. Al-
though the strength of bond between elements M and A is weaker than between elements
M and X, mechanical exfoliation cannot break the metallic bonds of M–A and requires
etching away the A layers with F containing etchants such as hydrofluoric acid (HF), a
mixture of hydrochloric acid/lithium fluoride (HCl/LiF), or ammonium hydrogen bifluo-
ride (NH4HF2) [54,69–71]. During etching, the A layers are replaced by functional groups
such as OH, O, or F. The number and the types of functional groups on the surface of
MXenes heavily depend on the type of MAX phase, the type of etchant, and the synthesis
method [51]. In order to separate the layers of m-MXenes to single layer MXenes, the inter-
calation step is necessary by introducing large organic solvents such as dimethyl sulfoxide
(DMSO), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide
(TMAOH), and metal cations such as Li+ to increase the interlayer spacing and weaken the
interactions between layers [51,72,73]. After the intercalation step, sonication (bath or tip)
or hand shaking can delaminate the MXene sheets from each other [54].
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Application of MXenes in PDT: MXenes have been utilized for various anticancer
therapy applications. They have been used in many different modes such as nano-platforms
in drug delivery, photo-thermal agents for photo-thermal therapy, and as photosensitizers
(ROS generation) for PDT [66,74]. Liu and co-workers [41] reported the reactive oxygen
species (ROS) generation capabilities of Ti3C2 MXene nanosheets under irradiation. They
developed a surface modification method to synthesize a small lateral size of Ti3C2 MXene
nanosheets with functional groups of Al(OH)4

− by supplying additive Al3+ during the
etching step. This new composition exhibited an excellent mass extinction coefficient
(28.6 Lg−1cm−1 at 808 nm) and outstanding photo-thermal conversion (∼ 58.3%) at 808 nm
laser irradiation due to the enhanced localized surface plasmon resonance (LSPR) effect.
These modifications also produced a negatively charged surface on the Ti3C2 nanosheets.
They used this feature to utilize the layer-by-layer adsorption method to load doxorubicin
on the surface of the Ti3C2 nanosheets and hyaluronic acid as the active tumor targeting
agent. Additionally, this modification enhanced the synergistic PDT/photo thermal ther-
apy/chemotherapy by killing cancer cells in both in vitro and in vivo experiments [41].
In another study, Bai and co-workers [42] synthesized a multifunctional Ti3C2 MXene
(Ti3C2@Met@CP) via layer-by-layer adsorption of metformin (Met) as a antitumor drug
and compound polysaccharide (CP) on the surface of the Ti3C2 nanosheet, which resulted
in a high loading capacity of Met and CP. After the preparation of (AlOH)4

− functionalized
ultrathin Ti3C2 nanosheets, Met was loaded on the surface of Ti3C2 as a chemotherapy
drug to increase the adjuvant treatment. Then, to improve biocompatibility and endow
and activate immune function, CP was loaded on the surface of the Ti3C2@Met composite
nanosheet. A mixture of lentinan, pachymaran, and tremella polysaccharide in an optimal
ratio was mixed and called CP, showing better anticancer and activating immune function
effects than a single polysaccharide. The CP shell also effectively prevents the release of
Met in the process of blood circulation. In vivo and in vitro experiments demonstrated that
Ti3C2 composite nanosheets have excellent stability, which enhanced the effective ablation
of tumors. In parallel, the photodynamic behavior of Ti3C2 composite nanosheets was
investigated using DPBF and 2′, 7′-dicholofluorscein diacetate (DCFH-DA) as a detector for
in vivo and in vitro, respectively, showing the potential of Ti3C2 composite nanosheets as a
new PS and to generate ROS upon 808 nm irradiation for PDT. Therefore, both in vitro and
in vivo experiments have shown that Ti3C2@Met@CP composite nanosheets not only have
an excellent synergistic therapeutic effect of PDT, photo-thermal therapy, and chemotherapy,
but also have the ability to activate the immune system. This feature caused the complete
eradication of the tumor and inhibited tumor recurrence and metastasis. The mechanism
of 1O2 formation in Ti3C2 (Ti3C2@Met@CP and Ti3C2-DOX) involves the transfer of the
energy of photo-excited electrons from Ti3C2 to 3O2. The exact mechanism is currently
unknown with most published papers focusing on the application of MXenes in photo
thermal therapy, of which there are currently only a few.

2.1.2. Photosensitizer-Drug Materials

Chen and co-workers [28] developed the Ru(II) arene complex, [(η6-p-cymene)Ru(2,3-
bis(2-pyridyl)-benzoquinoxaline)(pyridine)]2+, which is able to generate 1O2, and its ligand
can be dissociated under irradiation with visible light to demonstrate dual potential for
PDT and photoactivated chemotherapy (Table 2). The distorted coordination geometry of
2,3-bis(2-pyridyl)-benzoquinoxaline, which is due to its bulky nature, assists Ru to be more
exposable to fragment nucleic bases of DNA. In 2018, Yang and co-workers [36] introduced
a novel biodegradable photosensitizer formulated as MnO2-Pt@Au25 for dual PDT and
chemotherapy. In this nano-platform, manganese oxide can react with glutathione, whereby
it can improve the efficiency of PDT (Figure 3).
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2.2. Combination of Photosensitizers and Chemo-Drugs with External Carriers

Different strategies have been used to improve the efficiency of photosensitizers such
as the addition of receptor ligands and/or using nanocarriers to actively improve drug
delivery efficiency and enhance drug accumulation in the tumor site. These drug delivery
systems have been referred to as third generation photosensitizers and much research
has been conducted in this area recently. Therefore, it is expected that the development
of different types of photosensitizers will enhance their efficiency and will gain more
significant applications in clinical treatments (Table 3 and Figure 4) [18].

Table 3. Combination of photosensitizers and chemo-drugs with carriers.

Reference Photosensitizer Drug Carrier

[75] Photochlor Prodrug banoxantrone UiO-66-H/N3 (MOF)
[76] Merocyanine 540 Doxorubicin YbPO4:Er, Dy
[77] Mitoxantrone Mitoxantrone PEGylated Hollow gold nanoparticles

[78] Hematoporphyrin Docetaxel Gd-up conversion nanoparticles
core/mesoporous silica shell

[79] Chlorin core star shaped block copolymer Camptothecin-11 Micelles
[80] Rose Bengal Platinum IV NaGdF4:Yb/Nd@NaGdF4:Yb/Er@NaGdF4
[81] Rose Bengal AB3, a histone deacetylase inhibitor NaYF4:Yb/Tm/Er
[82] Merocyanine 540 Doxorubicin NaYF4:Yb/Er
[83] Chlorin-e6 Camptothecin Up-conversion nanoparticles
[84] Pyropheophorbide Doxorubicin Up-conversion nanoparticles
[85] Chlorin-e6 c,c,t-[Diamine-dichlorodisuccinato-platinum(IV)] [Mg(1−x)Alx(OH)2][An−

x/n]·zH2O
[86] Zinc(II) phthalocyanine Doxorubicin Mesoporous silica nanoparticle
[87] Chlorin-e6 Doxorubicin Polyethylene glycol
[88] Chlorin-e6 Doxorubicin Mesoporous silica nanoparticle
[89] Hematoporphyrin Doxorubicin Hollow Mesoporous Silica
[90] Aluminum chloride phthalocyanine Cisplatin Mesoporous silica nanoparticle
[91] PEGylated tetraphenylporphyrin zinc Doxorubicin Mesoporous silica nanoparticle
[92] Chlorin-e6 Doxorubicin Fe3O4@mSiO2(DOX)@ Human serum albumin
[93] Fullerene (C60) Doxorubicin Mesoporous hollow silica
[94] Chlorin-e6 Cisplatin Mesoporous silica nanoparticle

[95] 2-[1-Hexyloxyethyl]-2-devinyl
pyropheophorbide Doxorubicin Liposome

[96] Chlorin-e6 Doxorubicin Microbubble-lipid mixture
[97] Indocyanine green-octadecylamine Doxorubicin Light sensitive liposome
[98] IR780 Tirapazamine Liposome

[99] Porphyrin Doxorubicin Dendritic poly(ethylene glycol) (PEG-G3-OH)
copolymer

[100] 5,10,15,20-Tetraphenylchlorin Paclitaxel Red blood cells membrane-camouflaged
nanoparticles

[101] Chlorin-e6 Doxorubicin Hybrid protein oxygen carriers
[102] Indocyanine green Doxorubicin Red blood cells containing oxyhemoglobin
[6] Chloroaluminum phthalocyanine Doxorubicin Nano emulsions

[103] CaFe2O4 Curcumin Polyvinyl alcohol
[104] Hypocrellin A 7-ethyl-10-hydroxycamptothecin Graphene oxide
[105] MnO2 Cis-Platine Graphene oxide
[106] 4-Hydroxy coumarin Camptothecin Graphene oxide
[107] Methylene blue Doxorubicin Graphene oxide

[108] Zinc(II) phthalocyanine Doxorubicin Methoxypolyethylene glycol (mPEG) and
poly(β-benzyl-L-aspartate)

[109] Hematoporphyrin Doxorubicin
Co-polymer containing arylboronic ester

(BE)-modified with amphiphilic co-polymer
(mPEG-PBAM).

[110] NIR dye-IR820 Docetaxel Methoxy-poly ethylene glycol-poly caprolactone



Pharmaceutics 2022, 14, 322 10 of 40

Table 3. Cont.

Reference Photosensitizer Drug Carrier

[111] Pyrolipid Oxaliplatin
1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol,

1,2-distearoyl-sn-glycero-3-phosphoethanolamine
polyethylene glycol 2000

[112] 4,4-difluoro-4-bora-3a,4a-diaza-sindacene Doxorubicin mPEG-polyaspartic acid-benzaldehyde

[113] Fluorogen photosensitizer Paclitaxel Poly(ethylene
glycol)-b-poly(5-mthyl-5-propargyl-1,3-dioxan-2-one)

[114] Hematoporphyrin Doxorubicin PEGylated (cyclo-arginine-glycine-aspartic
acid-d-phenylalanine-cysteine) peptide

[115] NIR fluorophore Paclitaxel Poly(ethylene
glycol)-b-poly(5-mthyl-5-propargyl-1,3-dioxan-2-one)

[116] Hyaluronic Acid-chlorin-e6 Tirapazamine Self-assembling amphiphilic polyethylenimine-alkyl
nitroimidazole

[117] Zn Docetaxel Co-polymers poly(ethylene
oxide)-poly(ε-caprolactone)-poly(ethylene oxide)

[118] 5-aminolevulinic acid Doxorubicin Hydroxyethyl chitosan and aldehyde-functionalized
hyaluronic acid

[119] Mesotetra(p-hydroxyphenyl) porphine Cis-platinum Mesotetra(p-hydroxyphenyl)-Pt-PEG (covalent-organic
polymers)

[120] Chlorin-e6 Doxorubicin Hyaluronic acid-chlorin-e6
[121] C60 Doxorubicin C60–PEI–DOX

[122] Chlorin-e6 Doxorubicin (ε-caprolactone-co-lactide)-b-poly (ethylene glycol)-b-poly
(ε-caprolactone-colactide)

[123] Merocyanine 540 Doxorubicin UCNP-loaded (NaYF4:Yb, Er) folate-conjugated polymeric
(dextran)

[124] Pyropheophorbide-a gemcitabine Human serum albumin

[125] Zinc phthalocyanine Doxorubicin

[methoxy-poly(ethylene
glycol)-poly(2-(N,N-diethylamino)ethyl

methacrylate)-poly(ε-caprolactone)]4-zinc β-tetra-(4-carboxyl
benzyloxyl)phthalocyani

[126] Indocyanine green Doxorubicin Nano-scaled red blood cells
[127] Purpurin 18 Doxorubicin mPEG-Cyclodextrin-Polyhydroxybutyrate
[128] Gold nanoclusters Doxorubicin (ZIF-8) metal–organic framework
[129] protoporphyrin IX Doxorubicin (ZIF-8) metal–organic framework

[130] Chlorin-e6 Tirapazamine (polyethylene glycol)-Azo-benzene-poly (d,
L-lactide-co-glycolide)

[131] Chlorin-e6 Gambogic acid
Hyaluronic acid-nitroimidazole (HA-NI) as shells, MnO2 NPs

functionalized poly (L-glutamic acid) derivatives (γ-PFGA)
as cores

[132] Si photosensitizer Doxorubicin Mesoporous silica nanoparticle

[133] Chlorin-e6 Doxorubicin
Polyoligo (ethylene glycol) methacrylate-block-poly(ε-

caprolactone)-azobenzene-poly(ε-caprolactone)-block-poly
oligo (ethylene glycol)

[134] Pyropheophorbide paclitaxel Poly [oligo (ethylene glycol) methyl ether methacrylate]
[135] Pheophorbide a Tirapazamine Self-assembled gelatin nanoparticles
[136] Chlorin-e6 Doxorubicin Poly(phosphorylcholine)
[137] Chlorin-e6 Oridonin Side-chain selenium-grafted polymers
[138] porphyrin Doxorubicin Tetra-β-cyclodextrin
[139] Chlorin-e6 Gemcitabine Polymeric micelles
[140] Chlorin-e6 Gemcitabine Multifunctional polymeric prodrug micelles
[141] Chlorin-e6 Paclitaxel Liposomes
[142] Chlorin-e6 Docetaxel Hyaluronic acid
[143] pyropheophorbide-a camptothecin mPEG with thioketal linker

[144] Chlorin-e6 Doxorubicin Block copolymers polystyrene-b-poly (acrylic acid) and
oil-soluble

[145] Chlorin-e6 Perfluorohexanoate-modified cisplatin Poly(ethylene
glycol)-lysine-block-poly(L-glutamate)-imidazole

[146] protoporphyrin IX Tegafur (prodrug of 5-fluorouracil) Heterodimers hydrogel
[147] zinc phthalocyanine Tirapazamine Hyaluronic acid
[148] Chlorin-e6 cisplatin Dual-effect liposome
[149] Porphyrin Paclitaxel Porphyrin-lipid shelled nano-emulsion

[150] 5-aminolevulinic acid to produce
protoporphyrin IX Doxorubicin Nanogel

2.2.1. Transition Metal Based Nano-Platforms

The most important materials that are used as both nanocarriers and photosensitizers
are prepared based on transition metals. Photosensitizer systems based on transition metals
have been significantly used due to their ability to be triggered by near infrared light,
which is less harmful than ultraviolet light for the human body and has a greater tissue
penetration depth. On the other hand, most nano-platforms have up-conversion ability,
which is the ability of emitting visible or ultraviolet light by absorbing near infrared [33].
Different transition metals such as Cr, Mn, Fe, Co, Ni, Cu, and Zn can be combined or
doped to make nano-platform systems that can decrease the energy gap of transition metals
to the range of visible and infrared light. Iron can combine with oxygen and a third metal
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to form one of the well-known metal nano-platforms. Spinel ferrites, which are shown by
the MFe2O4 (M = the third metal) formula, usually with magnetic properties, are among
new types of hybrid materials that can be suitable platforms for several other applications
such as drug carriers and photosensitizers.
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Synthesis Routes of Transition Metals Nano-Platforms

There are several methods for synthesizing transition metal nano-platforms. Among
them, hydrothermal, co-precipitation, and micro emulsion are the most common. Most
of these methods are convenient, environmentally friendly, and inexpensive. In the hy-
drothermal method, metal salts are dissolved in water and heated for 24 h at about 100 ◦C
in an oven. Then, the dried sample is milled to form a powder. Finally, calcination is used
to crystallize the product [151]. In the coprecipitation method, different metal ions are
dissolved in water. Then, the metal ion solution is added to 2 M NaOH (pH 14) solution
and stirred for 30 min at 100 ◦C. Finally, deionized water is used to wash the product
and decrease the pH to near 7 [152]. Additionally, in the micro emulsion method, two
organic and inorganic phases consisting of one or more cationic or anionic species are
added together. The solution is stirred until the organic solvent has fully been removed.
The product is washed with water and dried in vacuum. Finally, calcination is used to
obtain the desired nano-platform product.

Application of Transition Metals in PDT

Different nano-platforms such as NaYF4:Yb/Tm/Er [81] and NaYF4:Yb/Er [82] are
reported to have up-conversion ability (Figure 5). For example, in 2016, Fujin Ai and
co-workers [80] assembled the core–shell–shell biocompatible nano-platform NaGdF4:Yb/
Nd@NaGdF4:Yb/Er@NaGdF4, which was loaded by platinum prodrugs [153]. This plat-
form could be considered as up-conversion nanoparticles that are able to emit ultraviolet
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and visible light after near infrared irradiation [154,155]. This visible light can help the
selected photosensitizer to generate singlet oxygen. In another project, Wang and co-
workers [156] synthesized the magnetic nano-platform YbPO4:Er by using the solvothermal
method. The nano-platform was able to convert near infrared light (980 nm) to visible
light (450–570 nm). Doxorubicin was used as an anticancer drug to achieve synergistic
effects from chemotherapy and PDT. This nano-platform successfully entered into human
hepatocellular carcinoma cells and demonstrated low toxicity.
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Transition metals are considered promising nanocarriers to deliver therapeutic agents
to cancer cells (Figure 6). In addition to their photosensitizing ability, they can also be
used as nanocarriers, which is very interesting for these types of materials. For example,
in 2011, Zhang and co-workers [35] prepared ZnO nano-rods containing daunorubicin as
an anti-cancer drug during a one-step solid state reaction under ambient temperature. It
was observed that the concentration of daunorubicin was significantly increased in human
hepatocarcinoma cells (SMMC-7721cells), which demonstrates that ZnO nano-rods are
not only good photosensitizers, but can also be considered as promising drug carriers for
daunorubicin [157]. In other projects, Zhang and co-workers [32] developed a Cu2−xSe
nano-platform for the treatment of malignant glioblastoma with near infrared PDT and
chemotherapy by using doxorubicin as an anticancer drug. Infrared absorption of Cu2−xSe
was around 1064 nm, and it was strong enough to penetrate deeply into the desired tissue.
It was also able to efficiently degrade H2O2 and oxygen within the tumor to produce vast
amounts of reactive oxygen species [158,159]. Other research groups have also reported
nanoparticles that can be applied as both nanocarriers and photosensitizers such as citric
acid/CuS@Fe3O4 [27], zinc(II) phthalocyanine [160], cyclometallated iridium (III) [31],
silver nanoparticles [34], and NaYF4:Yb/Tm [38] All nano-platforms demonstrated good
in vitro and in vivo therapeutic efficacy.
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In some cases, nano-platforms are primarily used as nanocarriers. For instance, Iman-
parast and co-workers [77] prepared PEGylated hollow gold nano-platform as a carrier
for the therapeutic drug mitoxantrone, which is both a photosensitizer and chemother-
apy agent. Using the hollow gold nanoparticles had advantages such as biocompatibility
and high stability [161]. Wang and co-workers [85] developed a layered double hydrox-
ide [Mg(1−x)Alx(OH)2][An−

x/n]·zH2O as a cationic nanocarrier to deliver the anti-cancer
prodrug c,c,t-[diamine-dichlorodisuccinato-platinum(IV)] and photosensitizer chlorin-e6
to improve the activity of cisplatin in cisplatin-resistant human cancer cells [162]. The
release mechanisms used visible light irradiation and oxidation/reduction by which Ce
and cisplatin were released from the layered double hydroxide.

2.2.2. Silica

Different types of silica nanoparticles have been extremely widely used in drug de-
livery systems [163,164] due to their biocompatibility, high surface area, high stability,
capability of surface modification, and controllable size. These abilities make mesoporous
silica a perfect nano-platform for a variety of therapies such as a combination of chemother-
apy and PDT [165].

Synthesis Routes of Silica

In general, the following three methods are employed for the synthesis of solid silica
nanoparticles. Stöber’s method was discovered in 1968 and is among the most significantly
used methods for the preparation of silica nanoparticles. In this method, different types
of silicates such as tetraethoxysilane are mixed with ammonia, water, and ethanol to
synthesize the requested silica nanoparticles. The concentration of solvents and silica
additives can determine the size of the nanoparticles [166]. In the reverse micro-emulsion
method, the spherical micelles are formed by adding a surfactant to an organic solvent that
is transparent and thermodynamically stable. The preparation of silica nanoparticles occurs
in the interface of the micelles [167]. In the chemical vapor deposition method, which is
also called the high temperature flame decomposition method, precursors such as silicon
tetrachloride are brought into the vapor phase to be prepared for nucleation [168,169].
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Application of Silica in PDT

For example, in 2014, Fan and co-workers [78] successfully prepared a gadolin-
ium/mesoporous silica core/shell nano structure to co-deliver hematoporphyrin and
docetaxel as the photosensitizer and chemotherapeutic agents. The nano-platform was
irradiated by near infrared and X-ray, which led to the complete elimination of the tumor
by the synergistic effect of chemo, radio, and photodynamic therapies [170]. Yang and
co-workers [88] prepared mesoporous silica nanoparticles that were doped by chlorin-e6.
The structure of the silica matrix was changed from sphere to rod-like shapes due to the
incorporation of chlorin-e6 into the matrix. This change was interesting because rod-like
mesoporous silica was more efficiently taken up by cells. In this study, doxorubicin was
utilized as the anti-cancer drug. In 2015, Yao and co-workers [91] synthesized mesoporous
silica nanoparticles that were modified by PEGylated tetraphenylporphyrin zinc using
the acid sensitive cis-aconitic anhydride bond. Silica pores can also be synthesized to
have a positive charge if the pH is around 6.8. Having a positive charge increases cellular
internalization, enhancing the efficacy of this nano-platform [171].

In 2018, Tang and co-workers [92] (Figure 7) successfully synthesized Fe3O4@mSiO@human
serum albumin to act as a carrier for doxorubicin. They also used chlorin-e6 as the photo-
sensitizer during this study. The nano-platform was irradiated by red light and utilized
for the treatment of glioma cells. In 2015, Yang and coworkers [93] prepared mesoporous
hollow silica-fullerene nanoparticles by the reverse micro-emulsion method. Doxorubicin
was encapsulated into the inner cavity, and fullerene was incorporated in the shell to
act as the photosensitizer. The ability of fullerene as a photosensitizer was increased in
mesoporous hollow silica because the pores that formed silica shells can increase the in-
teraction between oxygen and fullerene to generate singlet oxygen more efficiently. In
2016, Zhang and co-workers [94] designed mesoporous silica nanoparticles to deliver the
chlorin-e6 photosensitizer and cisplatin prodrug to be used as a nano-platform for the
treatment of A549R lung cancer cells. Cisplatin prodrug was conjugated to silica by the
β-cyclodextrin-grafted polyethylenimine linker. The nano-platform was irradiated by red
light (660 nm), and it was observed to give a half-maximal inhibitory concentration (IC50)
value was around 0.53 µM, which was much lower than that of cisplatin.

2.2.3. Graphene

Graphene is a 2D material that is an allotrope of carbon consisting of a single layer of
atoms arranged in a two-dimensional honeycomb lattice. Graphene has attracted tremen-
dous research interest in recent years due to its exceptional properties. The scaled-up and
reliable production of graphene derivatives such as graphene oxide (GO) and reduced
graphene oxide (rGO) offer a wide range of possibilities to synthesize graphene-based
functional materials for various applications [172].

Tremendous efforts have been made to develop synthetic methods for graphene to
achieve high yields of production. Methods to make graphene can be generally classified
as bottom–up and top–down approaches. The bottom–up approach involves the direct
synthesis of graphene materials from carbon sources such as the chemical vapor deposition
(CVD) [173] or plasma enhanced CVD (PECVD) [174]. In comparison with the bottom–up
approaches, the top–down approaches are advantageous in terms of high yields, solution-
based process ability, and ease of implementation, which have been demonstrated by means
of intercalation, chemical functionalization, and/or sonication of bulk graphite. The first
observation of exfoliated graphite dates back to 1840 by Schafhaeutl, when H2SO4 was used
for the intercalation [172]. Since then, a number of chemical species have been found to
form intercalated compounds with graphite [175,176]. Further attempts by combining the
intercalation and sonication have realized the isolation and dispersion of graphene sheets by
using intercalates such as N-methyl-pyrrolidone (NMP) [177] and sodium dodecylbenzene
sulfonate (SDBS) [178] in non-aqueous and aqueous solutions, respectively.
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Application of Graphene in PDT

In 2014, Jiang co-workers [104] used graphene oxide to deliver Hypocrellin A (pho-
tosensitizer). They observed that after loading of Hypocrellin A on graphene oxide, the
anticancer activity of Hypocrellin A was decreased. Therefore, they utilized 7-ethyl-10-
hydroxycamptothecin (SN-38) as the second chemotherapeutic agent to solve the problem.
SN-38 was co-loaded on GO (Hypocrellin A/SN-38/GO) by hydrogen bond and π–π
stacking interaction to combine PDT and chemotherapy synergistically for an antiprolif-
erative effect. In 2020, Zhou and co-workers [105] found a way to reduce tumor hypoxia
by the self-production of O2 and decrease intracellular GSH amounts to improve PDT and
chemotherapy. They designed a nanosheet based on MnO2-doped GO to load CisPt and
chlorin-e6 simultaneously. They found that, in addition to MnO2 ability to decompose
H2O2, it also decreases GSH levels in cancer cells (Figure 8).

In 2020, Vinothini and co-workers [106] decorated a reduced GO surface with magnetic
nanoparticles as a new nano-platform that loaded with camptothecin (CPT) chemodrug and
4-hydroxy coumarin (4-HC) photosensitizer (365 nm laser irradiation of 20 mW/cm2). The
combined treatment indicated exceptional cell apoptosis and antitumor activity. In 2019,
Liang and co-workers [107] (Figure 9) fabricated a targeted nano system (GO-Folate) with
an ultrahigh surface area by Hummers’ method, which is loaded by DOX and methylene
blue (MB) via π−π stacking and hydrophobic or electrostatic interactions with high-load
content. This nano-platform triggered DOX and MB release by heat and an acidic pH in
tumor environments. In 2017, Zhao and co-workers [179] used a macrophage transferring



Pharmaceutics 2022, 14, 322 16 of 40

system (TAM), which effectively enhances the effect of cyclophosphamide (CTX)-loaded 2-
(1-hexyloxyethyl)-2-devinyl pyropheophor-bidealpha (HPPH)-coated PEG nano-graphene
oxide [GO(HPPH)-PEG] by increasing its infiltration into tumors (670 nm, 70 J/cm2).
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2.2.4. Liposomes

Liposomes have an aqueous solution core surrounded by a hydrophobic membrane in
the form of a lipid bilayer; hydrophilic solutes dissolved in the core cannot readily pass
through the bilayer. Hydrophobic chemicals associate with the bilayer. A liposome can
hence be loaded with hydrophobic and/or hydrophilic molecules. To deliver the molecules
to a site of action, the lipid bilayer can fuse with other bilayers such as the cell membrane,
thus delivering the liposome contents. Because of their structure as well as their high
loading capacity and ability to be modified, liposomes have been significantly used as
nanocarriers for different types of drugs. Their unique structure allows liposomes to be
accumulated in the tumor site efficiently and after modification, they can exhibit a long
time plasma half-life, which is important for tumor uptake. Hence, different types of pho-
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tosensitizers and anti-cancer agents can be loaded into modified liposomes simultaneously
for use in both PDT and chemotherapy [180].
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Synthesis Routes of Liposomes

Although different types of methods have been reported for the preparation of lipo-
somes, all of them commonly consist of the following steps: (a) drying down lipids from
organic solvents; (b) dispersing the obtained lipid in aqueous media; and (c) purifying the
resultant liposome [181]. The sonication method is the most significantly used method for
multilamellar vesicles. In this method, a probe or bath sonication is used to prepare lipo-
somes under a passive atmosphere [182]. Additionally, in the solvent dispersion method,
lipids are dissolved into an organic solvent to prepare an organic phase. Then, the organic
phase is added gradually to an aqueous solution of the materials that are going to be encap-
sulated, at more than 50 ◦C. Finally, liposomes can be created by complete evaporation of
the organic phase [183]. The freeze-thawed method uses multiple cycles of a rapidly frozen
and slowly thawed solution of liposomes, as the name implies. First, materials that are
used to prepare liposomes are separated by sonication for a short time. Then, the system
will be rapidly frozen and slowly thawed to allow for unilamellar vesicles to be fused and
created [184]. The extrusion method is another technique where the liposome suspension is
passed through a membrane filter of a defined pore size. An extruder, a machine equipped
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with a pump that pushes fluids through the membranes, can be employed to accomplish
the extrusion process. Various parameters of the extrusion procedure such as applied
pressure, number of cycles, and pore size have been found to influence the mean diameter
and size distribution (polydispersity) of the liposomes produced [185].

Application of Liposome in PDT

In 2003, Snyder and co-workers [95] used 2-[1-hexyloxyethyl]-2-vinyl pyropheophor-
bide as the photosensitizer and liposomally encapsulated doxorubicin as an anti-cancer
drug. The liposome was used for the treatment of murine colon 26 tumors, which showed
improvement in accumulation and selectivity due to enhanced vascular permeability by
liposome. In 2018, Lee and co-workers [96] encapsulated doxorubicin into human serum
albumin/chlorin-e6 as a photosensitizer into ultrasound-triggered microbubbles that were
prepared by different mixtures of lipids (DSPC: DSPE-PEG2k-NHS). The researchers used
sonoporation, which is the use of sound to modify the permeability of the cell membrane
during the treatment, to convert microbubbles to liposomes and enhance the efficiency of
PDT. This result revealed that doxorubicin and chlorin-e6 were delivered into the cells and
penetrated the tumor tissues with the aid of local ultrasound irradiation. Moreover, both
drugs can be delivered by sonoporation, and the mechanical effects of ultrasound irradia-
tion into deep tumor sites where the drug has difficulty reaching from the bloodstream. In
2018, Li and co-workers [97] prepared a light sensitive liposome through the combination of
indocyanine green-octadecylamine and doxorubicin as the photosensitizer and chemother-
apeutic agent. The surface of the liposome was functionalized by epidermal growth factor
receptor-2 (Her2) antibodies, and it was irradiated by near infrared light (808 nm) for the
treatment of MCF-7 breast cancer cell lines. In 2019, Yang and co-workers [98] encapsulated
lipophilic IR780 (photosensitizer) and hydrophilic tirapazamine (anti-cancer agent) into a
liposome for the treatment of hypoxic malignant tumor cells. The system was irradiated by
near infrared (808 nm) light. IR780 could generate a hypoxic microenvironment, which is
very suitable for tirapazamine to perform well and cause DNA double-strand breaks and
chromosome aberrations.

2.2.5. Dendrimers

Dendrimers consist of highly branched molecules that are designed three-dimensionally.
Examples include poly(propylene imine), polyesters, peptide dendrimers, triazine den-
drimers, and polyamidoamine (PAMAM), which have great potential in biomedical appli-
cations due to their high loading efficiency and low toxicity [186–190]. Anti-cancer drugs
and photosensitizers can be encapsulated within the dendrimer or conjugated to surface
molecules such as acyl hydrazone or ester groups [191–193].

2.2.6. Preparation Methods of Dendrimers

There are two methods that are mainly used for the preparation of dendrimers termed
as the divergent and convergent methods. In the divergent method, the synthesis starts
with the core of the dendrimer and arms are added gradually to prepare the final desired
3-dimensional form of the desired dendrimer, and in the convergent method, the arms are
initially prepared and then subsequently attached to the core to create the desired final
form [194,195].

Application of Dendrimers in PDT

In 2016, Liu and co-workers [99] developed a dendritic poly(ethylene glycol) copoly-
mer that was conjugated to porphyrin (photosensitizer) by a disulfide linker. Doxorubicin
was conjugated to the dendrimer utilizing the same disulfide linker to be glutathione re-
sponsive due to glutathione’s ability to reduce the disulfide bond. The nanocarriers showed
higher loading efficiency and cellular uptake than the linear co-polymer. The dendrimer
was irradiated by a visible light emitting diode (LED) to exhibit a great potential for PDT
and chemotherapy [179].
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2.2.7. Polymers

The ability of polymer micelles to self-assemble due to their amphiphilic nature have
gained much interest in drug delivery [196–201]. Self-assembled polymeric micelles exhibit
nano sized spherical structures, high thermodynamic stability, and biocompatibility.

As a new category of organic theranostic agents, semiconducting polymer nanoparti-
cles (SPNs) have gained growing attention due to their diversified optical properties [202].
Moreover, structural modification of precursor polymers has led to SPN-based photothera-
peutics. These agents are able to convert photo-energy to heat or reactive oxygen species
for PDT or photo thermal therapy [203,204].

Main Synthesizing Methods

Synthetic methods are generally divided into two categories: step-growth polymer-
ization [205] and chain polymerization [206]. The essential difference between these two
processes is that in chain polymerization, monomers are added to the chain one at a time
only, whereas in step-growth polymerization, chains of monomers are combined with one
another directly. Step-growth polymerization can be further divided into polycondensation
and polyaddition [207,208].

Application of Polymers in PDT

In 2018, Gao and co-workers [108] developed a polymeric micelles (methoxypolyethy-
lene glycol (mPEG) and poly(β-benzyl-L-aspartate) (PBLA)) encapsulating DOX (chemother-
apeutic) and zinc(II) phthalocyanine (ZnPc) as the photosensitizers for dual therapy. Dox-
orubicin and ZnPc were conjugated to the polymer by an acid-labile hydrazone (pH sensi-
tive) linker and a redox-responsive disulfide linker. Tests revealed that with increasing glu-
tathione (GSH) levels, the disulfide linkers were cleaved and ZnPc moieties were released,
which diffused out from the dialysis membrane. In 2018, Li and co-workers [209] designed
stimuli-responsive nanoparticles based on an amphiphilic co-polymer containing aryl-
boronic ester (BE)-modified with an amphiphilic co-polymer (mPEG-PBAM). The prepared
polymers formed micelles and were loaded with DOX and hematoporphyrin (Hp) [109] as
a PS (light irradiation: 635 nm, 5 mW/cm2). After irradiation, the BE part of the polymer
was cleaved due to ROS generation. ROS oxidizes the hydrophobic segment, making it
hydrophilic and destabilizing the structure. In 2016, Li and co-workers [110] investigated
micellar nanoparticles based on methoxy-poly ethylene glycol-poly caprolactone (mPEG-
PCL), which encapsulated docetaxel (DTX) [210] and NIR dye-IR820 (indocyanine green
derivative; irradiation: 808 nm, 2.5 W/cm2) for the synergistic therapy of breast cancer. In
2015, He and co-workers [211] reported a nano-micellar carrier based on a coordination
polymer (NCP) loading a high amount of cisplatin (25%), and phospholipid-porphyrin
(pyrolipid) was also used as a photosensitizer for combined therapy (irradiation at 670 nm
LED, 100 mW/cm−2). At sufficiently high pyrolipid loadings (when its lipid layers were in-
tact), the fluorescence of pyrolipid molecules will self-quench due to their proximity to each
other. Therefore, Triton X-100 was added to the nano-platform to disrupt the lipid layer,
and NCP@pyrolipid could efficiently generate 1O2, which was confirmed by fluorescence
intensity (singlet oxygen sensor green). In 2016, Chunbai He and coworkers [111] evaluated
immunogenic nanoparticles to enhance the antitumor efficacy using a checkpoint inhibitor
such as antibodies to inhibit the PD-1/PD-L1 axis for colon cancer immunotherapy. This
nanoparticle is based on a NCP (1,2-distearoyl-sn-glycero-3-phosphocholine, cholesterol,
1,2-distearoyl-sn-glycero-3-phosphoethanolamine polyethylene glycol 2000) carrying oxali-
platin as a chemo-drug and the photosensitizer pyrolipid (irradiation at 670 nm LED, light
dose of 180 J·cm−2 given with 100 mWcm−2) for effective co-therapy that stimulated an
immune response.

In 2017, Zhu and co-workers [212] prepared an amphiphilic polyprodrug of poly(N,N-
dimethylacrylamide-co-eosin)-b-poly camptothecin, which were assembled into hybrid
nanoparticles by oleic acid-stabilized NaYF4:Yb/Er to activate the eosin under a NIR
laser irradiation (980 nm laser, 1.5 W/cm2). In 2016, Ruan and co-workers [112] syn-
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thesized a pH-responsive polymeric micelle based on mPEG-PASP-benzaldehyde (PASP:
polyaspartic acid) conjugated with DOX and encapsulated with NIR photosensitizer 4,4-
difluoro-4-bora-3a,4a-diaza-sindacene (BODIPY) for both bioimaging and PDT (635 nm,
20 mW cm−2) [213]. BODIPY has many attractive properties such as high ratios of light–
dark toxicity and resistance to photobleaching. In 2018, Yi and co-workers [113] designed
a dual-delivery micelle based on amphiphilic polymeric prodrug poly(ethylene glycol)-
b-poly(5-mthyl-5-propargyl-1,3-dioxan-2-one)-g-paclitaxel (PMP) to load a red induced
emission fluorogen photosensitizer, TB (white light, 100 mW·cm−2), and a chemodrug, PTX
for synergistic PDT and chemotherapy. In 2018, Shi and co-workers [114] developed a PE-
Gylated prodrug of DOX using thioketal linkage and cRGD (cyclo-arginine-glycine-aspartic
acid-d-phenylalanine-cysteine) peptide (RPTD) as a ROS-sensitive nanoparticle that was
encapsulated by the photosensitizer hematoporphyrin (HP) (633 nm at 100 mW/cm2)
via π–π stacking interactions. The release of doxorubicin was ROS-responsive from the
prepared nanoparticles because of the break of the thioketal linker. In 2009, Peng and
co-workers [79] designed functionalized micelles based on a chlorin-core star-shaped
block co-polymer by a lyophilization–hydration method. This chlorin-core star-shaped
block co-polymer acts as a nano-photosensitizing agent (7 J/cm2 irradiation) by encapsu-
lating a promising antitumor drug 7-ethyl-10-hydroxy-CPT (SN-38). In 2019, Zhen and
co-workers [115] reported a novel micelle based on the polymeric prodrug poly(ethylene
glycol)-b-poly(5-mthyl-5-propargyl-1,3-dioxan-2-one)-g-paclitaxel, which was loaded with
a NIR fluorophore as a photosensitizer that demonstrates a strong NIR emission for imag-
ing applications and charge transfer properties for multidrug resistance tumor. In 2019,
Zhu and co-workers [116] prepared a PDT-induced hypoxia-responsive drug delivery
system by self-assembling amphiphilic polyethylenimine-alkyl nitroimidazole (PA) and
hyaluronic acid-chlorin-e6 (660 nm, 10 mW/cm2) to load tirapazamine (TPZ) as a biore-
ductive chemodrug [214]. TPZ can be changed to a toxic chemodrug via single-electron
reduction in hypoxic environments [215]. In 2013, Conte and co-workers [117] investi-
gated a unique core-shell carrier with diblock (AB) and triblock (ABA) structures based on
amphiphilic block co-polymers poly(ε-caprolactone) (PCL = B) and poly(ethylene oxide)
(PEO = A) for co-delivery of the lipophilic chemodrug docetaxel (DTX), and the second
generation photosensitizer ZnPc (610 nm) by the melting/sonication method to treat an
animal model of orthotopic amelanotic melanoma.

In 2019, Cui and co-workers [49] designed semiconducting polymer nanoparticles
(SPNs) based on a light-responsive photodynamic backbone. The SPNs were grafted with
poly (ethylene glycol) (PEG) and conjugated with the chemodrug molecules via hypoxia-
cleavable linkers [216]. These SPNs efficiently produced 1O2 under NIR photo-irradiation and
activated its chemotherapeutic action in a hypoxic tumor environment, leading to cell death.

The layer-by-layer (LbL) assembly technique [217] is an effective way to produce
thin-film materials, which can control the configuration and specific functions of mate-
rials such as polymers using external stimuli. These kinds of blocks can be designed
into multilayer thin films by direct alternating deposition, or by employing the preassem-
bly of building blocks. In particular, LbL films provide a useful platform for combin-
ing chemotherapy and PDT. For example, in 2016, Fan and co-workers [218] prepared
tellurium-containing photoresponsive polyelectrolyte multilayer films by LBL assembly of
a tellurium-containing two polymer. The polymers were (piperazine and PEG). They also
used indocyanine green (ICG) and porphyrin as photosensitizers and poly(styrenesulfonate)
as an anionic building block to make the film stronger and stable. The production of singlet
oxygen oxidizes tellurium to a high valence state (Te = O) on the polymer backbone, which
makes the micelles more hydrophilic, and facilitates the release of the loaded cargo from
the micelles. In 2018, Wang and co-workers [118] investigated unique multifunctional
polysaccharide-based nanoparticles by LbL self-assembly using hydroxyethyl chitosan
(HECS) and aldehyde-functionalized hyaluronic acid (AHA), which were stabilized through
Schiff’s base bond and electrostatic interactions. These particles were loaded with DOX
and pro-photosensitizer 5-aminolevulinic acid (635 nm light irradiation, 0.2 W).
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In the last decade, utilization of covalent-organic polymers (COPs) as therapeutic
agents [219] has received substantial attention in clinical fields. COPs can covalently
cross-link different types of organic molecules to form organic network configurations.
For example, in 2018, Wang and co-workers [119] evaluated a new class of COPs using
cross-linking of mesotetra(p-hydroxyphenyl) porphine (THPP) as a photosensitizer (using
a 660-nm LED light at a power density of 5 mW·cm−2) to a chemo pro-drug, cis-platinum
(Pt). Polyethylene glycol was conjugated to this pro-drug (THPP-Pt-PEG COPs) by the
one-pot reaction. THPP-Pt-PEG COPs could be stored in a lyophilized form and occur as
stable nanoparticles in aqueous solution. Upon intravenous injection, the COPs demon-
strated long blood circulation time, tumor accumulation, and after injection of COPs into
mice, vascular perfusion and largely relieved tumor hypoxia, which are all favorable for
photodynamic treatment. In 2018, Wang and co-workers [220] presented a new type of
pH-responsive COPs by using acryloyl meso-tetra(p-hydroxyphenyl) porphine (acryloyl-
THPP) as a photosensitizer (660 nm, 5 mW·cm−2) and the pH-responsive crosslinked
biodegradable β-amino esters (BAEs), which are terminated by PEG shell (THPP-BAE-PEG
COPs). These COPs encapsulated DOX into their porous structure.

There are other nano-platforms that utilize polymers to make specific components or
encapsulate them in a proper shell. For example, in 2017, Wang and co-workers [221]
demonstrated an effective nanocarrier based on phospholipid/pluronic F68 complex
nanocores and pullulan (polysaccharide) shells to carry IR780 (a near-infrared dye) [222,223]
and paclitaxel (PTX) [224]. Additionally, pullulan acts as a natural ligand for the asialoglyco
protein receptor (ASGPR) [224], which is often overexpressed by HCC cells. In 2018, Liu
and co-workers [225] reported a light-responsive porphyrin-dextran-based polymeric DOX
conjugate to control DOX release through ROS-cleavable linker combined with PDT. In
2009, Khdair and co-workers [226] constructed aerosol OT (AOT)-alginate nanoparticles
for the co-delivery of DOX and methylene blue (a photo activated dye by 665 nm wave-
length) in drug-resistant NCI/ADR-RES cells (a multidrug-resistant cell line in ovarian
cancer). In 2008, Hongrapipat and co-workers [227] evaluated the biological activities of
the anticancer drug SOS thiophene (SOS) and Mchlorin-e6 (650 nm at 3.0 mW/cm2) in the
form of Fab′-targeted HPMA co-polymer-drug conjugates (Fab′ from OV-TL16 antibodies
matching to CD47) against OVCAR-3 cells, which indicated a very strong synergism. In
2016, Dong and co-workers [228] fabricated a DOX-loaded protein/polymer coated-up
conversion nanosystem including a UCN core (NaYF4:Yb/Er), folic acid-bovine serum
albumin−poly(ε-caprolactone) (FABSA-PCL) as an amphiphilic bioconjugate shell, and
ZnPc as a photosensitizer (980 nm laser at a power density of 1.0 W cm−2). In 2010, Khdair
and co-workers [226] improved the anticancer efficiency of DOX in combination with
the PS methylene blue (50 J/cm2 dose of non-coherent light at 665 nm) [229] in a tumor
model. These two drugs were encapsulated in surfactant-polymer hybrid nanoparticles,
which were synthesized by an anionic surfactant, aerosol-OT™ (AOT), and a polysaccha-
ride polymer, sodium alginate. In 2019, Ren and co-workers [120] fabricated hyaluronic
acid-chlorin-e6 (DOX) as an enzyme/pH responsive nanoparticle. In this nanoparticle,
HA is combined with a highly effective photosensitizer (chlorin-e6) by adipicdihydrazide
(ADH) as a linker. Chlorin-e6 is a second generation photosensitizer that is able to be
activated by NIR light and is used for PDT [230]. In 2014, Shi and co-workers [121] syn-
thesized a DOX-conjugated onto poly(ethyleneimine) (PEI)-fullerene (C60–PEI–DOX) to
facilitate photosynamic therapy and chemotherapy in one system as well as evaluate its
synergistic effect on cancer cells. C60 has been introduced as a nanocarbon material with
exceptional photochemical (532 nm laser, 100 mW·cm−2) and physical properties. They
used a hydrazone linker to make doxorubicin’s release pH sensitive. Compared with free
DOX in an in vivo murine tumor model, C60–PEI–DOX afforded higher antitumor efficacy
without obvious toxic effects to normal organs due to its good tumor targeting efficacy
and the 2.4-fold greater amount of DOX released in the tumor than in the normal tissues.
In 2018, Hu and co-workers [122] prepared oxygen-generating (CDM) nanoparticles by
assembling chlorin-e6 (660 nm, 100 mW/cm2), DOX, and manganese dioxide (MnO2) with
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poly (ε-caprolactone-co-lactide)-b-poly (ethylene glycol)-b-poly (ε-caprolactone-colactide)
for breast cancer therapy. MnO2 caused the breakdown of excessive endogenous H2O2 to
produce O2 inside the tumors to relieve tumor hypoxia. With enhanced oxygen genera-
tion, the PDT effect was significantly improved under laser-irradiation. More importantly,
this effect, together with that of DOX, was able to dramatically promote the combined
chemotherapy-PDT efficacy of CDM NPs in an MCF-7 tumor-bearing mouse model.

In 2015, Wang and co-workers [123] prepared a new smart nanoparticle (pH-sensitive
and NIR light triggered) based on UCNP-loaded (NaYF4:Yb, Er) folate-conjugated poly-
meric (dextran) lipid vesicles (UFPLVs) that carried DOX and merocyanine 540 (MC540)
as a photosensitizer (980 nm, 2.5 W cm−2). In 2017, Yu and co-workers [124] used human
serum albumin (HSA) as an effective nanodrug carrier for the delivery of gemcitabine
(Gem) and pyropheophorbide-a (670 nm light, 10 mW/cm2) for pancreatic cancer.

Albumin is a versatile protein with a unique structure that can be conjugated to hy-
drophobic and hydrophilic components [231,232]. In 2017, Zhang and co-workers [233] pre-
pared a DOX-loaded magnetofluorescent carbon quantum dots (FeN@CQDs) into polymer
nanospheres (PEG) with magnetic and photoluminescent features using a low-cost and envi-
ronmentally friendly one-pot hydrothermal method using iron crosslinked chitosan compo-
nents (Ch-Fe-CL) [234]. Riboflavin (Rf) was grafted onto the surface of magnetic CQDs to be
useful in triggering PDT under NIR light, which significantly improved tissue penetration.
In 2017, Zhang and co-workers [125] fabricated a zinc phthalocyanine (8.12 mW/cm2) and
DOX-loaded pH-sensitive four-armed star co-polymer nanocarrier, [methoxy-poly(ethylene
glycol)-poly(2-(N,N-diethylamino)ethyl methacrylate)-poly(ε-caprolactone)]4-zinc β-tetra-
(4-carboxyl benzyloxyl)phthalocyanine (PDCZP) that showed better in vitro and in vivo
anticancer effects under lighting on MCF-7, SW480, and HepG2 cells and the murine
hepatocellular carcinoma H22 mode.

2.2.8. Metal–Organic Frameworks

Nanoscale metal organic frameworks are different types of hybrid porous nanomateri-
als that can be prepared by the coordinated interaction of metal ions and bridging ligands.
Metal–organic frameworks have great potential in drug delivery systems due to their
large surface area, high porosity, and modifiable surface chemistry [235]. Metal–organic
frameworks have also been used in PDT to provide a synergistic effect for cancer therapy.
For example, Zr6 clusters coordinated with terephthalic acid to form UiO-66, which has
microporous cages and excellent stability, so this UiO-66 can be considered as a suitable
candidate for drug loading [236,237].

Preparation Method of Metal–Organic Frameworks

In the solvo-thermal method, metal and organic precursors are added to an organic
solvent and are stirred at room temperature until a clear solution is formed. Then, the
homogenous mixture is transferred to a Teflon-lined autoclave and heated for 12 or 24 h.
Finally, the desired product is separated via centrifugation or filtration. These MOFs can be
modified by different organic ligands in the next levels [238,239].

Application of Metal–Organic Frameworks in PDT

In 2019, He and co-workers [75] designed UiO-66 metal–organic frameworks (UiO-
66-H/N3 NMOFs), and bioreductive banoxantrone (AQ4N), which was anchored to the
nanocarriers by a phosphate ion-sensitive bond. Photosensitizers such as photochlor
(HPPH) and azide were anchored to UiO-66 by the solvo-thermal method [240]. Moreover,
PEGylating was utilized to improve the stability of nanocarriers. The porosity of the
NPs is well-suited for the encapsulation of AQ4N to protect the bio-reductive prodrug
from degradation during circulation. In this system, AQ4N release is demonstrated to be
phosphate ion-sensitive. Both in vitro and in vivo studies revealed that the O2-depleting
(consuming) PDT process does indeed aggravate intracellular/tumor hypoxia that activates
the cytotoxicity of AQ4N through a cascade process, consequently achieving PDT-induced
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and hypoxia-activated synergistic therapy. Benefiting from the localized therapeutic effect
of PDT and hypoxia-activated cytotoxicity of AQ4N, this hybrid nanomedicine exhibits
enhanced therapeutic efficacy with negligible systemic toxicity, making it a promising
candidate for cancer therapy. In 2020, Zhang and coworkers [128] (Figure 10) used ZIF-8
as metal–organic framework as a carrier to deliver Au and doxorubicin to achieve the
synergistic effect of photodynamic therapy and chemotherapy. Under irradiation with a
670 nm laser, a large amount of singlet oxygen was generated, and the release rate of DOX
increased to 77.1% at a pH value of 5.5. After using the combination therapy, all tumors
were disappeared while single therapy could only inhibit tumors partially.
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2.2.9. Biological Nanocarriers

Among the different types of cell membranes, red blood cell membrane and its deriva-
tives are the most affordable and biocompatible biological carriers that have been used to
coat nanocarriers as biomimetic agents for various applications [241].

Preparation of Red Blood Cells Membranes-Derived Vesicles

Membrane-derived vesicles from red blood cells are used to prepare red blood cells for
drug delivery systems. The first ones can be divided into two steps: hypotonic treatment
and sequential extrusion. Briefly, fresh blood, which is obtained from an organism, should
be centrifuged at 4000 rpm to collect red blood cells. Then, the collected red blood cells are
mixed with phosphate buffer saline and remain to release the intracellular components of
red blood cells following centrifugation to remove hemoglobin. The final step is utilizing
an extruder to obtain the optimum size of the red blood cells [242,243].

Application of Biological Nanocarriers in PDT

In 2018, Pei and co-workers [100] developed red blood cell nanoparticles to deliver
reactive oxygen species-responsive paclitaxel dimer and tetraphenylchlorin to cancer cells.
It was observed that dimers can increase the loading of paclitaxel into red blood cells.
The system was irradiated by visible light (638 nm) to generate reactive oxygen species,
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which caused paclitaxel to be released [244]. In 2018, Luo and co-workers [101] introduced
hybrid protein oxygen carriers consisting of hemoglobin and albumin, which were attached
together by disulfide reconfiguration. Doxorubicin and chlorin-e6 were loaded into the
nano-hybrid. The ability of hemoglobin to carry oxygen provided a benefit in multiple
ways. This feature led to the downregulation of the expressions of multidrug resistance 1
(MDR1), hypoxia-inducible factor-1α (HIF-1α), and P-glycoprotein (P-gp), which further
breaks hypoxia-induced chemoresistance and interestingly helps chlorin-e6 to generate
more ROS. In 2017, Wan and co-workers [126] fabricated nano-scaled red blood cells con-
sisting of oxyhemoglobin and the gas-generating agent ammonium bicarbonate to deliver
indocyanine green and doxorubicin as the photosensitizer and anti-cancer agent, respec-
tively, for the treatment of breast cancer. After irradiation by 808 nm laser, oxyhemoglobin
decomposed into CO2 and NH3, leading to the release of doxorubicin. It was observed that
this nanocarrier could facilitate breast cancer treatment and suppress metastases by the
combination of PDT and chemotherapy.

2.2.10. Nano Emulsions

Nano emulsions are thermodynamically stable nanoparticles whose size (20–200 nm)
and shape make them different from conventional emulsions. They consist of two immisci-
ble liquids that are mixed by different types of surfactants.

Synthesis Routes of Nano Emulsions

There are several methods for the preparation of nano emulsions. However, all
methods can be classified into two main methods: high-energy emulsification such as
stirring, ultrasonic emulsification, high-pressure homogenization, micro-fluidization, and
low-energy emulsification such as phase inversion temperature, emulsion inversion point,
and spontaneous emulsification [245]. In the high-pressure homogenization method, a
high pressure homogenizer/piston homogenizer is used to prepare a nano-emulsion with
a particle size lower than one nanometer [246]. Additionally, in the micro-fluidization
method, a micro-fluidizer, which uses high pressure to produce a very fine particle with a
size range of 150–170 nm, is used. The process is a repeated procedure of forcing materials
to pass through the interaction chamber to prepare a uniform nano emulsion [247]. The
spontaneous emulsification method consists of three steps to prepare a nano emulsion. In
the first step, an organic solution containing the oil and surfactants is prepared. In the next
step, the organic phase is injected into the aqueous phase. Finally, the organic phase is
removed by evaporation to prepare a nano emulsion [248].

Application of Nano Emulsion in PDT

In 2018, Maria Candido and co-workers [6] prepared nano emulsions to encapsulate
hydrophobic chloroaluminum phthalocyanine as a photosensitizer and doxorubicin as
an anti-cancer agent. The nano emulsion was able to increase the water solubility of
chloroaluminum phthalocyanine, which was crucial to the efficiency of the drug delivery
system. Visible laser light was used to irradiate the nano emulsion, which caused the
photosensitizer to generate reactive oxygen species for the treatment of 4T1 breast cancer
cells. It was observed that the cell viability was less than 10% when a combination of
PDT and chemotherapy was applied. Therefore, this nano-platform can be considered
as a promising method of treatment for breast cancer [249,250]. In 2021, Chang and
coworkers [251] prepared porphyrin-lipid nano emulsions and loaded doxorubicin, PTX
(3.1 wt%), and porphyrin (18.3 wt%) efficiently into PLNE-PTX, forming spherical core–shell
nano emulsions. Combination therapy inhibited tumor growth (78%) in an additive manner
compared with monotherapy PDT (44%) or chemotherapy (46%) 16 days post-treatment.

2.3. Targeting Strategy

Various strategies such as pH triggered, enzyme triggered, chemical targeting agents,
biological targeting agents, and redox triggered agents have been used as targeting strate-



Pharmaceutics 2022, 14, 322 25 of 40

gies to deliver drugs to a specific part of the body (Figure 11). Photosensitizers can be
loaded on nanocarriers and targeted to a specific tissue using these various means. These
targeting materials can be added to the nanocarriers to increase the accumulation and
efficiency of drugs and decrease the side-effects and frequency of dosage taken by the
patient [252–256].
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2.3.1. pH Triggered

The important point in this strategy is the physiological differences in pH. Internal
cellular structures such as lysosomes have reduced pH (~pH = 4) and certain cancerous
cells are more acidic than normal healthy cells. Materials can exploit this feature and are
considered pH responsive and upon reaching a lower pH environment, this trigger should
be able to collapse, swell, or change the nanocarrier according to the change in the pH of
their environment [257–259].

For example, Gao and co-workers [108] introduced a co-polymer consisting of methoxy-
polyethylene glycol (mPEG) and poly(β-benzyl-L-aspartate) (PBLA) to encapsulate zinc(II)
phthalocyanine and doxorubicin via an acid-labile hydrazone linker for HepG2 human
hepatocellular carcinoma cells. In 2014, Shi and co-workers [121] prepared a nano-platform
consisting of poly(ethyleneimine), which was conjugated to fullerene (C60). Doxorubicin
was conjugated to the nano-platform via pH-sensitive hydrazine [260]. Then, the hydrazine
bond was again used to conjugate doxorubicin to the surface of a lipid vesicle [123]. In
all three studies, researchers concluded that this strategy induces the release of drugs
responsive to the extra and intra pH of cancerous cells, which is very important for drug
delivery systems. On the other hand, in 2015, Yao and co-workers [91] developed a kind
of pH-responsive linker for the pores of mesoporous silica nanoparticles. They used PE-
Gylated tetraphenylporphyrin zinc to act as the gate keeper for the controlled release of
doxorubicin. Once the nano-platform reached the acidic extracellular pH of cancerous cells
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(pH = 6.8), the conjugated acid sensitive cis-aconitic anhydride bond between Zn and PEG
was cleaved and caused DOX to be released.

Ruan and co-workers [112] synthesized pH-responsive polymeric micelles based on
mPEG-PASP-benzaldehyde (PASP: polyaspartic acid), which is conjugated with DOX via a
hydrazone linker. In other work, Wang and co-workers [123] prepared a new intelligent
pH-sensitive nanoparticles based on UCNP (UFPLVs), which carried DOX by pH-sensitive
hydrazone bonds on the surfaces of the nanocarrier. In 2018, a new type of pH-responsive
COPs [220] was presented. In this study, acryloyl meso-tetra(p-hydroxyphenyl) porphine
(acryloyl-THPP) reacted with 4,4′-trimethylene dipiperidine (TMPD) to form pH-responsive
crosslinked biodegradable β-amino esters (BAEs) that can release DOX into the tumor
microenvironment.

2.3.2. Enzyme Triggered

Different cancerous cells upregulate the expression of certain enzymes on their surface
such as metalloproteinase and cathepsins. This phenomenon requires future studies to help
researchers develop novel targeting agents according to those upregulated enzymes [261].
Along this line, Zhu and co-workers [27] used co-acervation technology to prepare a
magnetic nanoparticle by gelatin and sodium alga acid. A citric acid/CuS@Fe3O4 nano-
platform was prepared and DOX was loaded to be released by the enzymatic degradation
of gelatin by the presence of gelatinase. It was observed that this nano-platform not only
increased the accumulation of drugs in human breast cancer cells (MCF7), but also increased
the level of ROS production. In 2019, Cui and co-workers [49] designed a SPNs based on a
light-responsive backbone covered by PEG and conjugated with bromoisophosphoramide
mustard intermediate (IPM-Br) via hypoxia-cleavable linkers [216]. Hypoxia in cancer
cells precisely caused the fragmentation and release of IPM-Br catalyzed by nitroreductase,
leading to cell death.

2.3.3. Redox Triggered Agents

There are various reduction/oxidation (redox) reactions in cells, but cells continually
regulate ROS levels to maintain natural physiological baseline levels. However, when
cells turn cancerous, they alter their microenvironment, which can be exploited to develop
drug delivery systems. There are special microenvironments in cancerous cells. In these
cells, the level of glutathione and reactive oxygen species are higher than in healthy cells.
Therefore, according to the level of glutathione in tumor cells, redox responsive drug
delivery systems have been introduced to enhance the targeting ability of DDSs and
decrease the side effects of therapeutic agents [262]. For example, glutathione responsive
disulfide bonds were used to conjugate the anti-cancer agent camptothecin to iridium by
Xiang and co-workers [31]. Liu and co-workers [99] designed poly(ethylene glycol)-based
dendrimers (G3) that were conjugated to doxorubicin (anti-cancer drug) and porphyrin
(photosensitizer) via disulfide bonds and Yi and co-workers [113] prepared polymeric
prodrug poly(ethylene glycol)-b-poly(5-mthyl-5-propargyl-1,3-dioxan-2-one), which was
grafted to paclitaxel by the disulfide bond. These nano-platforms could release the drug
and photosensitizer by responding to the intracellular glutathione in cancer cells [263].

Platin prodrugs can also act as redox responsive materials. Their bond can be reduced
to facilitate the anti-cancer drug platin to be released. For example, Lim and co-workers and
Wang and co-workers used oxaliplatin prodrug cis-platinum to develop a redox responsive
nano-platform. Both groups observed that platin could be released only by changing the
levels of glutathione in tumor cells, which is very significant, in order to decrease the side
effects of highly toxic platin-based drugs [264]. In other research, Gao and co-workers [108]
developed polymeric micelles encapsulated with ZnPc as photosensitizers and DOX in
which ZnPc was conjugated to the polymer by a redox-responsive disulfide linker. In 2019,
Zhen and co-workers [115] reported a series of novel reduction-sensitive drug co-delivery
systems based on fluorophores with strong NIR emission.
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2.3.4. Chemical and Biological Targeting Agents

Targeting ligands can be conjugated on the surface of nanocarriers to enhance accumu-
lation and selectivity for certain cells or tissue types. Different materials such as hyaluronic
acid, proteins/peptides, antibodies, carbohydrates/polysaccharides, aptamers, and folic
acid have been tested for their ability to improve the selectivity of drug delivery sys-
tems [265]. For example, in 2019, Liang and co-workers [107] fabricated a nano-platform for
synergistic effects based on GO to selectively deliver drugs into cancer cells that overexpress
folate receptors.

CD44 usually binds with hyaluronic acid, which is one of the main materials of
the extracellular matrix. Moreover, hyaluronic acid based materials can be degraded
by hyaluronidase, which is abundant in tumor cells [266,267]. In 2019, Ren and co-
workers [120] conjugated hyaluronic acid to chlorin-e6 and DOX via adipic di-hydrazide as
a pH responsive linker. The result showed that the existence of hyaluronic acid could remark-
ably increase the cellular accumulation of DOX in A549 cells. In 2019, a new PDT-induced
DDS was introduced by Zhu and co-workers [116], which was made of polyethylenimine-
alkyl nitroimidazole (PA) and hyaluronic acid-chlorin-e6 to encapsulate TPZ. PA/hyaluronic
acid (chlorin-e6)@TPZ NPs were capable of accumulating in the tumor site effectively due
to hyaluronic acid-mediated cancer targeting. In another project, Zhou and co-workers [105]
designed a smart nanosystem based on GO and hyaluronic acid surface modifications to
improve and facilitate targeted delivery of CisPt and chlorin-e6 simultaneously.

Tumor homing peptides can be considered as other promising chemical targeting
agents, for example, Lyp-1, which has the p32 protein (HABP1 or C1QR protein) as its
receptor, can be conjugated to various drug delivery systems to increase their targeting
abilities. Lyp-1 has nine amino acids and its receptors are overexpressed on the surface
of cancer cell lines such as the 4T1, MDA-MB-435, and MCF-7 cell lines. Another peptide
that can be considered as the targeting agent is the KE108 peptide, a synthetic nanopeptide
that can efficiently target all five subtypes of somatostatin receptors overexpressed by
neuroendocrine tumor cells. For example, Li and co-workers [110] conjugated Lyp-1 to
cationic PCL grafted mPEG-PCL micelles, which were chosen as a carrier for docetaxel
and IR820 (photosensitizer). They chose the 4T1 cell line, and it was observed that the
presence of Lyp-1 could enhance the accumulation of micelles in the 4T1 cancer cell line,
which was further proven by the receptor saturation technique. In another project, Shi
and co-workers [114] developed a reactive oxygen species-responsive nanoparticle system
to combine PDT and chemotherapy for oral tongue squamous cell carcinoma. A PEGlated
prodrug of DOX via thioketal linkage and a peptide consist of cyclo-arginine-glycine-aspartic
acid-d-phenylalanine-cysteine was synthesized and then used to prepare nanoparticles for the
encapsulation of hematoporphyrin as the photosensitizer. In vivo experiments revealed that
the nanocarriers had great targeting ability due to both thioketal and the conjugated peptide.

Antibody-targeted nanocarriers for cancer therapy have an exceptional role because of
their specificity and vital advantages. Most monoclonal antibodies (mAbs) are used to tar-
get nanocarriers to cancer-specific antigens, deliver chemodrugs and photosensitizers in the
form of antibody–drug conjugates, and recruit cytotoxic T cells to combat cancer cells [268].
For instance, Shiah and co-workers [269] reported the combination therapy of HPMA
copolymer-bound DOX and Mchlorin-e6 targeted with an OV-TL16 mAb in OVCAR-3 carci-
noma xenografts. The OV-TL 16 antibody can identify the OA-3 antigen, which is expressed
on OVCAR-3 cells and on most human ovarian carcinomas, and dramatically increased
the accumulation of nanocarriers in tumors. In 2008, Hongrapipat and co-workers [227]
confirmed increasing the biological activities of Fab′-targeted HPMA copolymers (Fab′

from OV-TL16 antibodies matching to CD47) loaded with the anticancer drug SOS thio-
phene and Mchlorin-e6 over nontargeted conjugates. In 2018, Wang and co-workers [118]
investigated unique multifunctional polysaccharide-based nanoparticles [270] with the
anti-HER2 antibody as an active targeting agent [271] on the surface of the nanocarriers.

There are also other biological targeting agents. In 2016, He and co-workers [111]
fabricated the design of NCP nanoparticles that carried oxaliplatin and the photosensitizer
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pyrolipid (NCP@pyrolipid) to significantly enhance antitumor immunity. NCP@pyrolipid
combines two therapeutic modalities, chemotherapy and PDT, to elicit antitumor immu-
nity [272], as evidenced by early calreticulin (CRT) exposure on the cell surface, antitumor
vaccination, tumor-specific T-cell response, and an abscopal effect. The abscopal effect is
usually described with ionizing radiation and refers to regression of the tumor outside
the irradiated volume. Although the mechanism is unknown, it is thought to be immune
modulated. More importantly, NCP@pyrolipid PDT treatment in combination with PD-L1
checkpoint blockade therapy led to the regression of the primary tumors that were locally
treated with light irradiation and more interestingly, resulted in the regression of distant
tumors in bilateral syngeneic mouse tumor models of CT26 and MC38. It was shown
that this was achieved by generating a systemic tumor-specific T-cell response with the
infiltration of CD8+ T cells and CD4+ T cells in distant tumors.

3. Conclusions

In the present review, various types of photosensitizers, their synthetic strategies,
and the synergistic effect of PDT and chemotherapy were explored. This review split
photosensitizers into two main categories that can be defined as with or without external
carriers. In the first category, photosensitizers can act as either the drug or carrier, so
there is no need for external carriers or drugs to achieve the synergistic effect of PDT
and chemotherapy. In the second category, various external carriers such as transition
metals, silica, graphene, liposomes, dendrimers, polymers, metal–organic frameworks, and
different types of biological carriers are used to deliver photosensitizers and chemo–drugs
to specific tumor sites. Furthermore, there are other strategies to increase the efficiency of
treatment and decrease the side effects. For example, pH, redox, and enzyme triggered
methods and/or surface modification by different chemicals have been used to increase
the selectivity of photosensitizers and their carriers and potentially reduce or eliminate
unwanted side effects. Although lots of photosensitizers have been proven to be efficient,
the assessment of their cytotoxicity, biocompatibility, bio-distribution, and excretion are
very important and are currently under investigation. Finding more convenient ways
for treatment such as the oral administration of photosensitizers can further expand PDT
to gain even more attraction. Finally, the mechanism of cellular uptake and the fate of
different types of photosensitizers in the human body is key to their utilization. Appropriate
strategies and model systems are required to obtain comprehensive knowledge about such
complicated processes before using these materials in clinical trials. Eventually, we believe
that with all of these therapeutic strategies and methods, the combination of PDT and
chemotherapy has great potential and may soon move beyond model organisms.
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Abbreviations

Abbreviations Full Names
PDT Photodynamic therapy
PS Photosensitizer
ROS Reactive oxygen species
1O2 Singlet oxygen
SPNpd Semiconducting polymer nano-prodrug
NIR Near-infrared
2D Two dimensional
SP Soybean phospholipids
PAI Photoacoustic imaging
IONP Iron oxide nanoparticles
DMSO Dimethyl sulfoxide
TBAOH Tetrabutylammonium hydroxide
TMAOH Tetramethylammonium hydroxide
LSPR Localized surface plasmon resonance
CP Compound polysaccharide
Met Metformin
DOX Doxorubicin
PEG Polyethylene glycol
PNBMA Poly (4,5-dimethoxy-2-nitrobenzyl methacrylate)
HSA Human serum albumin
GO Graphene oxide
rGO Reduced graphene oxide
CVD Chemical vapor deposition
NMP N-methyl-pyrrolidone
SDBS Sodium dodecylbenzene sulfonate
GSH Glutathione
CPT Camptothecin
MB Methylene blue
FA Folic acid
PAMAM Polyamidoamine
LED Light emitting diode
SPN Semiconducting polymer nanoparticles
ZnPc Zinc(II) phthalocyanine
Hp hematoporphyrin
PASP Polyaspartic acid
TPZ Tirapazamine
DTX Docetaxel
LBL Layer-by-layer
Pt Cis-platinum
PTX Paclitaxel
Gem Gemcitabine
Rf Riboflavin
MOF Metal–organic framework
HPPH Photochlor
MDR Multidrug resistance
P-gp P-glycoprotein
mAbs Monoclonal antibodies
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269. Krakovičová, H.; Etrych, T.; Ulbrich, K. Hpma-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009, 37,
405–412. [CrossRef]

270. Luo, L.; Wu, Y.; Liu, C.; Zou, Y.; Huang, L.; Liang, Y.; Ren, J.; Liu, Y.; Lin, Q. Elaboration and characterization of curcumin-loaded
soy soluble polysaccharide (SSPS)-based nanocarriers mediated by antimicrobial peptide nisin. Food Chem. 2021, 336, 127669.
[CrossRef]

271. Naruphontjirakul, P.; Viravaidya-Pasuwat, K. Development of anti-Her2-targeted doxorubicin–core-shell chitosan nanoparticles
for the treatment of human breast cancer. Int. J. Nanomed. 2019, 14, 4105. [CrossRef] [PubMed]

272. Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 2008, 8,
59–73. [CrossRef]

http://doi.org/10.1016/j.pdpdt.2019.08.020
http://doi.org/10.1186/s12951-021-00898-1
http://doi.org/10.1016/j.cell.2020.02.001
http://doi.org/10.1016/j.eurpolymj.2018.04.020
http://doi.org/10.1002/jbm.a.36468
http://www.ncbi.nlm.nih.gov/pubmed/29908009
http://doi.org/10.1080/10837450.2021.2018457
http://doi.org/10.1016/j.msec.2017.04.137
http://doi.org/10.1016/j.ijbiomac.2019.08.251
http://doi.org/10.1080/10601325.2018.1483200
http://doi.org/10.1039/C8PP00195B
http://doi.org/10.1016/j.ajps.2019.06.003
http://doi.org/10.1016/j.biomaterials.2013.04.012
http://www.ncbi.nlm.nih.gov/pubmed/23639529
http://doi.org/10.1039/C6CS00898D
http://www.ncbi.nlm.nih.gov/pubmed/28980674
http://doi.org/10.2147/IJN.S165210
http://www.ncbi.nlm.nih.gov/pubmed/30013345
http://doi.org/10.1016/j.msec.2017.08.002
http://www.ncbi.nlm.nih.gov/pubmed/28887972
http://doi.org/10.2217/imt.16.11
http://doi.org/10.1016/j.ejps.2009.03.011
http://doi.org/10.1016/j.foodchem.2020.127669
http://doi.org/10.2147/IJN.S198552
http://www.ncbi.nlm.nih.gov/pubmed/31239670
http://doi.org/10.1038/nri2216

	Introduction 
	Principles of Photodynamic Therapy 
	Mechanism of Photodynamic Therapy 
	Photosensitizers 

	Combination of Photodynamic Therapy and Chemotherapy 
	Combination of Photosensitizers and Chemo-Drugs without External Carriers 
	Photosensitizers as Carriers 
	Photosensitizer-Drug Materials 

	Combination of Photosensitizers and Chemo-Drugs with External Carriers 
	Transition Metal Based Nano-Platforms 
	Silica 
	Graphene 
	Liposomes 
	Dendrimers 
	Preparation Methods of Dendrimers 
	Polymers 
	Metal–Organic Frameworks 
	Biological Nanocarriers 
	Nano Emulsions 

	Targeting Strategy 
	pH Triggered 
	Enzyme Triggered 
	Redox Triggered Agents 
	Chemical and Biological Targeting Agents 


	Conclusions 
	References

