Table 1. Performance metrics of the ECG encoder methods.
task | n training labels | Ribeiro-R | CAE | CLOCS | PCLR |
---|---|---|---|---|---|
LVH (f1 score) | 640 | 0.14 ± 0.02 | 0.25 ± 0.02 | 0.19 ± 0.02 | 0.36 ± 0.02 |
1280 | 0.19 ± 0.02 | 0.37 ± 0.02 | 0.18 ± 0.02 | 0.43 ± 0.02 | |
2560 | 0.27 ± 0.03 | 0.33 ± 0.02 | 0.19 ± 0.02 | 0.44 ± 0.02 | |
5120 | 0.28 ± 0.02 | 0.41 ± 0.03 | 0.20 ± 0.02 | 0.47 ± 0.02 | |
10240 | 0.33 ± 0.03 | 0.43 ± 0.03 | 0.23 ± 0.02 | 0.46 ± 0.03 | |
20480 | 0.29 ± 0.03 | 0.49 ± 0.03 | 0.27 ± 0.03 | 0.47 ± 0.03 | |
age (r2) | 640 | 0.33 ± 0.01 | 0.24 ± 0.01 | 0.41 ± 0.01 | 0.56 ± 0.01 |
1280 | 0.36 ± 0.01 | 0.29 ± 0.01 | 0.43 ± 0.01 | 0.57 ± 0.01 | |
2560 | 0.38 ± 0.01 | 0.32 ± 0.01 | 0.47 ± 0.01 | 0.58 ± 0.01 | |
5120 | 0.40 ± 0.01 | 0.34 ± 0.01 | 0.49 ± 0.01 | 0.59 ± 0.01 | |
10240 | 0.41 ± 0.01 | 0.35 ± 0.01 | 0.50 ± 0.01 | 0.60 ± 0.01 | |
20480 | 0.42 ± 0.01 | 0.36 ± 0.01 | 0.51 ± 0.01 | 0.60 ± 0.01 | |
sex (f1 score) | 640 | 0.72 ± 0.00 | 0.77 ± 0.00 | 0.77 ± 0.00 | 0.84 ± 0.00 |
1280 | 0.74 ± 0.00 | 0.78 ± 0.00 | 0.78 ± 0.00 | 0.86 ± 0.00 | |
2560 | 0.75 ± 0.00 | 0.79 ± 0.00 | 0.78 ± 0.00 | 0.87 ± 0.00 | |
5120 | 0.76 ± 0.00 | 0.80 ± 0.00 | 0.78 ± 0.00 | 0.86 ± 0.00 | |
10240 | 0.77 ± 0.00 | 0.80 ± 0.00 | 0.79 ± 0.00 | 0.87 ± 0.00 | |
20480 | 0.77 ± 0.00 | 0.80 ± 0.00 | 0.80 ± 0.00 | 0.87 ± 0.00 | |
AF (f1 score) | 640 | n/a | 0.20 ± 0.02 | 0.68 ± 0.02 | 0.60 ± 0.02 |
1280 | n/a | 0.23 ± 0.02 | 0.76 ± 0.01 | 0.61 ± 0.02 | |
2560 | n/a | 0.24 ± 0.02 | 0.78 ± 0.01 | 0.64 ± 0.02 | |
5120 | n/a | 0.28 ± 0.02 | 0.79 ± 0.01 | 0.65 ± 0.02 | |
10240 | n/a | 0.26 ± 0.02 | 0.79 ± 0.01 | 0.69 ± 0.02 | |
20480 | n/a | 0.24 ± 0.02 | 0.80 ± 0.01 | 0.70 ± 0.02 |
Bold results indicate the best model with a fixed task and number of training labels. The best models are picked using 1,000 bootstraps of the test data. The performance ranges are ± one standard deviation of the bootstrapped performances.