Skip to main content
. 2022 Feb 14;18(2):e1009862. doi: 10.1371/journal.pcbi.1009862

Table 1. Performance metrics of the ECG encoder methods.

task n training labels Ribeiro-R CAE CLOCS PCLR
LVH (f1 score) 640 0.14 ± 0.02 0.25 ± 0.02 0.19 ± 0.02 0.36 ± 0.02
1280 0.19 ± 0.02 0.37 ± 0.02 0.18 ± 0.02 0.43 ± 0.02
2560 0.27 ± 0.03 0.33 ± 0.02 0.19 ± 0.02 0.44 ± 0.02
5120 0.28 ± 0.02 0.41 ± 0.03 0.20 ± 0.02 0.47 ± 0.02
10240 0.33 ± 0.03 0.43 ± 0.03 0.23 ± 0.02 0.46 ± 0.03
20480 0.29 ± 0.03 0.49 ± 0.03 0.27 ± 0.03 0.47 ± 0.03
age (r2) 640 0.33 ± 0.01 0.24 ± 0.01 0.41 ± 0.01 0.56 ± 0.01
1280 0.36 ± 0.01 0.29 ± 0.01 0.43 ± 0.01 0.57 ± 0.01
2560 0.38 ± 0.01 0.32 ± 0.01 0.47 ± 0.01 0.58 ± 0.01
5120 0.40 ± 0.01 0.34 ± 0.01 0.49 ± 0.01 0.59 ± 0.01
10240 0.41 ± 0.01 0.35 ± 0.01 0.50 ± 0.01 0.60 ± 0.01
20480 0.42 ± 0.01 0.36 ± 0.01 0.51 ± 0.01 0.60 ± 0.01
sex (f1 score) 640 0.72 ± 0.00 0.77 ± 0.00 0.77 ± 0.00 0.84 ± 0.00
1280 0.74 ± 0.00 0.78 ± 0.00 0.78 ± 0.00 0.86 ± 0.00
2560 0.75 ± 0.00 0.79 ± 0.00 0.78 ± 0.00 0.87 ± 0.00
5120 0.76 ± 0.00 0.80 ± 0.00 0.78 ± 0.00 0.86 ± 0.00
10240 0.77 ± 0.00 0.80 ± 0.00 0.79 ± 0.00 0.87 ± 0.00
20480 0.77 ± 0.00 0.80 ± 0.00 0.80 ± 0.00 0.87 ± 0.00
AF (f1 score) 640 n/a 0.20 ± 0.02 0.68 ± 0.02 0.60 ± 0.02
1280 n/a 0.23 ± 0.02 0.76 ± 0.01 0.61 ± 0.02
2560 n/a 0.24 ± 0.02 0.78 ± 0.01 0.64 ± 0.02
5120 n/a 0.28 ± 0.02 0.79 ± 0.01 0.65 ± 0.02
10240 n/a 0.26 ± 0.02 0.79 ± 0.01 0.69 ± 0.02
20480 n/a 0.24 ± 0.02 0.80 ± 0.01 0.70 ± 0.02

Bold results indicate the best model with a fixed task and number of training labels. The best models are picked using 1,000 bootstraps of the test data. The performance ranges are ± one standard deviation of the bootstrapped performances.