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Abstract

Infants, children and adults have been shown to track co-occurrence across ambiguous naming
situations to infer the referents of new words. The extensive literature on this cross-situational
word learning (CSWL) ability has produced support for two theoretical accounts—associative
learning (AL) and hypothesis testing (HT)—but no comprehensive model of the behaviour.

We propose WOLVES, an implementation-level account of CSWL grounded in real-time
psychological processes of memory and attention that explicitly models the dynamics of looking
at a moment-to-moment scale and learning across trials. We use WOLVES to capture data from
12 studies of CSWL with adults and children, thereby providing a comprehensive account of data
purported to support both AL and HT accounts. Direct model comparison shows that WOLVES
performs well relative to two competitor models. In particular, WOLVES captures more data

than the competitor models (132 vs. 69 data values) and fits the data better than the competitor
models (e.g., lower percent error scores for 12 of 17 conditions). Moreover, WOLVES generalizes
more accurately to three ‘held-out” experiments, although a model by Kachergis and colleagues
(2012) fares better on another metric of generalization (AIC/BIC). Critically, we offer the first
developmental account of CSWL, providing insights into how memory processes change from
infancy through adulthood. WOLVES shows that visual exploration and selective attention in
CSWL are both dependent on and indicative of learning within a task-specific context. Further,
learning is driven by real-time synchrony of words and gaze and constrained by memory processes
over multiple timescales.
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Words are the building blocks of language. Thus, word learning forms a central challenge

in language acquisition. The difficulty of this challenge becomes apparent while attempting
to make sense of people conversing in an unknown language. In such a conversation, every
spoken word can potentially refer to a seemingly infinite set of referents, thus challenging
the learner to determine and learn the speaker-intended mapping (termed the indeterminacy
of reference problem; Quine, 1960). Furthermore, the size of the vocabulary to learn and
retain over multiple learner-environment interactions is very large. Despite these difficulties,
humans are adept at acquiring vocabulary from infancy, and do so at a remarkable speed.

By two years of age, infants are typically well-skilled and efficient at word learning (Bloom,
2000; Fenson et al., 2007; McMurray, 2007) quickly mapping a word to its correct referent
in relatively few learning trials (e.g., Carey & Bartlett, 1978, but see Bion, Borovsky, &
Fernald, 2013; Kalashnikova, Escudero, & Kidd, 2018; Kucker, Mcmurray, & Samuelson,
2015; Horst & Samuelson, 2008 and Kucker, McMurray & Samuelson, 2015 for recent
qualifications of this ability). In fact, by age six, children know approximately 14,000 words
(Templin, 1957), many learned from hearing other people use them in noisy and ambiguous
contexts (Carey, 1978; Gaskell & Marslen-Wilson, 1999; Newman & Hussain, 2006). Word
knowledge estimates jump to numbers ranging between 50,000 to 100,000 distinct words in
adulthood (Bloom, 2000).

How do children learn and retain this large vocabulary from often ambiguous day-to-day
conversational data? There is structure in the way words and objects co-occur in our daily
conversations, especially with infants: words more often co-occur with their referents than
with other objects. Learners can therefore capitalize on this word-referent co-occurrence to
infer the intended referent of a word. This ability is often termed cross-situational word
learning (CSWL; Gleitman, 1990; Pinker, 2009). The first empirical results showing that
children could learn words by tracking information across multiple separately ambiguous
occasions came from Akhtar and Montague (1999). However, a set of papers from Yu and
Smith (2007; Smith & Yu, 2008) sparked the recent explosion of interest in CSWL. Yu and
Smith (2007) presented adults (and later infants, see Smith & Yu, 2008) with a number

of novel objects and an equal number of novel names, with no other clue about correct
word-object mappings. Across several trials, however, a word and its ‘true’ referent always
co-occurred while the co-occurrence of all other word-object pairs was lower. Following
these training trials, participants showed above-chance accuracy when asked to select a
word’s referent from a set of possible choices, suggesting cross-situational statistics were
sufficient to support learning.

Statistical learning, the detection and extraction of reliable patterns in the stream of
incoming sensory inputs, has been shown to operate over different linguistic subdomains
such as word segmentation (Estes, Evans, Alibali, & Saffran, 2007), and voice-pitch tracking
(Saffran, Reeck, Niebuhr, & Wilson, 2005; Saffran & Thiessen, 2003), in addition to other
non-linguistic modalities and types of stimuli including shapes (Fiser & Aslin, 2001), scenes
(Brady & Oliva, 2008), tactile stimuli (Conway & Christiansen, 2005), and spatial locations
(Mayr, 1996). Further, recent studies exploring the underlying structure in audio and video
recordings of infants in common everyday activities reveal significant structure in the word-
object co-occurrence data outside of the laboratory (Frank, Goodman, & Tenenbaum, 2009;
Yu, 2008; Yu & Ballard, 2007; Yu, Ballard, & Aslin, 2005; Yu & Smith, 2012; Yurovsky,

Psychol Rev. Author manuscript; available in PMC 2023 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bhat et al.

Page 3

Smith & Yu, 2013). But what is the nature of the statistical computations that support this
learning?

The literature suggests two alternatives: hypothesis testing and associative learning. Table

1 summarizes 19 existing models in the CSWL literature. Models are grouped according

to theoretical accounts — hypothesis testing (HT), associative learning (AL), and models

that integrate both perspectives (Mixed). The table compares models in terms of /nput—the
form of data the model processes, for example, sub-symbolic data such as human utterances
or artificially generated symbolic stimuli, and the computational Formalism that the model
uses, e.g., connectionist or Bayesian. The table also highlights key model features, the

main constraints or biases the model assumes, the experimental data and key behaviours it
captures, its main implications, and some of its /imitations. Below, we evaluate these models
and the theoretical accounts they formalize.

Hypothesis Testing Accounts

Hypothesis testing (HT) accounts of CSWL suggest that learners form a single hypothesis
about word-object mappings on each presentation that is either verified by later consistent
encounters or discontinued causing the learner to build and test a new hypothesis (Medina,
Snedeker, Trueswell, & Gleitman, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013). For
example, Trueswell et al. (2013) exposed adult participants to a set of everyday objects

and a novel word and asked them to choose the most-likely referent. If learners responded
incorrectly to a given word, they were found on later trials to be equally likely to choose any
of the alternatives, even though some of those alternatives had co-occurred with the tested
word in prior trials and were, therefore, more likely candidates for the word. Trueswell

et al. (2013) interpreted this finding as showing that participants had not tracked multiple
possible referents for a given word, as they did not have a preferred second choice. This
argument was also supported by eye-tracking data showing that participants did not look
significantly more at the statistically more-frequent alternative referent (but see Roembke &
McMurray, 2016 for conflicting data). It appeared that learners simply restarted from scratch
if their previous guess was wrong. Using a similar paradigm with 2- and 3-year-old children,
Woodard, Gleitman, and Trueswell (2016) concluded that children also hypothesize a single
meaning that is tested on subsequent encounters.

HT models represent word learning as an instance-by-instance selection, induction and
inference computation, guided by (presumably) built-in language-specific constraints such
as one-trial fast mapping (Trueswell et al., 2013), mutual exclusivity (Markman, 1990),

or the novel name nameless category principle (Golinkoff, Mervis, & Hirsh-Pasek, 1994).
These constraints help limit the set of possible initial hypotheses about a word’s correct
referent. For example, Trueswell et al.’s (2013) Propose-but-Verify (PbV) model stores only
one hypothesized mapping for a word at the first instance. This hypothesis is recalled with
some probability when the same word is encountered again and is compared against the
currently available referent set. If the hypothesized referent is present, the model infers
the hypothesis is correct and stores it with an increased probability for recall. Otherwise,
the model removes the current hypothesis from memory and makes a new hypothesis by
selecting one from any of the available referents at random.
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A strength of HT models is that they are memory efficient, storing a limited number

of associations per word. More importantly, HT models highlight referent sefectionas a

core process which makes the model an active learner whose selection decisions impact

its future learning (shown empirically by Trueswell et al., 2013). HT models are limited,
however, in that forming a single hypothesis means missing a lot of structure in the data;

for example, HT models cannot learn homophones (Stevens et al. 2017). HT models often
require that strong constraints like mutual exclusivity or N3C pre-exist, and these models are
specified at a computational, rather than process, level. Furthermore, to date, HT models of
CSWL have been applied to either artificially generated corpuses (Najin & Banerjee, 2018;
Siskind, 1996; see Table 1), small sets of utterances (Frank, Goodman & Tenenbaum, 2009;
Sadehgi, Scheutz & Krause, 2017), or a single empirical study (Trueswell et al., 2013).
Thus, while these models demonstrate the possibility that HT could be used to learn multiple
word-object mappings, they have not been generalized widely across studies. Furthermore,
these models have not been applied to the range of infant studies that have demonstrated

the importance of basic cognitive processes such as visual exploration (Yu & Smith, 2011;
Smith & Yu, 2013) or memory (Vlach & Johnson, 2013) in CSWL.

Associative Learning Accounts of CSWL

In contrast to HT accounts, associative learning (AL) accounts suggest that learners store
information about the multiple possible word-referent mappings that are available in each
word-learning situation (Smith, 2000; Yu, 2008). Correct mappings then emerge from
strengthening and weakening of associations over repeated exposures. These accounts,
therefore, suggest that CSWL is a gradual, parallel accumulation of statistical regularities
in the input as information about multiple word-object co-occurrences are tracked
simultaneously (Yu & Ballard, 2007; Yu & Smith, 2007). For example, Suanda, Mugwanya,
& Namy (2014) exposed children to a set of novel images and words with two pairings per
trial while varying the frequency with which a word co-occurred with a distractor in training.
They found that children’s learning of a word was directly proportional to the frequency of
its co-occurrence with a target image (and inversely proportional to distractor frequency).
Suanda et al. (2014) concluded that children’s responses reflected an accumulation of the
statistical structure of the learning environment. Similarly, Yu and Smith (2007) controlled
within-trial uncertainty in their study with adults by varying the maximum possible word-
object associations per trial from four to sixteen. Adults’ performance at test was directly
related to within-trial uncertainty. Yu and Smith (2007) suggested that adult performance
reflected the statistical structure in the input capped by the real-time processing demands of
limited attention and memory.

The core of AL models of CSWL is a set of mappings between words and referents

with strengths that, over trials, come to reflect the statistical structure in the input data
(Kachergis, Yu, & Shiffrin, 2012; Rasanen & Rasilo, 2015; see Table 1). Most AL models,
however, bias this statistical accumulation over trials using cognitive constraints of attention,
memory, prior knowledge, and so on (Table 1). For example, a very successful biased

AL model proposed by Kachergis and colleagues (2012, 2013, 2017) distributes attention
among possible associations in a trial based on a competition between a bias toward

known associations (prior knowledge) and a bias toward unknown stimuli (novelty). This
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allows learning of multiple associations for each word (or object). These associations are
also modified by memory decay that diminishes highly infrequent associations over trials.
Together these computations enable the model to retain the ‘essential’ statistical structure in
the input. This constrained associative learning allows the model to capture, for example, the
role of sensitivity to variance in CSWL input frequency (Kachergis et al., 2017) and relaxing
of mutual exclusivity (Kachergis et al., 2012) seen in adult studies of CSWL.

Some AL models have been formulated with reference to psychological processes of
attention and memory, such as Kachergis et al. (2012) and Nametzadeh et al. (2012)

(see Table 1). Another strength is that AL models preserve multiple associations to learn
homophones and even show the emergence of constrains like mutual exclusivity (Fazly et
al., 2010; Kachergis et al. 2012; Yurovsky et al. 2014). However, AL models lack any

form of selection process which is necessary to unpack how decision-making unfolds during
learning. Furthermore, like HT models of CSWL, the majority of AL models have been
developed in the context of, and applied to, single empirical studies (see Yu & Ballard,
2007; Yurovsky, Fricker, Yu & Smith, 2014 in Table 1) or limited sets of data such as

small utterance corpuses rather than the results of empirical studies (see Fazly et al.; 2010;
Yu & Smith, 2011; Nematzadeh, Fazly & Stevenson, 2012 in Table 1). A few AL models
have captured data from multiple studies (Bassani & Araujo, 2019; Kachergis et al., 2012;
Kachergis, Yu, & Shiffrin, 2013, 2017; Rasanen & Rasilo, 2015), suggesting that they are
better able to generalize across specific CSWL paradigms. Yet, while promising, no AL
model has been applied to the full range of CSWL studies from infants to adults, and thus no
AL account has explained changes in CSWL over development.

Mixed Hypothesis Testing / Associative Learning Models

Several recent models bridge the HT and AL distinction by combining aspects of associative
learning with constraints on how candidate referents are selected (see Mixed Models in
Table 1). For example, Stevens, Gleitman, Trueswell and Yang (2017) proposed a HT model
that uses an associative learning mechanism to weigh the different hypotheses at each
instance of the word-learning task. In this model, a word is only added to the model’s
lexicon if the conditional probability of its hypothesised referent exceeds a threshold value.
As a second example, Kachergis and Yu (2018) extended their biased AL model (Kachergis
et al. 2012) with a probabilistic selection computation that makes uncertain responses at
every word learning instance. This allows the model to capture participant accuracy and
uncertainty on learning trials which is not possible with the original AL model. Similarly,
Yurovsky and Frank’s (2015) model incorporates a parameter to control how attention (or
intention) is distributed across associations. At one extreme of this parameter, this model
can focus attention narrowly and behave in an HT fashion. At the other, it can distribute
attention and behave more like an AL model; although a mid-range value of this parameter
fit participant data best (Yurovsky & Frank, 2015).

Similar to HT and AL models, a number of mixed models have been applied to small
artificial datasets (see Fontanari, Tinkhanoff, Cangelosi & Perlovsky, 2009; Taniguchi,
Taniguchi & Cangelosi, 2017 in Table 1), or single empirical studies (Smith, Smith &
Blythe, 2011; Kachergis & Yu 2018, Yurovsky & Frank, 2015 in Table 1). Nevertheless,
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some models that bridge HT and AL, such as Stevens et al. (2017), provide more coverage
of the literature, suggesting the possibility that the full breadth of CSWL findings might only
be captured by an approach that blends aspects of HT and AL.

But are mixed models the best way forward? Yu and Smith (2012) demonstrated that
depending on the specific information selection and decision computations employed, a
model with an associative learning core can perform strict hypothesis testing and vice
versa. Yu and Smith (2012) concluded that the debate between hypothesis testing and
associative learning in the context of statistical word learning is not well formed because
accounts to date have been proposed at what Marr (1982) called the “computational” level
—dealing only with the nature of the information available to the learner—and not at

the “algorithmic” level (or below) to explicitly specify the (neural) representations and
psychological processes used to build and manipulate those representations (Smith, Suanda,
& Yu, 2014).

Beyond HT and AL: Implementing A Different Approach

Inspired by Yu and Smith (2012), the over-arching goal of the present paper is to propose
an implementation-level theory that is comprehensive and takes time seriously—real time
(millisecond by millisecond), learning time (trial to trial), and developmental time (from
infancy into adulthood). This goal is motivated by prior empirical work showing that time
matters for what is learned at the level of real-time looking behaviours, trial-to-trial task
structure, and over the longer timescale of development. We are also motivated by the

fact that while there are numerous models of CSWL, the field lacks a consistent narrative
linking the influence of cognitive processes across CSWL tasks, behaviours, and participant
populations.

A growing body of data demonstrate that real-time selection and visual exploration matter
for learning in CSWL. We seek to explain why and to unpack the processes involved. For
example, we know that infant learning in CSWL tasks is affected by the patterns of looking
demonstrated during training: strong learners tend to have fewer longer looks while weak
learners have more shorter looks (Colosimo, Forbes, & Samuelson, 2020; Yu & Smith,
2011). No models explain how these looking patterns — these real-time shifts of attention —
are generated or provide a mechanistic account of how they influence learning.

The literature also demonstrates that the order of training trial matters for what is learned.
If trials are structured such that objects repeat from trial to trial, 12- to 14-month-old
infants habituate to repeating items and learn less (Smith & Yu, 2013). Furthermore, studies
examining the influence of massed versus interleaved presentation show differential effects
over learning. Vlach and colleagues have found that 16-month-old toddlers learn best when
there is little delay between presentations of a word-object pair in a CSWL task, while
20-month-old’s learn best with more delay (Vlach & DeBrock, 2017, 2019; Vlach &
Johnson, 2013). Benitez, Zettersten & Wojcik (2020) found that 4- to 7-year-old children
learned equally successfully with massed or interleaved presentation while adults benefited
substantially from massed object presentation (see also, Kachergis et al., 2009; Smith et al.,
2011; Yurovsky & Frank, 2015). In all of these cases, what people learn over time is affected
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by the trial sequence because the sequence of trials changes what learners do over time on
each trial.

This creates an important distinction because many models in the literature conceptualize
each trial in a ‘one-shot” manner. For example, in Kachergis et al.’s (2012) model, attention
is distributed via normalization across a set of stimuli. This requires that the learner knows
the set of objects and words to be presented up front so the model can make a single
computation over these stimuli on each trial. If real-time processes constrain what is learned,
theories that simplify these processes into a single “‘shot’ are limited.

We also seek to capture developmental differences in CSWL. While few studies directly
compare the performance of adults and children in the same task (see Benitez et al., 2020;
Bunce & Scott, 2017; Fitneva & Christiansen, 2017, for exceptions), it is clear from the
literature that there are developmental differences in CSWL. In addition to the example
of massed or interleaved presentation above, adults and children differ in the influence

of initial accuracy on final learning outcome. Fitneva and Christiansen (2017) found that
4-year-old children’s learning outcome was best when their initial accuracy on a subset of
word-referent pairings was high, 10-year-old children’s outcome was similar when initial
accuracy was high or low, and adults did best when initial accuracy was low. As a second
example, Vlach and DeBrock (2017) have related differences in CSWL performance in a
group of 2.5- to 6-year-old children to differences in memory abilities. No current models
have explained these developmental effects. It is certainly fine for theories to focus only
on adult (or child) data, but if a theory can reach into development and offer a systematic
account of such differences, such a theory would be notable in moving beyond current
accounts.

Finally, we seek to provide a comprehensive theory of CSWL that explains multiple findings
from multiple paradigms / tasks. Most prior models reproduce only a handful of empirical
results from the CSWL domain (see Table 1). Furthermore, previous models fit parameters
to each task or condition individually without any restrictions as to how parameter changes
are made from report to report (Fazly, Alishahi, & Stevenson, 2010; Kachergis et al., 2012).
Thus, there is currently little theoretical specification of why parameter values change across
tasks, even for the same group of participants. In this context, our goal is to test a theoretical
account of CSWL by simulating data from 12 experiments including data from infants,
young children, and adults across a variety of task procedures — ideally with a constrained
parameter set. We also seek a theory that compares favourably to current models. Thus, in
addition to simulating our own model, we fit the same data with two other models from the
literature, comparing results using multiple metrics including mean absolute percent error
(MAPE), the Akaike Information Criterion (AIC), and the Bayesian Information Criterion
(BIC). These latter two criteria penalize more complex models such as ours. We also probe
the generalizability of the models using the generalization criterion methodology (GNCM)
proposed by Busemeyer and Wang (2000).

Because we seek to ground our understanding of CSWL in terms of the real-time
processes that underlie memory, attention, and the building of word-object associations,
our model — Word Obiject Learning via Visual Exploration in Space (WOLVES) - is built
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from two previously established process models: one on word-object association mapping
(Samuelson, Smith, Perry, & Spencer, 2011; Samuelson, Spencer, & Jenkins, 2013) and the
other on visual attention and memory (Johnson, Spencer, Luck, & Schéner, 2009; Perone

& Spencer, 2013; Schneegans, Spencer, & Schoner, 2016). As we will demonstrate, the
integration of these models provides a process-level account of CSWL that simulates in-the-
moment visual behaviours and trial-by-trial looking and learning, mechanistically explaining
differences across tasks and over development. Furthermore, the theoretical framework
WOLVES is embedded within — Dynamic Field Theory (DFT) - offers a neurally-grounded
set of concepts for understanding the emergence of cognition in embodied systems (Schoner,
Spencer & The DFT Research Group, 2016), and provides direct connections to related
processes such as visual working memory, visual search, visual exploration, and word
learning biases.

We start the present report by introducing WOLVES via an overview of the two prior models
upon which it is based (a more detailed introduction to the core concepts of DFT is provided
in Appendix A). We then detail the WOLVES architecture, stepping through how the model
captures cycles of autonomous looking in real time (millisecond by millisecond), and how
these cycles map words and object features together from trial to trial over learning. This
includes a discussion of both bottom-up and top-down influences in the model, that is, how
looking structures word-object learning and how word-object learning influences looking.
Simulations of the model show how the time-extended nature of learning in CSWL tasks has
implications for both the AL v HT debate and our understanding of how contextual factors
and individual differences shape performance in the task.

We then establish that WOLVES is a comprehensive theory of CSWL via quantitative
simulations of data from 12 studies of CSWL. This includes adult studies purported to
support both sides of the AL v HT debate, as well as developmental studies which have not
been the focus of prior modelling work. We show that WOLVES compares favourably to
two other models by simulating the same set of experiments with models from Kachergis

et al. (2012) and Stevens et al. (2017). This model comparison highlights that WOLVES
captures more data from the literature (132 data values vs. 69 for the comparator models),
captures the same data more accurately (i.e., lower percent error scores in 12 of 17
conditions), generalizes more accurately to three “held out” experiments, and provides the
only systematic account of development. In terms of overall model evaluation metrics (AIC/
BIC), however, the Kachergis et al. model fares better. We conclude with a discussion of

the key findings from the model comparison exercise as well as broader implications of
WOLVES, highlighting several future directions for this line of work including tests of novel
predictions.

Word-Object Learning via Visual Exploration in Space

Dynamic Field Theory (DFT) is a framework that provides an embodied, dynamic systems
approach to understanding and modelling cognitive-level processes and their interaction with
the external world via sensorimotor systems (Schoner et al., 2016; Spencer & Schoner,
2003). DFT has been used to test predictions about early visual processing, attention,
working memory, response selection, spatial cognition, and word learning (Erlhagen &
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Schoner, 2002; Johnson, Spencer, & Schoner, 2009; Samuelson, Schutte, & Horst, 2009;
Samuelson et al., 2011; Schutte & Spencer, 2009) at behavioural and brain levels using
multiple neuroscience technologies (Bastian, Schoner, & Riehle, 2003; Buss et al., 2021;
Erlhagen et al., 1999; Markounikau, Igel, Grinvald, & Jancke, 2010; McDowell, Jeka,
Schoner, & Hatfield, 2002). Since learning in CSWL scenarios is directly related to these
cognitive processes, DFT offers a good framework for understanding how these processes
come together in the CSWL task.

Figure 1 shows a schematic of WOLVES. The model integrates the word-object learning
(WOL) model shown in green (Samuelson, Smith, Perry, & Spencer, 2011; Samuelson,
Spencer, & Jenkins., 2013) with a model of visual exploration in space (VES) shown

in red (Schneegans, Spencer, & Schoner, 2016). These two models share the common
elements in the overlapping shaded boxes (aspects of spatial working memory and a

scene representation). Note that the VES model is also an integrative model in its own
right, bringing together earlier models of the neural processes that operate in early visual
processing (Jancke et al., 1999; Markounikau Igel, C., and Jancke, D., 2008), models of
spatial attention (Schneegans et al., 2014; Wilimzig, Schneider, & Schdner, 2006), a model
of visual working memory (Johnson, Spencer, Luck, & Schéner, 2009; Perone & Spencer,
2013), and a model of spatial working memory (Schutte & Spencer, 2009; Schutte, Spencer,
& Schoner, 2003). These models are integrated in a way that is consistent with neural
evidence for dorsal (‘where’ or “how”) and ventral (‘what’) pathways in the brain (Deco,
Rolls, & Horwitz, 2004; Hickok & Poeppel, 2004; Schneegans et al., 2016)

To make our discussion of WOLVES as simple as possible we first describe the architecture
and functionality of the two component models—WOL and VES—before discussing their
integration. We keep this discussion brief as these models have been presented elsewhere
(Johnson, Spencer, Luck, & Schéner, 2009; Perone & Spencer, 2013; Schneegans, Spencer,
& Schoner, 2016; Samuelson, Smith, Perry, & Spencer, 2011; Samuelson, Spencer, &
Jenkins., 2013). Readers unfamiliar with Dynamic Field Theory may find the primer in
Appendix A to be a useful starting point.

The Word-Object Learning (WOL) model

The core elements of the WOL model are shown in the top panel of Figure 2; two one-
dimensional (1D) dynamic fields — word and spatial attention (part of a spatial working
memory model, see Schutte & Spencer, 2009) — and two two-dimensional (2D) fields — a
scene representation field (aka scene-attention) and a word-feature binding field. The final
layer is the memory trace of word-feature associations which is the primary contributor to
word learning over trials.

The word field captures the representation of external word input, that is, which word is
presented to the model. Note that words in this model are represented as abstract units

(a layer of discrete nodes as in many connectionist models) rather than as a sequence of
auditory inputs. The activation peak in shown in the field (blue line) indicates that the ‘dax’
(arbitrarily assigned to unit 12) has been activated in response to input. Note that the red line
indicates which unit is above a threshold value (activation = 0). Only neurons that are above
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threshold contribute to neural interactions within and between layers (see Appendix A for
overview and sigmoidal function in Appendix B for details).

Visual stimuli are input to the scene attention field. Here, each field site is ‘tuned’ to a
particular object feature (colour in Figure 2) at a specific location in the scene (e.g., left or
right in horizontal space). Thus, each neuron in the 2D scene attention field has a predefined
tuning curve, and the neurons are arranged such that neurons with similar tuning curves are
near one another. Concretely, neurons that ‘prefer’ orange items on the left will be nearby
neurons that ‘prefer’ red items on the far left. Activation in the 2D field is captured by the
colour scale with “hotter’ colours indicating more intense activation. The red hotspot in the
scene attention field indicates that a peak has formed from the detection of the blue item to
the right. The scene attention field also has activation on the left caused by the red item, but
this activation profile is weaker / less intense.

The reason that the activation associated with the blue item is more intense is that the

scene attention field is reciprocally coupled to the spatial attention field. This is a ‘winner-
take-all’ field, that is, there can only be one focus of attention (one peak) at any moment

in time. Here, ‘winner-take-all’ refers to the ‘rule’ governing how neural activation changes
from millisecond-to-millisecond. In particular, above-threshold neurons that are close to
one another are mutually-excitatory, while above-threshold neurons that are far apart are
mutually-inhibitory. In some fields, inhibition follows a Gaussian rule, so there is an
inhibitory trough around each excitation peak. In a ‘winner-take-all’ field, inhibition is
global; this suppresses activation everywhere except at the centre of excitation, ensuring, for
instance, that there is only one attentional focus at each moment in time.

As seen in the spatial attention field, the model is currently attending to the right item (see
blue activation curve). Consequently, the spatial attention field passes a ‘ridge’ of activation
into the scene attention field at the right location. This vertical ridge (the blurry blue line

in the scene attention field) boosts the activation of the blue item, leading to selection of

this item in scene attention. That is, as excitation was approaching threshold in the attention
layer, random fluctuations caused some neurons to go above threshold, engaging local
excitation and causing a peak to emerge. Thus, there is nothing special about the blue item in
this example; rather, neural noise helped the model select the blue item in spatial attention.

Object selection in the scene attention field causes a horizontal ridge of activation at the
feature value of the attended object (blue in this case) to be passed to the 2-dimensional
word-feature field (see leftward green arrow). The word-feature field also receives vertical
ridge input from the 1D word-field after it has detected the presence of the word input
(‘dax’; see downward green arrow). If ridges from the scene attention field and the word
field overlap through time, their intersection will form a peak in the word-feature field (red
dot in the word-feature field).

The word-feature peak engages the last piece of the architecture — the memory trace layer
(see yellow arrow). In particular, when a peak goes above threshold in the word-feature
field, it leaves a trace at the associated position in the memory layer. Memory traces

are association strengths that vary between 0 and 1, much like a connection weight in a
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connectionist model. This enables learning of word-feature mappings, that is, which object
features go with each word. Note that there are many localized memory traces in the
word-feature memory trace layer as this exemplary simulation is multiple trials into a word
learning paradigm. To anticipate the discussion below, it is useful to highlight here that many
of the words have memory traces for multiple object features. Similarly, the same object
features have memory traces linked to multiple words.

What is the function of these memory traces? Because the memory trace layer and the word-
feature field are bi-directionally coupled, the memory trace can impact real-time ‘decisions’
in the word-feature field. This is evident if we run the simulation in a different scenario.
Rather than starting with a visual input and an auditory word, we can present a word and
ask the model to pick from one of two objects in the task space. This is shown in the lower
panel of Figure 2. Here we present a word (again, the ‘dax’ or unit 12); we also boost the
resting level of the word-feature field to bring the influence of the memory traces closer

to threshold (activation = 0). Consequently, the strongest memory trace associated with the
word pierces threshold (see yellow arrow), forming a peak in the word-feature field. This
sends a horizontal ridge to the scene attention field (see rightward green arrow), amplifying
the feature that matches the recalled item. This causes the model to form a peak in the scene
attention field and drives attention to the right item, effectively choosing this item as the
object that matches the word.

Note that associations in the memory trace layer build over a slow, learning timescale that
is typically several times slower than the ‘real’ or millisecond timescale of the activation
dynamics in the neural fields. In addition, memory traces decay over a very long timescale.
For a detailed overview of these memory trace dynamics, see Appendix A.

The Visual Exploration in Space (VES) model

The four panels of Figure 3 show the architecture and functionality of the VES model. As
indicated in the schematic of WOLVES in Figure 1, VES shares two fields with the WOL
model — the scene attention field and the spatial attention field. The other parts of this
model capture how visually presented items become part of a scene representation, that is,
how lower-level features are perceived in a retinal frame of reference and become ‘bound’
together in a scene representation. The model also captures the reverse operation — how
items at the level of the scene representation are selected such that an eye movement can be
directed to the item’s location in the world.

In the top-left panel, stimuli (see visual display) are input to the VES model via a 2D visual
field that responds to the presence of visual features (e.g., colour) at particular locations

on the retina. The two ovals in the visual field show the activation produced by the visual
display after the first few milliseconds when the display is turned ‘on’. The visual field
passes activity to a retinal spatial attention field, as well as three 1D fields along a feature
(e.g., wm f, con f, and atn f) and a spatial (wm s, con s, and atn s) pathway. Attention Fields
(atn s and atn f) represent what object the model is currently attending to in terms of its
spatial position (atn s) and its feature (atn f). Working Memory Fields (wm s and wm f)
maintain short-term memories of the spatial locations and features of objects the model has
recently attended. Contrast Fields (con s, con f) detect novelty in the scene where novelty is
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defined as locations and features in the scene that are not currently maintained in Working

Memory.

Neural activity flows through VES in a four-stage cycle:

1.

Input & Novelty Detection, top-left panel: The model receives two localized
inputs to the visual field, detecting the red item on the left and the blue item on
the right. Output from the visual field is input to the feature-contrast field (green
arrow from visual field to con f) which builds multiple peaks. This signifies
detection of two novel colours in the scene. Similarly, the spatial-contrast field
(con s) detects the positions of these objects.

Object Attention, top-right panel After the model has detected the novel objects,
the contrast fields pass activation to the 1D attention fields. The attention fields
are winner-take-all (WTA) fields that allow the model to attend to only one
object at a given time. As peaks form in the attention fields, this results in
selection of the corresponding object in the 2D visual field through reciprocal
connectivity (see red hot spot in visual field). The attention peaks also project
ridges of activation into the scene attention field.

Consoliaation in WM and binding in an allocentric scene representation, bottom-
left panel: Attention to features and locations passes activation to the 1D working
memory fields and results in consolidation, indicated by peaks in these fields
(wm f, wm s). These 1D WM fields forward their output to a 2D WM field

(not shown). The 2D WM field forms a robust scene-level working memory of
what is where in the world, passing its activation to the scene attention field. The
convergence of inputs from the attention fields as well as input from the 2D WM
field form peaks in the scene attention field, binding the feature and the location
of the attended object into a unified allocentric representation (red peak in scene
attention).

Release of Attention, bottom-right panel. Peaks in the scene attention field are
detected by the Inhibition of Return (IOR) field via input to an IOR detector
node. Once activation of the IOR detector node goes above threshold, this boosts
the resting level of the IOR field, allowing input from the retinal spatial attention
field to build a peak at the currently attended location in the IOR field. The peak
in the IOR field then inhibits the attentional peak. In addition, a global inhibitory
signal is sent to the other attentional fields (see red arrows). These inhibitory
influences release the model from its current attentional focus.

The sequence of events in Figures 3 capture how the model consolidates one object (b/ue
stan) in working memory; once this is complete, the system is ready to explore another
item in the visual scene. Note that the WM layers in VES have memory traces (Perone
& Spencer, 2013). These traces influence the cycle of visual exploration by speeding
consolidation in working memory over learning. This, in turn, speeds the release from
fixation for familiar items, leading to habituation (Perone & Spencer, 2013). Prior work
shows that these dynamics capture the details of habituation and preferential looking
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performance across a variety of paradigms (Perone, Simmering, & Spencer, 2011; Perone &
Spencer, 2013, 2014).

One additional feature of the VES model is that it specifies the neural mechanisms that
transform between retinal and allocentric space (see Lipinski, Schneegans, Sandamirskaya,
Spencer, & Schoner, 2012; Sandamirskaya, Zibner, Schneegans, & Schoner, 2013;
Schneegans & Schoéner, 2012). To simplify the presentation of the model here, we treat shifts
of attention in space as shifts of covert, rather than overt, attention. Many adult experiments
modelled using VES are covert attention tasks with gaze fixed at a central location (Johnson,
Spencer, Luck, et al., 2009; Johnson, Spencer, & Schoner, 2009; Schneegans, Spencer,

& Schoner, 2016); thus, this simplification maps onto simplifications used in the adult
literature.

Integration via WOLVES

The integration of these models into a single architecture, WOLVES (see Figure 4), is
straightforward since both WOL and VES models share both scene attention and spatial
attention. To enable information flow between the two component models in WOLVES,

we first add a bottom-up connection from the feature attention field (atn f) in VES to

the word-feature field of WOL (green arrow). In addition, word-feature associations must
also be able to drive looking. Thus, we add a fop-down connection from the word-feature
field to the feature contrast field (con f) in VES. Through these bottom-up and top-down
connections, fooking can influence what the model learns about word-feature mappings and
this learning can influence what the model finds ‘interesting / novel’ and, consequently,
where the model looks. This means that processing in the full model evolves over two cycles
and two timescales: a real-time cycle of autonomous looking and a learning-based cycle of
word-driven attention.

Cycle of autonomous looking: VES = WOL.—During an individual trial of a CSWL
task, WOLVES cycles through a regular set of processes. First, the 2D visual field responds
to the presence of feature inputs at particular locations in the visual scene. This field passes
feature-specific activation along the feature pathway and location specific activation along
the spatial pathway to the contrast fields (con s and con f). Activity in the contrast fields
project activation to the ID attention fields (atn s and atn f). Objects that build peaks first in
these winner-take-all fields will be attended, leading to the consolidation of these features
in the 1D working memory fields (wm s and wm f) and at the level of the 2D scene
representation. Following object consolidation in WM, peaks in the scene attention fields
drive release from fixation and the autonomous cycle of input detection, novelty detection,
attention, consolidation, and release can start again. Over repeated trials, this cycle becomes
more efficient as the memory traces of the working memory layers speed up consolidation,
leading to habituation. In addition, this cycle becomes increasingly influenced by a cycle of
word-driven attention happening over the longer timescale of learning.

Cycle of word-driven attention: WOL = VES.—In a CSWL task, as objects are
presented on individual trials, words are presented as well. The word field sends an
activation ridge into the word-feature field that intersects with a ridge sent simultaneously
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along the feature pathway as a feature is attended. This intersection of activation ridges
results in the formation of peaks in the word-feature field and the build-up of memory-traces
at associated sites in the memory trace layer. Over the course of multiple trials in a CSWL
task, the same objects are presented along with the same words. Thus, memory traces of
the same word-feature mappings are repeatedly strengthened, resulting in a pre-shaping of
the activity in the word-feature field. This pre-shaping leads to the formation of a peak in
the word-feature field when a feature ridge hits strong memory traces. Therefore, in later
training trials, the presentation of a previously encountered word can cause the formation
of a peak at the corresponding word-feature mapping in the word-feature field. Such peaks
can then send top-down activation to the ID feature contrast field and bias the model to
selectively attend to the associated object.

Critically, the details of how accumulated word-object mappings drive attention depend on
the current state of the attentional system. If WOLVES is not currently attending to any
object, the top-down input from word-feature fields will bias attentional selection to the
object features associated with a presented word. Likewise, if WOLVES is already looking
at the associated object, once consolidation and release of attention occurs, the top-down
influence of words will again bias attention to the associated object, effectively creating two
bouts of sustained attention to the same object. However, if WOLVES is looking at an object
not associated with the word, strong associations in the word-feature fields can only push the
nextlook once the current object is consolidated and released from attention.

Note that — as we discuss in greater detail below — we operate the word-feature fields in a
competitive winner-take-all mode. Consequently, the model will only form a single peak in
each word-feature field at any moment in time. While this has important consequences for
CSWL that we discuss below, it is important to emphasize that this is about the real-time
dynamics of the word-feature fields — only one peak at any moment — and not a statement
about how peaks evolve on the trial-to-trial timescale typically emphasized in CSWL.

In what sense are these cycles ‘autonomous’?—By ‘autonomous’ behaviour, we
literally mean that the model does its own thing on the millisecond timescale. Our job when
running a simulation experiment is to turn inputs on and off to reproduce the timing of
external events in the task. We then just track what the model does through time. Critically,
every object it attends to and every association and decision it makes happen ‘internally’
without any intervention from us (beyond ‘tuning’ parameters; see discussion below). Thus,
if the model is a good model with all of the necessary processes in place, it should mimic
or reproduce patterns of looking and learning /n detail. This would give us confidence that
the autonomous model we have created can faithfully reproduce all the behaviours of the
autonomous system we are trying to model — the participant.

Interestingly, autonomy also means that from trial-to-trial, the model ‘behaves’ differently,
that is, it can show a different pattern of looking and learning as events unfold during a trial
and over the course of the task. This is because all the fields operate with a small amount
of noise that can change how they respond to the same stimuli from run to run. This means
we have to run many simulations to track what the model does and why. We discuss this

in greater detail below where we embed the model in a CSWL paradigm. In particular,

Psychol Rev. Author manuscript; available in PMC 2023 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bhat et al.

Page 15

the next section presents simulated data from two of the first studies to use the canonical
CSWL paradigm — Smith and Yu (2008) and Yu and Smith (2011). Later in the paper,

we demonstrate that WOLVES is a comprehensive model of CSWL by simulating results
from 5 canonical studies with adults and 5 additional developmental studies. Note that in all
simulations below, we used a model with two feature pathways in the ventral stream — one
set of fields for colours and one set of fields for shapes. While this makes the model more
complex, it allows us to capture the details of object features in the different experiments.
Critically, the dynamics we summarise above operate comparably in this larger model.

Experiments 1 and 2: Simulations of Infant Cross-Situational Word Learning

In their canonical examination of infant CSWL, Smith and Yu (2008) used preferential
looking to ask whether 12- and 14-month-old infants could learn words from a series of
naming events that provided ambiguous information about mappings in the moment, but
correct pairings via co-occurrences over time. Infants saw 30 4-second training slides that
each presented two novel objects and were accompanied by two novel words. Across the
training slides, six word-object pairs were presented. Immediately after training, word-object
mappings were tested by presenting two objects for 8 seconds along with a single word
repeated four times. Greater looking to the labelled object (the target) was taken to indicate
learning. Each mapping was tested twice across 12 test trials.

As summarized in Table 2, infants looked more to the targets than distractors and learned
about four of the six words. In a follow-up study, Yu and Smith (2011) used an eye-tracker
in the same task to explore the relationship between selective attention and learning in
infants. Individual infants who looked more to target objects than distractors at test were
classified as “strong’ learners and infants who looked more to distractors were ‘weak’
learners. Yu and Smith (2011) reported that strong learners tended to have fewer, longer
looks during training whereas weak learners had more, shorter looks (see Table 2).

We situated WOLVES in Smith and Yu’s task—the same 30 training slides and 12 test slides
presented for the same durations. On each trial, WOLVES was allowed to autonomously
explore the two presented objects in the context of two words (training) or one word

(test). Each object was represented as two Gaussian inputs, one for each feature, that were
spatially co-located but presented to the two different visual feature fields (colour, shape).
The model then autonomously cycled through bouts of detecting novelty, attending to one
object, consolidating that object in a scene representation, and releasing attention.

Importantly, as the model attended to a feature pair, ridges were projected horizontally along
the feature pathway to the word-feature fields. WOLVES was also presented with words
with timing matching the experiment. The word field sent activity ridges along the word
dimension of the word-feature fields (top panel Figure 5, see vertical blurry blue line in
scene attention). As the feature (horizontal) and word (vertical) ridges crossed each other, a
peak built in each word-feature field corresponding to a potential word-object mapping.
These peaks laid down memory traces at the site corresponding to the word-feature
association. Critically, the associations formed may be correct, if the model happened to

be attending to the right object, or incorrect, if the model happened to be attending to the
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‘distractor’ object. For instance, the top panel of Figure 5 shows the model attending to the
red object (the ‘blicket” — word 4) while hearing the name for the blue object (the ‘bosa’ —
word 1). Because this is early in learning, there is nothing to stop the model from forming an
incorrect association. Thus, the model lays down an incorrect association between red and
‘bosa’.

Over training, however, correct associations tend to form because the statistics of the input
reinforce the correct mappings most often. This is shown in the middle panel of Figure 5
which plots the memory trace layer for feature 1 (colour) after every batch of five training
trials. Notice that early in learning there are many feature associations for each word (i.e.,
faint memory traces aligned vertically) and some features are associated with multiple words
(i.e., faint memory traces aligned horizontally). By the 301" trial, however, most words

have a single, strong word-feature memory trace along the diagonal (which are all correct
mappings in this example).

Critically, these memory traces exert a strong influence on the behaviour of the model. The
bottom panel of Figure 5 shows the model later in training again attending to the red object
while hearing the name for the blue object (“bosa’). Notice how the model late in learning
does not form an association between red and ‘bosa’; rather, when the model heard ‘bosa’ a
vertical ridge was sent down into the word-feature field, and this ridge intersected a strong
memory trace indicating that blue is associated with ‘bosa’. This formed a word-feature
peak at the intersection of ‘bosa’ and blue (see peak in word feature field) that blocked

the formation of a peak at ‘bosa’ and red (empty red oval). This ‘blocking’ occurs due to
the winner-take-all dynamics in the word-feature fields — in the moment, only one peak
can form, and the strongest activation occurred at the intersection of blue and ‘bosa’. Once
formed, the blue-’bosa’ peak can then influence the model’s looking behaviour, quickly
driving attention to the blue object once attention has been released from the red item.

Such top-down influences are necessary to direct looking at test. Specifically, during a test
trial, the model is presented with a word and two objects (a target and a distractor). Each
time the word is presented, the word field sends down a ridge to the word-feature fields.

If the ridge encounters memory traces of word-features associations, a peak will form,
sending top-down activation to the contrast fields and biasing the system to look more to the
corresponding object (the target).

As in the empirical study, we can calculate the proportion of time the model spends looking
at the target, divided by the total overall looking. Likewise, we can record the moment-to-
moment history of looking during training trials and can, thus, extract the same measures
reported by Yu and Smith (2011). This allowed us to quantitatively compare the model’s
performance to the empirical findings in Table 2. It also gives us the opportunity to use
WOLVES to understand why strong learners have different fixation dynamics than weak
learners.

Simulation methods.

Simulations were conducted in Matlab 2016b via the COSIVINA framework, a modelling
package for designing DF models (Schneegans, 2012; Schoner et al., 2016). Note that all of
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our code is available on www.dynamicfieldtheory.org along with tutorial videos explaining
how to run WOLVES in both interactive mode using a graphic user interface (GUI) and in
batches of simulations required to quantitatively fit data.

Two machines both using intel i5 processors were used to run all the simulations: a PC with
36 parallel processing cores and a High Performance Cluster with 28 parallel processing
cores. Gaussian inputs were used to represent the words and the colour and shape features
of the novel objects. Based on the stimuli used by Smith and Yu (2008), we assumed

the objects and words were all distinct and evenly spaced across the shape, colour, and
word fields. While Smith and Yu (2008) included attention getters between some trials,
our simulations use a one-second gap between every two trials for simplicity. The timing
between the model and experiment time was scaled such that each simulation step equals
eight real-time milliseconds. Simulation results for each experiment were aggregated over
300 runs (i.e., 300 individuals). To evaluate the model’s performance, we computed the
root mean squared error (RMSE) and mean absolute percentage error (MAPE) between
the simulated and empirical data, two common metrics used to quantitatively evaluate the
quality of model fits to data. Additional simulation method details are discussed in the
Quantitative Simulations section below and in Appendix C.

Smith and Yu (2008) and Yu and Smith (2011) found that 12- to 14-month-old infants
looked more to the target than the distractor at test, suggesting they had learned the word-
object mappings. WOLVES shows a preference for the target within the range found in
Smith and Yu’s studies and has a low MAPE and RMSE (see Table 2). Individual runs of
WOLVES can be classified as strong and weak learners as in Yu and Smith (2011). Doing so
reveals a similar, although somewhat higher, proportion of strong learning models compared
to infants. WOLVES also matches the infant data on a range of other measures (Table 2)
with low RMSEs and MAPEs.

Table 2 shows that WOLVES reproduces key indices of performance in the CSWL task,
including a lower number of longer-duration fixations for strong learners. But why does
this happen, that is, why do models with fewer, longer-duration fixations during training
learn more? The advantage of having a model like WOLVES is that we can manipulate

the fixation dynamics artificially — by changing key model parameters — to create models
that tend to have more fixations per trial or fewer fixations per trial. We can then probe
why these models learn different numbers of words. This accomplishes two things: it
establishes that fixation dynamics are lawfully related to learning in the model and it helps
us understand why this might be the case with participants in CSWL, that is, why real-time
visual exploration in CSWL affects trial-to-trial learning.

Spatial processing is one of the key features of WOLVES, affecting how the model

attends to objects on the retina and binds object features together at the level of the scene
representation. Critically, the details of how the spatial pathway is ‘tuned’ modulate visual
exploration. For example, strengthening spatial attention by increasing the input from the
spatial attention fields into scene attention fields helps the model build scene representations
faster and release attention from the current object more quickly. This decreases the duration
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of each look and increases fixation counts per trial. Note that more switching back-and-forth
between objects also affects total looking because there are more ‘off-looking’ gaps between
the looks.

Given that the strength of input from spatial attention to scene attention can modulate
fixation dynamics, we set up batches of simulations where we ran Yu and Smith’s (2011)
CSWL paradigm and varied the strength of this parameter across 5 steps (5 spatial attention
strengths by 300 runs each = 1500 simulations). Note that all other parameter values were
held constant. This should yield models that vary in the number of fixations during training.
We can then ask if these variations are lawfully related to learning at test and, if so, why.

Manipulating spatial attention in WOLVES did indeed create large variations in fixation
dynamics during training across the 1500 models, and these differences in looking dynamics
had an impact on performance during test. To illustrate this in a way that allows for direct
comparisons to data from Yu and Smith, we sorted the 1500 models into strong and weak
learners based on test performance. Figure 6 shows that weak learning models have more
fixations (and shorter look durations) than strong learning models. This replicates findings
from Yu and Smith (2011) but extends this pattern over a broader range of looking dynamics
so we can explore why this relationship holds. Note that Yu and Smith did not report

an increase in number of fixations over trials, although previous studies with infants have
shown such effects (see, e.g., Rose et al., 2002).

We first looked at how differences in fixation dynamics were related to the build-up of
word-feature associations during training. The left panel of Figure 7 shows that as stronger
spatial attention increased the number of fixations (see fixation count on x axis), the strength
of word-feature associations decreased. Conversely, the right panel shows that as the number
of fixations WOLVES made during training increased, the number of incorrect word-feature
associations increased. This makes intuitive sense: if WOLVES makes a single fixation per
training trial, it is likely to form only one or two associations on that trial (roughly, one

per word presented). If the model makes two fixations per training trial, it is likely to form
between two and four associations. Clearly then, fixation dynamics should be a critical
determinant of learning; this is indeed the case in WOLVES.

Interestingly, when we look at how differences in fixation dynamics were related to
performance during test, we see a more nuanced relationship. The left panel of Figure 8
plots the mean proportion of looking to the target at test against the average humber of
fixations per model during training. The data are best fit with a quadratic curve, indicating
that 2.25 to 3 fixations per training trial results in the best test performance compared

to higher or lower numbers of fixations. A similar relationship is seen between fixation
dynamics and the number of words learned (right panel).

Overall, WOLVES fit multiple measures of the empirical data from Smith and Yu’s
experiments quite well with low MAPEs. To our knowledge, this is the first process model
to reproduce the looking measures reported from these canonical CSWL studies. A strength
of the model is that it generates real-time looking behaviour; consequently, all the measures
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reported by Smith and Yu can be calculated for the model as well. This provides strong
constraints on modelling as parameter changes necessarily impact how the entire pattern of
looking cascades over trials.

A fascinating finding from this initial simulation experiment is that we reproduced the
empirical patterns for strong and weak learners from models that were all identical at the
start of the experiment (i.e., identical parameters). This arises in the model because each
model is autonomous. Every field has internal noise that affects the decisions the model
makes as activation grows toward threshold. Critically, looking behaviours early in learning
lay down associations that can bias attention on subsequent trials. Consequently, each model
follows its own trajectory of looking and learning. This is true even when noise is very
weak. For instance, Figure 9 shows two runs of the model with the same parameters and a
very tiny amount of noise (our canonical noise value in all simulations = 1.0; here we used
0.125). We gave both models the same order of object-word presentations. The panels on the
left plot looking to the object on the left side (blue bars) and right side (yellow bars) of the
scene on the first three trials of training. The panels on the right side show looking behaviour
for the final three training trials. While looking across both runs during the first two trials
was similar, looking during the last three trials is very different. Performance of the two runs
at test was also different: run 1 was a strong learner, while run 2 was a weak learner. Thus,
learning trajectories initially directed by noise will quickly be influenced by other factors as
memory traces build, leading to emergent differences. This suggests that ‘strong” and ‘weak’
learning effects in experiment could arise via learning in the experiment rather than due to
individual differences in infants.

This finding of emergent individual differences without parameter changes on one hand,
and that a parameter change can create the best learning by generating a ‘sweet spot’

of 2.25-3 fixations per training trial, on the other, have critical implications for empirical
work. First, WOLVES predicts that individual differences in spatial attention and fixation
dynamics should manifest in differential learning, such that participants with stronger
spatial attention / faster visual processing learn /essin CSWL. This could be tested by
first assessing individual differences in a spatial attention / visual processing task and then
running participants in the Yu and Smith (2011) CSWL task. WOLVES also predicts

that direct manipulations of fixation dynamics during training should yield a curvilinear
relation between fixation dynamics during training and learning at test. This could be
tested empirically by, for instance, inserting attentional cues during training in CSWL to
manipulate fixation switching. Cueing attention in a manner consistent with the ‘sweet spot’
for fixations should lead to good learning. Cueing attention outside of this ‘sweet spot’
should lead to /ess learning at test.

Interim summary: Is WOLVES an HT or AL model?

WOLVES captures the infant data from Smith and Yu’s studies well, showing similar
looking dynamics during training and similar proportions of strong and weak learners. Now
that we have embedded the model in a canonical task and demonstrated that the model
provides a good, quantitative mapping to empirical data, it is useful to reflect back on the
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key theoretical debate in the CSWL literature and ask: Is WOLVES an HT or AL model and
what does WOLVES contribute to this theoretical debate?

Recall that the HT vs. AL debate is about what happens within a trial. At issue is whether
people form one hypothesis/association per word-object mapping vs. potentially forming
multiple word-object mappings on a given trial. On this front, WOLVES clearly operates
like an AL model in that it typically forms multiple word-object associations per trial. As the
model looks back and forth on each trial early in learning, it will form associations between
the word being presented in the moment and what it is looking at. In short, there is nothing
preventing the model from forming a mapping between one word and two objects provided
time and context allow this to happen.

We emphasize here that WOLVES can form multiple associations over learning even when
the dynamics in the word-feature fields are winner-take-all. The winner-take-all dynamics
dictate that only one peak is ever formed /in the moment, but it is still possible to form
different peaks over the timecourse of a single trial. So, in the moment, WOLVES will only
map one word to one object, but over a trial, that one word can become associated with
multiple objects, consistent with AL accounts.

Note that it is possible to relax the ‘winner-take-all’ constraint and allow formation of
multiple peaks in the word-feature field simultaneously. In particular, instead of using strong
global inhibition (“winner-take-all’), we can set global inhibition to be weak and lateral or
‘surround’ inhibition be strong. In this case, the word-feature field can form multiple peaks
from incoming ridges when multiple sites in the field are sufficiently active (red circles in
Figure 10a). Consequently, the model can associate a word with multiple object features. For
instance, in Figure 10a, one of the word-feature peaks is driven by the intersection of a word
ridge (vertical) and a feature ridge (horizontal), and one peak is driven by the intersection a
word ridge and a strong memory trace.

Critically, these dynamics have consequences for learning. If word-feature fields are
configured to the winner take all mode and a ‘correct’ association is hit upon a few

times, the association trace can become strong enough to be activated by the word-input
alone. Once this occurs, the presentation of the word will block any new associations from
forming, a form of mutual-exclusivity (Markman, 1990). Note that this type of mutual
exclusivity in the model is dynamic and depends on the strength of the memory trace. If,
for instance, the memory trace decays sufficiently, the model will be open to forming new
associations again. We highlight this later when simulating results from Kachergis et al.
(2012).

Figure 10c shows how the real-time dynamics in the word-feature fields impacts looking
at test and, ultimately, word learning. The left two bars show the model’s looking to the
target at test. As can be seen in the figure, the winner-take-all model shows better learning,
with a higher proportion looking to the target at test. The second set of bars shows a
different index of learning — the number of incorrect associations in the memory trace after
training. The winner-take-all model has fewer incorrect associations. The final bars show
the overall memory trace strength after training. Interestingly, the multi-peak model shows
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stronger memory traces overall. This helps explain why both models do relatively well
in looking performance at test — the stronger memory traces help the multi-peak model
partially overcome the large number of incorrect associations formed during learning.

There are two key take-home messages from these simulations: (1) WOLVES is like an
AL model in that it can form multiple word-feature associations on a single trial; and (2)
WOLVES learns best with ‘winner-take-all’ constraints on the real-time dynamics in the
word-feature fields. This latter point highlights how WOLVES is not a simp/e associative
learner: learning in WOLVES is competitive in that strong associations can ‘block’ the
formation of new associations. Moreover, the VES part of the model structures what will
be associated through time based on the dynamics of visual exploration. Because these
dynamics are influenced by multiple factors such as the strength of spatial attention, the
model is not simply counting co-occurrences.

Interestingly, because the memory trace strength is affected by which words and objects

are presented over trials, the model can show re-learning. If, for instance, there is a delay
between word-object presentations, the memory trace can decay and allow a new association
to form. We show this later by simulating data from Kachergis et al. (2012). Critically, as
the model updates its word-object mappings, it does not eliminate the old association — it
does not reject the old ‘hypothesis’ — rather, it retains multiple associations. Thus, the same
dynamics in WOLVES that learn words in the first place also contribute to the unlearning /
remapping of words.

In summary, WOLVES operates by forming word-object associations, but WOLVES is a
non-standard associative learner in that what is learned is shaped by its visual dynamics,

the winner-take-all dynamics of the word-feature fields, and the build and decay dynamics
of the memory traces. In this sense, WOLVES is not a simple AL model, nor is itan HT
model. Rather, WOLVES benefits from having elements of both in that it can form multiple
associations to maximize what is learned from the available statistical structure but still
makes real-time, autonomous, selection decisions that shape future learning. Importantly, we
show below that WOLVES can explain data purported to support both perspectives; thus, a
single model can integrate findings from both camps.

Quantitative Simulations

We have presented an implementation-level theory that grounds understanding of CSWL
in processes of memory, attention and word-object association as they unfold in real-
time and over learning. Our model quantitatively simulates infants’ real-time autonomous
looking behaviour and provides insight into both how looking influences learning during
training and how learning influences looking at test. Here we demonstrate that this is

a comprehensive model of CSWL by capturing a range of findings from the CSWL
literature. We start with 5 simulations from the adult CSWL literature, including studies
designed to contribute to both sides of the HT vs. AL debate. We then simulate findings
from 5 additional developmental studies of CSWL. Importantly, WOLVES offers the first
developmental account of CSWL, providing insights into what might be changing from
infancy through childhood.
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WOLVES Simulation Methods

Selection of model parameters.—WOLVES has many parameters. Each field has
neural interaction strength and width parameters that determine how quickly neural
interactions fall off between neighboring units for self-excitation and lateral inhibition.
There is also a global inhibition strength parameter per field. Critically, these parameters all
interact with one another: increase excitation strength too much and the field will have a
seizure; increase inhibition strengths too much and no peaks will ever form. Moreover, the
connections between fields in each direction have strength and width parameters. /nputsto
the model have strength and width parameters. There are also global parameters for noise
and relaxation times over multiple timescales (e.g., tau for excitation, tau for inhibition, and
tau for memory trace build and decay rates).

Although all of these parameters are free to vary in principle, in practice, many model
parameters were constrained. In particular, we allowed 64 parameters to vary freely in
arriving at the final parameter values; the rest were held constant, either by keeping them
fixed at values from the WOL and VES predecessor models or setting them to be equivalent
to other values in the final model (see Appendix C for details).

How did we arrive at these final parameters? Many models in the CSWL literature can

be optimized using data-fitting procedures. Alternative procedures — for instance, Markov
Chain Monte Carlo methods (MCMC; see Valderrama-Bahaméndez & Frohlich, 2019) —
have been successfully used to optimize the parameters of some classes of dynamical
models (e.g., ordinary differential equations). Unfortunately, there are no established
methods to apply such approaches to the family of integro-differential equations that contain
dynamic field models.

Given this, tuning of WOLVES was done ‘by hand’. This works because DF models are
highly constrained. For example, appropriate values for excitation and inhibition to build
a peak given an input of a particular strength and width can be readily determined using
an interactive simulator with a graphic user interface (GUI). With additional parameter
adjustments, this peak can be tuned to be an ‘input-driven’ peak that relaxes back to

the neural resting level when the input is removed (weak excitation strength), or a “self-
sustaining’ peak that is actively maintained during a memory delay (strong excitation
strength, see https://dynamicfieldtheory.org/ for an interactive simulator that demonstrates
this). Next, coupling strengths can be tuned, that is, how a peak in one field sends activation
to another field, and vice versa. Once cross-field interactions are set, then one can start
looking at slower timescales, such as how peaks build memory traces and how memory
traces impact the formation of peaks in real-time. Finally, one can embed the model in a
particular paradigm — for instance, the CSWL paradigm from Yu and Smith (2011) — and
start probing whether the model looks back and forth appropriately given the timing of
inputs, whether the word input is strong enough to build peaks in the word-feature fields,
and so on.

Once basic parameter adjustments have been made using a GUI and the model appears to
be operating as hypothesized for a given paradigm, quantitative measurements can be made
on the model . Here, one can measure how much the model looks to each item on each
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trial, calculating fixation durations and fixation rates. One can also measure the proportion
looking to the target at test to probe whether the model looks more to the target when each
target word is presented as participants often do. Then, parameters can be varied across
batches of simulations to improve the quantitative fit to data. For instance, the strength

of the projection from the word field to the word-feature fields (word = wf) modulates
looking and learning by influencing how strongly the model “attends’ to the words. As is
shown in the left panel of Figure 11 (yellow curve), we can vary this parameter across many
simulations (300 for each triangle symbol) and look at how many words the model learns
for each value of the “‘word attention’ parameter. Results reveal that this parameter operates
like a step-function, if ‘word attention’ is too weak, words presented to the model may

not be able to activate previously learned associations strongly enough to generate peaks in
the word-feature fields. Consequently, the model performs poorly at test. At higher ‘word
attention’ strengths, word inputs generate peaks in the word-feature fields and drive good
learning at test. Similarly, the strength of top-down attention, that is, the strength of input
from the word-feature fields to the contrast layers (wf => conf) operates like a step function
over learning. The left panel of Figure 11 (red curve) shows that below a value of about 3,
the top-down affect is marginal, and the model learns poorly; above a value of about 4, the
top-down affect is robust, and the model learns well.

Other parameters show a more complex pattern as they are systematically varied. For
instance, the strength of the memory trace input into the word-feature fields influences
how prior associations shape looking at test. Weak input from the memory traces to the
word-feature fields (i.e., weak Awf-> wi) does not allow previously formed associations to
influence decisions in the word-feature fields. As shown in right panel of Figure 11, this
leads to poor performance at test. Interestingly, very strong memory trace strengths are also
bad for learning because all traces, including erroneous ones, are strong enough to create
peaks on every trial. Thus, there is a sweet spot for learning that balances peak formation
based on word-object input and peak formation driven by word-object associations.

In summary, tuning a dynamic field model ‘by hand’ follows a particular logic. One

starts with real-time interactions visualized in a GUI, making sure the model builds, for
instance, peaks in response to visual stimuli. Next, quantitative measures are calculated on
the model’s performance to enable direct comparisons to data. Then, parameters can be
tuned in batches to reduce goodness-of-fit measures to target values (e.g., mean absolute
percent error [MAPE] lower than 20). Finally, parameters can be modified to see if one can
get good performance across multiple CSWL paradigms, all with a single parameter setting.
In the next section, we describe how this last step unfolded across the CSWL paradigms we
simulated.

Tuning parameters iteratively across CSWL paradigms.—After iteratively tuning
WOLVES “by hand’, we started evaluating the model fits using the Yu and Smith tasks
described in Experiments 1 and 2 (see appendix C for additional description). This was
useful to fine-tune the looking and learning dynamics in the model to approximate empirical
values from these studies. We then took these parameters and modified them to capture key
effects in Smith and Yu (2013), including visual habituation (which we describe in detail
below).
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At this point, we ran several batches of simulations to explore how the memory build and
decay timescales impacted learning as this was central to our account of development.
Memory traces laid down by word-feature peaks have their own growth and decay dynamics.
DFT assigns two timescales: tau_Build defines how fast a memory trace grows, and
tau_Decay defines how fast it deteriorates (with smaller time values producing faster decay).
Therefore, if tau_Build is set to low values, strong associations will build quickly. Likewise,
smaller values of tau_Decay lead to quick decay, while larger values slow down forgetting
of both correct and incorrect associations. Hence, moderate values of both parameters allow
the model to remember repeated associations while also not making them so strong that they
cannot be forgotten if they are later found to be incorrect. Figure 12 plots the proportion of
correct word-object mappings learned by the model as the two memory timescales vary. The
tau_Build curve shows good learning around a moderate value, while the tau_Decay curve
suggests higher values are better.

Based on this understanding of the memory-related tau parameters, we modified parameters
to capture the Vlach and DeBrock (2013) task. We then used these same parameters and
tested Yu and Smith (2007), tuning the tau build and decay parameters until we got close

to the empirical data. This established our first ‘adult’ parameter settings. We then tested
the model on the Yurovsky, Yu, and Smith (2013) task and tuned the tau build and decay
parameters further. At this point, we found a parameter setting that worked well for all tasks
thus far with tau_Build and tau_Decay settings that were distinctive over development—one
set for the “child’ studies and one set for the “adult’ studies.

Next, we tested Kachergis, Yu, and Shiffrin (2012) and tuned parameters again until

we got close to empirical data for the “adult’ tasks including Yu and Smith (2007),
Yurovsky, Yu, and Smith (2013), and Kachergis, Yu, and Shiffrin (2012). We then tested
Suanda, Mugwanya, and Namy (2014), tuning the developmental parameters to get a
good quantitative fit to this study as well as Vlach and DeBrock (2019) where we

fully implemented the idea of scaling tau_Decay systematically to capture developmental
differences.

At this point, we arrived at the final model parameters. We then ran final simulations of all
12 experiments with this final set of parameters (32 conditions x 300 simulations in all),
computing RMSE/MAPE estimates for all experiments. For studies that used forced choice
tests, the model was credited with knowing a word if it looked more to the target than to the
distractor(s) during the first 1000 millisecond time window of word and object presentation.
Critically, in this final simulation step, data from three ‘held out’ tasks were captured
without any direct parameter tuning. Trueswell, Medina, Hafri, and Gleitman (2013), , Yu,
Zhong & Fricker (2013), and Vlach and DeBrock (2017). We simulated these tasks last

as they were the most different from the original Yu and Smith tasks. In particular, the
Trueswell et al. task does not use any separate test trials (inconsistent with the other tasks
we were modelling), Yu et al. (2013) used pre-trained words, and Vlach and DeBrock (2017)
required implementing a separate word-object binding experiment in parallel to the CSWL
task across a large age-range.
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Because parameters for these tasks were not directly optimized, this gave us an opportunity
to probe the generality of WOLVES using the generalization criterion methodology
(GNCM) proposed by Busemeyer and Wang (2000). This method was designed to compare
complex and non-nested models that may differ in terms of numbers of parameters. GNCM
differs from the more widely used cross-validation criterion in that cross-validation employs
a replication sample from the same design for the validation stage, whereas GNCM employs
a new design — the design from the held-out experiments — for this stage. The basic approach
is to fit parameters based on a subset of “calibration’ experiments, and then apply the same
parameters to fit data from an independent set of ‘generalization’ experiments that were held
out. Comparisons can be made using any discrepancy metric, with the most generalizable
model showing the least discrepancy between the predicted data and the actual data in the
generalization phase. Discrepancy is the sole metric because neither model has any free
parameters at this stage. Thus, GNCM probes the extrapolation to new conditions — a key
hallmark of a good scientific theory.

Simulation Methods for two comparator models—We compared WOLVES to two
established models in the literature, Kachergis et al.’s (2012, 2013, 2017) biased associative
model and Stevens et al.’s (2017) Pursuit model. As described in the introduction, the
former model aligns with the associative learning camp while the later involves hypothesis
testing. Kachergis et al.’s model has been validated on the largest range of experiments to
date, accounting for a range of adult CSWL behaviours such as the role of prior knowledge,
order effects, re-mapping and mutual exclusivity. Pursuit is another excellent model that
has recently been shown to capture data from multiple canonical CSWL studies with adults
(Yu & Smith, 2007; Trueswell et al., 2013) and the Human Simulation Paradigm of infant
word learning (Cartmill et al., 2013). The code implementation for both models was taken
from GitHub repositories made available by the authors. To hold both models to the same
evaluation criteria as WOLVES, a single optimized parameter set was identified for the
adult tasks and a separate optimized set was identified for the developmental tasks. During
optimization, we held 3 experiments out so we could probe generalizability using the
GNCM approach.

To optimize the Pursuit model, we followed a grid search optimization process utilized

in the original paper by Stevens et al. (2017). First, we optimized Pursuit to each adult

data set separately (2 total experiments holding 2 out). We then ran the resultant sets of
optimized parameters on the other data set, selecting the parameter set that yielded the
lowest AIC/BIC values. Next, we repeated this process on 6 developmental studies (holding
1 out), optimizing each one separately, running the resultant set on the remaining studies,
and selecting the parameters yielding the lowest AIC/BIC values. The “adult’ parameters
proved to be optimal for the developmental studies, so we used a single set of values for all
experiments for this model (y (learning rate) = 0.02; ® (threshold) = 0.79; and A (smoothing
factor) = 0.001). The one exception was in simulations of Vlach and DeBrock (2017) where
we manipulated the ‘remember’ parameter in Pursuit to examine whether this might capture
the range of developmental performance in this study (much like manipulating tau_Decay
over development in WOLVES).
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For the Kachergis et al. model, we used the built-in optimization functionality to optimize
this model’s 3 parameters. In a first step, we optimized the model to 2 adult data sets
separately (holding 2 out), and then ran the resultant parameters on the other data set.

We selected the parameters that yielded the lowest AIC/BIC values across the adult
experiments (chi = 0.12, lambda = 1.13, alpha = 0.999). Next, we repeated this process on 6
developmental studies (holding one out). This yielded three parameter sets with comparably
low AIC/BIC values; however, two of these parameter sets had an alpha value of 1.0. Alpha
is a forgetting parameter; thus, we expected alpha to be lower (more forgetting) for children
than adults. One of the three optimized developmental parameter sets — the parameters
optimized to Vlach and Johnson (2013) — had an alpha lower than 1.0, so we selected this
parameter set as our ‘base’ developmental set (chi = 0.001, lambda = 0.152, alpha = 0.993).

Next, we examined whether it was possible to scale a parameter over development to fit
data from different age groups as we did for WOLVES. Alpha seemed the most sensible
parameter to explore as there is evidence that forgetting changes over development. We
simulated Vlach and Johnson (2013), varying alpha from 0.96 — 1.0 (note that the model
performs quite poorly at values lower than .96). Values greater than 0.98 produced the best
fit to data; however, as we discuss below, varying alpha failed to explain key patterns in the
developmental data. We also explored alpha variations as a developmental account for data
from Vlach and DeBrock (2019). As we show below, variations in alpha once again failed to
capture the developmental data. Thus, for the remaining developmental studies, we used the
‘base’ optimized developmental parameters listed above.

Note that one task that we simulated with WOLVES could not be implemented with these
models: Yurovsky, Yu and Smith (2013) could not be simulated because the test involves
multiple sequential selections in time on the same test trial. Neither of the two models can
make a different second guess on a test trial.

Overview of Quantitative Simulation Results—In the sections that follow, we report
simulation results from the adult and developmental studies simulated with WOLVES and
the two comparator models. In each case, we describe the empirical data and use WOLVES
to shed light on the processes that contribute to the pattern of data. We also compare the
explanation offered by WOLVES to explanations offered by the comparator models.

Models were evaluated on the basis of root mean squared error (RMSE) and mean

absolute percentage error (MAPE). We focus primarily on MAPE as this normalizes

across differences in measurement scales. We used MAPE as our discrepancy metric for

the held-out studies used in the GNCM comparison. In addition, we compare the overall
model performance using the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) — two standard metrics that trade off model performance against free
parameters, derived using frequentist and Bayesian probabilities respectively. In particular,
AIC and BIC scores were calculated using Gaussian Likelihood as follows:

AIC = N*log(MSE) + 2*k, and
BIC = N*log(MSE) + k*log(N)
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where N is the number of common data points simulated (69) and k is the number of free
parameters (64 for WOLVES; 3 for Kachergis et al.; 3 for Pursuit). The mean squared error
(MSE) was calculated from the data in Table 3. We computed a weighted MSE over all
experiments given variation in the number of data points fit per experiment.

A summary of the model fits to all experiments is shown in Table 3. Because WOLVES is
able to simulate both patterns of visual exploration central to CSWL and'test performance,
WOLVES captures nearly twice as much data as the comparator models (132 vs. 69 data
values). Myung, Pitt and Kim (2005) suggest that models should account for more data
than free parameters, which is the case here: WOLVES captures 132 data values with 64
free parameters (ratio = 2.06). Critically, WOLVES generally outperformed both comparator
models on MAPE scores, capturing data from 12 of 17 conditions more accurately than
these models (all 5 higher MAPE conditions were from the same study — Kachergis

et al., 2012). This includes lower MAPE values in all three held-out experiments used

in the GNCM approach to probe generalizability. Indeed, WOLVES has a lower overall
grand average MAPE score across 132 data points than the grand average MAPE scores
for the comparator models across 69 data points. Nevertheless, on the other measures of
fit / generalizability (i.e., AIC/BIC scores) compared across the 69 common data points,
the Kachergis et al. model fares best. WOLVES has the second lowest AIC score, but
Pursuit has the second lowest BIC score. This discrepancy reflects the stronger penalty for
free parameters with the Bayesian Information Criterion. In the sections that follow, we
focus on simulation results for both WOLVES and the Kachergis et al. model to evaluate
which model provides a more comprehensive account of CSWL data, including data from
development. We also highlight several findings from simulations of Pursuit.

Experiment 3: Trueswell, Medina, Hafri and Gleitman (2013), Experiment 1.—To
test the ‘propose but verify’ account of CSWL, Trueswell et al. (2013) presented adults

12 word-object pairs to learn in 5 cycles of twelve trials. On each trial within a cycle,
participants heard one word and saw five objects, one correct referent and four random
distractors. Participants were instructed to select the referent of the word on each trial.
According to Propose but Verify, when a word is presented, participants hypothesize

a referent and select that object but do not learn any of the alternative word-referent
associations. Thus, if their initial selection is incorrect, on the next presentation of the
same word, participants should select randomly among the objects, even though one of

the alternatives, the correct referent, appeared on a prior trial. If, on the other hand, the
participant tracks alternative hypotheses, then (s)he should be above chance at selecting

the correct referent on this second learning instance, drawing on the memory of past
(non-selected) alternatives. Trueswell and colleagues found that adults learned some word-
referent pairs despite the high ambiguity and that learning increased as the task progressed
to be well above chance by the end of the 60 trials (Figure 13 left). We situated WOLVES
in the exact task and found nearly identical results despite the fact that parameters were not
specifically ‘tuned’ for this task (Figure 13 left). The Kachergis et al. model simulated with
the optimal adult parameter set shows a generally increasing trend over learning instances,
but with a consistently higher proportion correct relative to the data.
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To examine participants’ use of HT v AL, Trueswell and colleagues looked at participants’
accuracy on a given trial (n) as a function of their accuracy in the prior trial with that

word (n-1), collapsed across 2-5 instances. The right panel of Figure 13 shows that if

the participants were correct on the previous learning cycle (right blue bar), accuracy on
subsequent trials was well above chance. However, if participants were incorrect on prior
trials (left blue bar), accuracy on subsequent trials was at chance indicating no memory

of alternate possible associations from the previous learning cycles. WOLVES shows a
comparable behavioural pattern, exhibiting above chance accuracy in the case of previously
correctresponses (0.51) and random guessing in the case of previously /incorrect responses
(0.19). The Kachergis et al. model does not reproduce this pattern and shows above chance
and somewhat similar accuracy in both previously correct (0.58) and previously incorrect
responses (0.48). Pursuit reproduces chance level behaviour in the case of previously
incorrect responses (0.18) but shows too much learning in the case of previously correct
responses (0.83).

Trueswell et al. (2013) also used an eye tracker to examine whether participants’ eye
movements revealed any implicit memory of alternate hypotheses not signified in the
explicit response behaviour. In particular, if participants had stored alternative mappings
on prior trials, looks to the Target on subsequent trials should exceed looks to a randomly
selected competitor, even when the participant chose incorrectly at the previous learning
instance. Looking to the target and competitor were similar when participants had been
incorrect on the previous trial (Figure 14A), however when they had been correct, looks
to target exceeded looks to the competitor. Likewise, target advantage scores (TAS) — the
proportion of looks to the target minus the proportion of looks to the competitor — were
positive in cases where participants were previously correct, indicating a preference for
the target. This was not the case when participants were incorrect (Figure 14b). WOLVES
captures these looking patterns well (Figure 14c & d).

Trueswell et al. (2013) argued that these data confirmed the use of HT in CSWL. However,
WOLVES suggest an alternative. An analysis of the model’s memory traces revealed that

it typically only formed one association on each trial due to the short exposure time

that allowed for only one look on average. Therefore, if the model had formed a wrong
association/hypothesis for a word, it selected objects at chance in a subsequent trial with that
word. We therefore predict that if Trueswell and colleagues had allowed the participants to
look at objects long enough to register multiple associations or modified the paradigm to
allow participants to make more than one choice on each trial (or both), participants would
have shown a different behavioural pattern. We ran a simulation of WOLVES with a trial
duration of 6s instead of 2s and five presentations of a word within a trial. As is shown by
the bars on the left in Figure 15a, WOLVES predicts that the proportion of correct responses
would be above chance even in the case of previously incorrect instances. We are currently
testing these predictions (Bhat, Spencer, & Samuelson, 2020a). Note that this prediction is
unique to WOLVES as it is the only model to implement time in a real way. The Kachergis
et al. model, for example, treats attention as a quantity rather than a temporally unfolding
process and must distribute this quantity of attention among all word-object pairs on a trial.
This leads it to update multiple associations for a word on every trial, resulting in above
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chance accuracy even for previously incorrect responses. This example reinforces the need
for models like WOLVES that can simulate attention and other processes in real-time.

Interestingly, WOLVES also clarifies an aspect of Trueswell et al.’s (2013) data: when
participants guessed correctly on a previous instance, they were not 100% accurate on
subsequent trials with that word. Trueswell et al. (2013) suggested that this might be because
participants failed to recall their own hypotheses. In WOLVES, this effect arises because
associations formed on early trials are weaker and thus not always able to direct attention

on subsequent trials. Critically, as associations build over training, they direct attention

more effectively. As Figure 15b shows, this leads to a steady improvement in performance
accuracy on ‘correct’ trials over training.

In summary, data from Trueswell et al. (2013) are consistent with simulated data from
WOLVES despite the fact that WOLVES is not a hypothesis testing model and does not
implement a ‘propose but verify” process. Further, the model explains why the form of
competitive associative learning in WOLVES is sufficient to capture the data — the short
trial durations and single response required limit the formation of multiple word-object
associations on each trial. Finally, these results shed light on why participants fail to recall
hypotheses on correct trials — a finding that does not follow naturally from HT-style models
like PbV or Pursuit.

Experiment 4: Yu and Smith (2007), Experiment 1.—This seminal study focused on
two specific questions: 1) Can participants keep track of the simultaneous co-occurrences

of many labels and referents across trials to learn mappings, and 2) How is learning
performance affected by varying the ambiguity and duration of object presentations? Adults
were taught 18 word-object mappings in three conditions that differed in the number of
words and objects presented on a trial, 2 x 2, 3 x 3 or 4 x 4. Across conditions, the number
of possible associations formed on a trial increased from 4 to 9 to 16. Each mapping was
presented 6 times regardless of condition, but the number of trials and their duration varied
across conditions to keep the total training time consistent. A 4-alternative forced-choice test
was used to assess learning in all conditions. As can be seen in Figure 16a, although learning
was above chance in all conditions, it declined with increased ambiguity. Yu and Smith
(2007) concluded that the real-time processing demands of attending to and remembering
many words and referents caused the decline in performance.

WOLVES and the Kachergis et al. model show the same downward trend of decreasing
word-learning performance with increasing within-trial ambiguity (Figure 16a), with a good
quantitative fit to the data (although WOLVES provides a more accurate fit; see Table 3).
WOLVES also provides mechanistic details of how within-trial uncertainty affects learning.
Since completion of each fixation in the model takes time, the model generates about 4 looks
per 6s trial in the 2x2 condition, 6 looks per 9s trial in the 3x3 condition, and 8 looks per
12s trial in the 4x4 condition. This means that the number of associations that the model can
form on each trial varies by condition from 4 in the 2x2 condition, to 6 in 3x3, to 8 in 4x4.
This increasing ambiguity means that the likelihood of missing a correct association grows
across conditions from 0% to 34% to 50%. Likewise, the number of incorrect associations
the model is exposed to grows from 2 to 12. This is reflected in the number of incorrect
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associations that the model has in memory at the completion of the learning phase for the
three conditions (Figure 16b). Furthermore, with increasing ambiguity, the number of times
each correct association is reinforced decreases proportionally. This reduces the strength of
correct associations across conditions (Figure 16c¢). Note that Pursuit also replicates results
from Yu and Smith although WOLVES shows better performance in the task (see Table 3).

Interestingly, we can carry forward insights from simulations of Trueswell et al. (2013) and
ask how the model’s performance would vary in the Yu and Smith (2007) task if we reduced
the trial duration to limit fixation counts per trial. Accordingly, we downsized trial durations
and word-presentations in Smith and Yu’s (2007) task to one-third and asked the model to
make a forced-choice response on every test trial. Figure 16d (blue bars) shows the predicted
results. Learning drops significantly but is still above chance in all conditions. The drop is
because associations are revisited/reinforced far fewer times (Figure 16e). The number of
incorrect associations is nearly equal to those in Smith and Yu (2008; Figure 16f) because
the likelihood of missing on both correct and incorrect associations grows proportionally.
We are currently testing these model predictions. Note that, again, this prediction is unique
to WOLVES as it is not possible to reduce the trial durations in either the Kachergis et al.
model or Pursuit, or, in fact, any previous model of CSWL.

Experiment 5: Yu, Zhong and Fricker (2012), Experiment 1.—This study used
eye tracking to examine whether adults’ gaze patterns during training are indicative of
learning performance. Yu et al. (2012) hypothesized that as learning progresses, learners
are increasingly successful in selectively directing their attention to the correct target

after hearing object-associated words. Participants were pre-trained on 3 of 18 novel word
pairings before completing the 4 x 4 condition of Yu and Smith (2007) with all 18 pairs.
An 18-AFC task was used to test learning of all 18 words. Adults’ proportion correct
responses was 91.87% for the three pre-trained words and 58.12% for the other 15 words,
both significantly above chance (Figure 17a). However, because there was high variability
between adults, Yu et al. (2012) divided participants into groups of strong, average, and
weak learners based on their performance at test. As can be seen in Figure 17b, all learners
started by randomly looking at any of the four objects on the screen after hearing a word.
Over the course of training, however, their attention became more selective, with more time
spent looking at the target, particularly for strong learners (Figure 17b).

To simulate the first phase of this experiment, WOLVES was presented with each of the
three words and its referent for 5000ms, long enough to form strong associations. Simulation
of the training and test phases were then identical to the corresponding condition of Yu and
Smith (2007).

As is shown in Figure 17a, WOLVES matched adults’ performance with a low MAPE (5.44)
even though model parameters were not adjusted for this experiment. Both the Kachergis

et al. model (Figure 17a) and Pursuit reproduce the results, although WOLVES’ proportion
correct is the closest match to participants. As in the experiment, we sorted individual model
runs from WOLVES into strong, average, and weak learners. Figure 17c shows that strong
learning models formed fewer incorrect associations over learning. This is because the runs
that end up being strong learners hit upon the right associations early and kept revisiting
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those associations; this limits the formation of incorrect associations. Consequently, these
models spent more time looking at the target over training (Figure 17d). Thus, like adults,
WOLVES selectively attends more to the target as it learns over training.

It is important to emphasize that we used the same parameters for all WOLVES simulations.
Thus, differences in strong vs weak learners emerged from the model’s own autonomous
visual exploration and learning rather than individual differences per se. We note that the
model under-predicted differences in looking to the target for strong learners (see Figure
17d). It is possible that this reflects rea/individual differences that participants brought to
the experiment that we failed to capture via, for instance, parameter differences in groups
of WOLVES simulations. This could be addressed in future work by explicitly assessing
individual differences among participants prior to the word learning task.

Experiment 6: Yurovsky, Yu and Smith (2013), Experiment 1.—This study
explored the role of competitive processes in CSWL. The authors hypothesised that local
competition between word-object mappings would make it difficult to learn multiple
referents for a single word. Adults were presented 18 word-object mappings to learn but

six were single words that each mapped to a single referent on a trial, six were double words
that each mapped to two different referents on a trial and always co-occurred, and six were
noise words that did not map consistently onto any referent (see Figure 18). Each of the 27
training trials presented four words, in sequence, and four objects on the screen such that
each of the 18 words and objects appeared six times.

On each testing trial, participants heard one of the words and clicked the four presented
objects in order to rank their likelihood of being the referent. Participants were credited
with knowing the correct referent for a single word if it was their first guess (‘single” bars
in Figure 19a). Participants were credited with knowing either referent of a double word

if they selected either of the correct referents as a first guess (“either’ bars in Figure 19a).
If participants selected both the referents as first and second guesses, they were credited
with knowing both referents of the double word (‘both’ bars in Figure 19a). Adults showed
better than chance accuracy for single and double words (i.e., all bars in Figure 19a were
above chance levels). Nevertheless, they showed significantly less learning of both referents
of a double word than one referent of a single word (i.e., both < single in Figure 19a).

This indicates that there was competition between the two mappings of a double word that
resulted in adults mostly learning one of the two mappings.

WOLVES was credited with knowing the correct referent for a double word if it looked

at efther of the correct referents more than the other three objects. If looking time to both
the referents was more than looking time to the two distractors, the model was credited
with knowing botfi the correct referents of the double word. Note because the model had to
make at least two looks — one after the other — to attend both referent objects, we calculated
looking at test over 3000ms instead of 12000ms as in other simulations to allow the model

to generate two or more looks. The model showed the same learning trend for the different
word types with accuracy at rates comparable to adult performance (Figure 19a). Model
comparison is not included for this task because implementing multiple selections over time
within a trial was not possible in either of the comparator models.
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Yurovsky et al. (2013) concluded that competition is involved on every trial with a double
word because referents inhibit one another, and learners divide attention between the two
referents. WOLVES shows this competition effect; however, WOLVES also reveals that
competition evolves over the course of learning. The model makes around 5-6 looks during
each learning trial. Thus, on a trial with a double word, it is relatively unlikely that the
model will look at both referents when the double word is ‘on’, because the word is only
presented once. If one of the double word’s referents is well-attended on early trials, the
memory trace of this referent-word pair will begin directing attention selectively to this
referent whenever the word is presented on later trials. This will inhibit the formation of a
strong mapping between the double word and its second referent. In comparison, no such
dynamic competition occurs for sing/e words. This is reflected in the memory traces laid
down at the end of training: the average association strength of double words (averaged over
two associations) is weaker than that of single words (Figure 19b). Thus, WOLVES reveals
how selective attention and memory interact online to give rise to less learning of one-to-two
mappings in the experiment.

Experiment 7: Kachergis, Yu and Shiffrin (2012), Experiment 1.—This study
explored the role of mutual exclusivity (ME) — a bias to map novel words to unnamed
referents (Markman, 1990) — in the learning of new word-object associations, and how ME
is employed and relaxed in CSWL tasks that present objects with multiple associated words.
In an early training stage, participants saw 6 out of 12 word-object mappings (early pairs)
with the number of presentations of each varying across 4 within-subject conditions: 0, 3,
6 or 9. Thus, in the 3-presentation condition, word 1 and object 1 (w1-01) were presented
three times. During the late training stage, each early pair (e.g., wl-01) was matched with
one of the remaining six word-object pairs (late pairs; for instance, w7-07) and always
presented together — for instance, word 1 was presented with object 7 (w1-07), and object
1 was presented with word 7 (w7-01). Three between-subjects conditions manipulated the
number of times each late pair appeared: 3-late, 6-late, 9-late. A control condition did not
include the early training stage. By comparing performance across early and late stages,
Kachergis and colleagues could probe whether early learning ‘blocked’ later learning, as
well as how much learning was required to ‘relax’ mutual exclusivity and allow a new
word-object mapping.

Learning was tested in an 11-AFC test with one word. Each word (e.g., wl) was tested

once with its corresponding referent (01) but without the next best match (07), and once
without its correct referent (01) but with the next best match (07) to allow measurement of
the strength of both associations. Note that the within-stage associations (w1-0l and w7-07)
were compatible with ME, whereas the across-stage associations (w1-07 and w7-01) should
not be learned under strict versions of ME.

Participants showed a ME bias (Figure 20 top panels), as accuracy for cross-stage (w1-07,
w7-01) pairings was less than within-stage pairings (wl1-ol, w7-07). However, all learning
was above chance (grey line in Figure 20 top panels). Moreover, in the face of additional
co-occurrences in late trials (i.e., across 3-late, 6-late, and 9-late conditions), participants
adaptively relaxed ME to learn cross-stage mappings. In the condition with no early trials,
performance was between the within-stage and cross-stage performance levels.
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We used the same training procedure with WOLVES; however, we had to increase the
spatial dimension from 100 units to 300 units to fit 11 objects into the visual scene.
Critically, WOLVES showed similar learning patterns as adults (Figure 20 bottom panels),
although WOLVES shows a much stronger effect of early repetitions. By contrast, early
learning curves are basically flat in the empirical data. Thus, clearly participants learned
faster than WOLVES in this task. We note that we tuned the parameters for this task using a
4 alterative forced-choice procedure as running WOLVES with 300 spatial units takes about
a week of simulation time. Clearly, the parameters of the model are not yet optimal for the
11-AFC version of this experiment.

As expected, the Kachergis et al. model performs well (see Table 3), outperforming
WOLVES in 5 of 7 conditions (Pursuit also has a low MAPE score in one condition).

In the Kachergis et al. model, prior knowledge biases attention to previously observed early
word-object pairs, which competes with the high uncertainty of late pairs, quantified by

the entropy of the new stimuli. Thus, attention is mostly divided between the early and

late within-stage pairs leading to mutual exclusivity-like learning of late pairs. WOLVES
also operates via modulation of attention but does not add in any uncertainty biases; rather,
effects of uncertainty are emergent from the memory trace dynamics. As the model learns
the early pairs, it lays down word-object memory traces. As these memory traces strengthen
with increased early repetitions, performance improves. Moreover, these traces can block
the formation of cross-stage associations. However, word-object pairs that are introduced
late are not blocked because there are no prior associations for these items and increases in
late repetitions systematically improve performance. The learning of cross stage associations
is above chance because the memory and attention constraints can limit the strength of
learning for early pairs. Furthermore, as the number of late trials is increased, there is
increased opportunity to register cross-stage associations as previously formed memory
traces decay and become too weak to block the formation of new peaks in the word-feature
fields. Thus, the build dynamics of the memory traces contribute to the formation of
word-object associations, while the decay dynamics help facilitate re-mapping, provided
the context is supportive of new associations.

These decay dynamics also help WOLVES outperform Pursuit in this task. In particular, for
the cross-stage associations that require relaxing ME to improve learning, we see that as the
number of late repetitions increase, WOLVES’ test performance also increases but Pursuit’s
performance decreases (see Table 3). This is due to the unique format of the test used to
assess cross-stage associations during which it is not the correct target that is presented but
the next-best match. With increasing late repetitions, Pursuit keeps reinforcing the correct
hypothesis only, causing performance at test to go down. In contrast, these rival mappings
decay in WOLVES enabling it to overcome the influence of early training and improve
performance.

Developmental Studies of CSWL

Earlier in this report, we modelled data from two CSWL studies with infants (Smith & Yu,
2008; Yu & Smith, 2011). Here, we simulate data from 5 additional developmental studies
with children between 12-months and 8-years of age and, thus, a wide range of cognitive and
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language abilities. To date, there have been no efforts to explain developmental variations
in CSWL performance. We show below that WOLVES captures developmental changes in
CSWL behaviours via manipulations to only two parameters: tau_Build, which specifies
the timescale of memory trace formation, and tau_Decay, which specifies the timescale of
memory-trace forgetting. As can be seen in Table 4, tau_Build was initially set to 1200 and
only decreased (accelerating memory formation) for the adult simulations reported in the
previous section. By contrast, tau_Decay was systematically increased over age, making the
memory trace dynamics more resistant to decay. Thus, relatively modest parameter changes
were required to capture a host of developmental findings.

Experiment 8: Smith and Yu (2013).—To investigate the role of novelty/familiarity in
CSWL, training trials from Yu and Smith (2011) were rearranged into six blocks of five
trials in which one of the two presented objects repeated trial-after-trial before changing to
another repeating object in the next block. Test trials followed the same structure used in Yu
and Smith (2011). Compared to Yu and Smith (2011), infants showed less learning, that is,
fewer infants looked reliably longer at the target than the distractor at test. These 19 infants
were classified as learners and the remaining 29 as nonlearners. Smith and Yu (2013) then
examined looking to the target and distractor following word presentation during test trials
and found that learners’ visual attention was strongly cued to target objects after word onset
(Figure 21a,b dark line). Nonlearners, by contrast, looked nearly equally to the target and
distractor. During training, all infants looked equally often to both objects on the first trial of
each block but looked increasingly more to the varying object on the successive trials within
a block (Figure 21c,d). Thus, both groups habituated to the repeating objects over training.

Visuo-spatial WM is a core component of WOLVES and modulates its performance in
CSWL. As the model explores its visual environment over trials, it holds objects in working
memory for a short period of time. If an object is maintained in WM, the model will

divert its attention to objects not currently in WM, producing a novelty bias. Memory traces
associated with the WM layers support this process, increasing the excitability of WM
peaks, making them more stable (i.e., less likely to lose stability due to competition with
other WM peaks). Furthermore, if the model happens to attend to an item already in WM,
consolidation is fast and the model quickly releases attention. As shown in previous studies
using VES (Perone & Spencer, 2013, 2013a, 2014), these processes conspire to cause the
model to habituate over trials (see Figure 22 and Bulf, Johnson, & Valenza, 2011; Taga et
al., 2002; Wetherford & Cohen, 1973 on habituation process).

We embedded WOLVES in the task used by Smith and Yu (2013). Like infants, WOLVES
learned less in the Smith and Yu (2013) task compared to the Yu and Smith (2011) task in
terms of proportion looking to the target (Figure 23a, left bars), proportion of words learned
(middle bars), and proportion of learners (right bars). Simulations of the Kachergis et al.
model (see Figure 23a, middle green bar) and Pursuit show the same performance (in terms
of proportion words learned) in both the Smith and Yu (2011) and Smith and Yu (2013)
tasks, contrary to infant behaviours. Note that the Kachergis et al. model does capture the
effects from both studies using separate parameter sets. Interestingly, when we optimize the
parameters to just the Smith and Yu (2013) task, the optimal parameters have a high lambda
value (12.23) indicating strong weighting of entropy (novelty) in this task. This makes good
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sense as children show strong attention to novelty due to the presentation of repeated items
on successive trials. However, the optimized parameters also have an alpha parameter of
1.0, indicating a model with no forgetting. Thus, when parameters are allowed to vary, the
Kachergis et al. model trades-off the entropy / novelty effects for changes over blocks.

By contrast, WOLVES captured infants’ within-block habituation expected from the
repetition structure of the blocks. Looking to the varying object (Figure 23b, green line)
grew progressively within each training block (shaded regions) and dropped down when
a new repeating object was presented at the start of each block. Like infants, model runs
classified as learners looked to the target following word presentation at test, whereas
nonlearning models did not (Figure 23c,d). Finally, WOLVES captured habituation across
training: overall, learner and nonlearner runs looked more to the varying than repeated
objects. In summary, our simulations affirm that when attention is strongly driven by
contextual novelty (and away from familiarity), this competes with, rather than supports,
statistical learning.

Simulations of Smith and Yu (2013) revealed another factor that impacts performance in the
preferential-looking version of the CSWL task—the oscillatory nature of looking relative to
the timing of word presentations. As reviewed above, VES cycles through novelty detection,
attention, consolidation and release as it autonomously explores the visual display. When
two stimuli are present and there are no words to bias attentional selection, this results in
oscillations of looking to one object and then the other. This can be seen in the red line
plotted in Figure 24 which shows strong learning models situated in an 8s test trial without
words. As can be seen, the proportion of model runs looking to the target oscillates around
.50 and attention is roughly evenly distributed between the objects. In contrast, the green
line shows what happens when the same model is placed in the task with a word ‘on’
continuously. Here, the word biases attention to the target. This effect is particularly strong
at the start of the trial because top-down influences are able to direct the model’s very first
look to the target. Looking to the target continues to be high over the remainder of the

trial but decreases somewhat. This decline occurs because as the model looks to the target
object it forms a working memory of the object causing it to be less novel compared to the
distractor. Thus, the growing working memory for the target provides a push to look at the
distractor that counters the top-down influence of the learned word associations.

The blue line in Figure 24 illustrates the case of the same models situated in the Smith and
Yu (2008) test where a single word is presented four times as indicated by the grey vertical
shading. As can be seen, a greater proportion of model runs with learned associations look
to the target object compared to the case when no words are presented (red line). Thus,

the model demonstrates learning. However, target looking is not as high as in the case

of continuous word presentation. This is not simply the case of more word input leading
to more target looking. Rather, the timing of the word presentation also plays a role. In
particular, in the Smith and Yu (2008) test, the model’s greatest proportion of looking to
the target happens during the second looking oscillation. This is because the model has
generated its first look before the word has come on and must finish its cycle of looking
before the word can direct attention to the target. Thus, demonstrations of learning at test
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do not just depend on the accumulated memories of what words are associated with what
objects, but also on the dynamics of visual exploration in space.

This is evident in simulations of Smith and Yu (2013). In particular, Yu and Smith (2011)
used an 8-second test that included four presentations of the word, while Smith and Yu
(2013) employed a same duration test but presented the word five times. Importantly, the
two tests differ in the onset timing of the words as indicated in Figure 25 (left panel).

To probe whether these test differences matter, we trained models using the Smith and Yu
(2011) paradigm and then tested the models using the two test trial formats shown in Figure
25 (left panel). As can be seen in figure (right panel), WOLVES demonstrates more learning
in the Smith and Yu (2013) test than in the Yu and Smith (2011) test. This is surprising in
that infants showed less learning in Smith and Yu (2013) and emphasizes that habituation
severely hindered learning in this study.

Experiments 9 and 10: Vlach and Johnson (2013) and Vlach and DeBrock
(2019).—These studies explored the role of developing memory abilities in CSWL. Sixteen
and 20-month-old (Vlach & Johnson, 2013) and 47- to 58-month old children (Vlach &
DeBrock, 2019) were presented with a CSWL task in which presentations of 12 word-object
mappings were either grouped together (Massed Condition) or distributed (Interleaved
Condition, see Figure 26). Vlach and Johnson (2013) found that 16-month-old infants
learned the massed object-label pairings but not the /nterleaved pairings (Figure 27a, blue
bars). Twenty-month-olds showed roughly equal learning in the two conditions (Figure 27b,
blue bars). Interestingly, Vlach and DeBrock (2019) found that older children showed better
learning in the Interleaved condition (Figure 27c, blue bars). Vlach and Johnson (2013)
suggested that 16-month-old infants had trouble learning from the interleaved pairings
because of limits in aggregation and retrieval of pairings from memory. This idea suggests
that older infants and children do better in this condition because their memory system has
improved. However, it does not explain why older infants and children no longer learn well
in the massed condition.

We situated WOLVES in the training phase of this task and measured preferential looking

at test in both experiments for consistency. To make data comparable to the choice task of
Vlach and DeBrock (2019), WOLVES was credited with knowing the word if it looked more
to the target than the distractor in the first 2000 milliseconds following word presentation.
The only changes to the parameters were to tau_Decay to simulate development, as reviewed
above.

WOLVES was successful in capturing the developmental differences seen in these studies
(yellow bars in Figure 27). With fast memory decay (tau_Decay = 1000), WOLVES
captured the 16-month-old infants’ above-chance preferential looking to massed objects
and chance-level looking to interleaved objects. With moderate memory decay (tau_Decay
= 1500), WOLVES captured 20-month-old infants’ nearly equal learning in the massed
and interleaved conditions. With slower memory decay (tau_Decay = 3000), WOLVES
performed above chance in both conditions and showed better learning of interleaved
pairings than massed pairings. Further, as can be seen in Figure 27d, WOLVES learns
proportionally more pairings in the massed condition when tau_Decay is lower but begins
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to show better performance in the interleaved condition as tau_Decay increases. We
explored whether the Kachergis et al. model could capture the difference in performance
across these conditions, starting with the ‘base’ optimized developmental parameters and
scaling alpha (the forgetting parameter). Simulations in the alpha range 0.98-1.0 showed
the best performance. As shown in Figure 27e, performance improves in the interleaved
condition with increases in alpha, but the interleaved condition never outperforms the
massed condition.

Further examination of the association strengths of WOLVES as it enters the test phase
provides a unifying developmental account of the results observed in these studies. Figure
28 plots the strength of association traces for the massed and interleaved pairings at the

end of training for each age group. In all three panels, the dashed red curve showing the
memory strength of the massed objects is very steep; thus, massed pairings presented in
later trials have strong trace strengths while massed pairings presented early on are mostly
forgotten. The blue curve shows the interleaved pairings. Here, learning is much less steep
because these pairings decay and then are rebuilt every six trials. This pattern emerges from
the interaction of memory trace decay and how often a particular word-object pairing is
revisited (which stops decay for that pairing). For example, in the task, the massed pairing
presented in the first block is never presented again in the five following blocks (30 trials)
and therefore its memory trace decays continuously to a very low strength by test. In
contrast, the massed pairing presented in the final block gets almost no time to decay before
test.

The task-structure therefore interacts with the slowing of memory decay used to simulate
development such that the association strength curves for both the massed and interleaved
pairings are relatively higher across age (Figure 28). If we assume that a trace must be
above some rough threshold to produce word-driven attentional selection at test, say 0.12
in Figure 28, we see that only one of the massed pairings meets this threshold in the left
panel with tau_Decay = 1000 corresponding to 16-month-old infants. For slightly better
memory (middle panel) corresponding to 20-month-olds, however, trace strength for an
equal number of massed and interleaved pairings is above threshold and, thus, WOLVES
shows equal learning in the conditions. Finally, in the right panel for tau_Decay = 3000
corresponding to the older children, three massed and a// interleaved pairings are above
threshold, resulting in better performance on the interleaved condition. Note, that Figure 28
plots trace strengths of correctassociations only; WOLVES will have formed some incorrect
associations as well that will affect test performance. Thus, older children are unlikely to
have complete knowledge of all interleaved pairings. Interestingly, the model does predict
that 16-month-olds should show a recency effect of remembering the sixth massed pairing
better than the other pairings.

Experiment 11: Vlach and DeBrock (2017), Experiment 2.—To investigate the role
of the development of different memory subsystems in CSWL, children between 22- and
66-months of age were tested in Vlach and DeBrock’s (2019) CSWL task and multiple
other memory tasks. The hypothesis was that performance in the memory tasks would
strongly predict CSWL performance. In particular, children’s recognition memory for novel
word-object pairings was tested by presenting 12 ostensive learning trials with one novel
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object and one novel word and immediately testing memory by presenting two objects and
asking the child to point to the target by name. Vlach and DeBrock (2017) found that
children’s correct responses were higher than chance levels in both tasks. They used a
regression to examine the relationship between performance in the tasks and found a strong
positive relation between memories for word-object mappings and CSWL (Figure 29, red
line).

WOLVES was situated in each task. To simulate developmental changes in memory
retention, we varied tau_Decay from 800 to 5000 to estimate five intermediate points
corresponding to the age range of 22-68 months. As the blue line in Figure 29a shows,
WOLVES follows the same upward trend observed in the data from Vlach and DeBrock
(2017). These results are in line with the studies discussed above and confirm that the
development of the memory sub-system specific to word-object binding plays a critical role
in CSWL. Figure 29b shows our attempts to simulate these data using the two comparator
models. For the Kachergis et al. model, we varied alpha over the range from 0.96 to 1.0

as with Vlach and Johnson (2013). As can be seen in the figure, this model showed very
little change in performance across this range. Interestingly, when we varied the ‘remember
parameter in Pursuit, the model simulated the data fairly well.

Experiment 12: Suanda, Mugwanya and Namy (2014), Experiment 1.—This
study investigated the role that contextual diversity — defined as the degree to which
multiple word-object mappings tend to co-occur — plays in 5- to 7-year-old children’s
word learning in a CSWL task. The experimental hypothesis was that if children learn
word-object mappings by tracking the co-occurrences of words and objects, they should
be less successful in situations with lower contextual diversity, and thus higher cross-
correlations between words and objects, than in situations with higher contextual diversity.
To examine this, Suanda et al. (2014) presented children eight word-object mappings to
learn in conditions of either high, medium, or low contextual diversity (see Figure 30

for task details). Figure 31a shows the mean proportion of correct responses by children
across the levels of contextual diversity. Suanda et al. (2014) reported that children’s
learning was significantly higher than chance in all three conditions. This suggests that
school-age children can learn word-object mappings using cross-situational learning from
only a handful of ambiguous naming events. However, children’s performance decreased
with decreasing contextual diversity (Figure 31a, yellow bars). At the group level, the
proportion of children responding correctly also goes down with less diversity (Figure
31b). WOLVES shows the same downward trend in mean proportion correct responses
and proportion of subjects responding correctly across conditions as children (Figure 31,
blue bars). By contrast, the Kachergis et al. model shows the same performance across all
conditions (Figure 31, green bars).

Suanda et al. (2014) suggested several possible reasons why children’s performance was
higher with more diversity: 1) increased variability of learning instances (i.e., increased
diversity) creates more decontextualized representations, (2) variability creates a greater
number of potential retrieval cues, or 3) variability initially creates “‘desirable difficulties’
in learning that boosts the strength of learning in the long run. WOLVES offers a different
account: these effects emerge from the real-time interactions between the formation of
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word-object memory traces and the selective attention these memories capture. During the
learning phase of the HCD condition, the model explores both objects and encodes about
two word-object mappings, one per object. Over the four presentations of a word-object
pairing, only the memory trace for the correct mapping will be reinforced after every
exposure to a highly diverse context because it is the only consistent word-object pairing
repeatedly presented. This creates a relatively large difference in the strength of correct
and incorrect mappings and means correct mappings are more likely to drive looking to
the target at test. In the LCD condition, memories for both incorrect and correct mappings
are reinforced on every exposure to the less diverse context resulting in relatively small
differences between their strengths (almost half of those in case of HCD). Thus, at test both
correct and incorrect associations are nearly equally as strong and word-driven selective
attention gets misdirected to incorrect referents more often.

General Discussion

The goal of this report was to propose an implementation-level theory of CSWL that is
comprehensive and takes time seriously. The extensive literature on CSWL shows that
learning in this task is critically influenced by processes operating at multiple timescales—
from visual exploration and selection in real-time, to competition from growing word-object
associations over learning, to the build and decay of memories from trial-to-trial, to changes
in memory dynamics over development. Critically, no prior models incorporated real-time
processing, instead treating time as ‘one-shot’. Similarly, no prior models have addressed
changes in CSWL over development. In contrast, we combined a model of autonomous
visual exploration based on real-time processes of visual selection and attention with a
model of word-object association to capture fixation data as well as selection responses at
test and simulate data from a wide range of CSWL tasks. Furthermore, changes in memory
parameters in WOLVES provided the first account of developmental differences in CSWL.

A primary goal of the current paper was to evaluate whether WOLVES offers a
comprehensive account of CSWL in the context of two comparator models. By capturing
important measures of performance including visual exploratory measures, WOLVES
explained nearly twice as many observations as the comparator models (132 vs. 69 data
values). WOLVES also captured the head-to-head comparison data set more accurately,
with lower MAPE scores in 12 of 17 conditions. Notably, the 5 cases where the

comparator models fit the data more accurately were all from the same study (Kachergis

et al., 2012). Next, the generalization criterion methodology revealed that WOLVES
generalized more accurately to 3 held-out experiments. Finally, WOLVES provided the only
systematic account of development, with the comparator models generally failing to capture
developmental differences across studies.

Although WOLVES fared well in the model comparison exercise, the Kachergis et al.
model showed the lowest AIC/BIC scores. Thus, based on this commonly used metric,

the Kachergis et al. model provides the best overall fit to the subset of data compared
head-to-head. Nevertheless, simulation results showed multiple cases where this model
failed to capture the right qualitative results. For instance, although this model provided a
robust account of multiple adult experiments, it failed to capture the qualitative pattern from
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Trueswell et al. (2013) across ‘incorrect’ vs. ‘correct’ learning instances. This model also
failed to capture the qualitative data patterns from multiple developmental studies. Based
on this, we conclude that WOLVES is a very good model of CSWL. The Kachergis et al.
model is also a good model of adults’ CSWL performance. Pursuit generally compared less
favourably to the other models, although simulations of Vlach and DeBrock (2017) suggest
this model might have some good developmental potential.

Implications for CSWL: Component processes

Our goal of developing the first implementation-level theory of CSWL was motivated by Yu
and Smith’s (2012) analysis of this CSWL literature. Yu and Smith (2012) demonstrated that
variations in information selection, learning machinery, and the decision processes employed
in CSWL can have a major impact on the conclusions reached regarding findings from the
extant literature. Here, we review insights from WOLVES regarding these core component
processes.

Information selection.—Consistent with empirical data, WOLVES reveals that mere
exposure to statistical regularities does not offer a sufficient explanation for word-object
learning in CSWL as suggested by early associative learning accounts (Smith, 2000; Yu,
2008; Yu & Smith, 2006). This is because information selection during cross-situational
word learning is grounded in time-extended visual exploratory processes like novelty
detection, habituation, object recognition, and selective top-down and bottom-up attention
to objects. These processes work together to create cycles of attention, allowing a learner

to selectively attend to objects in the scene one by one. While simulations of Yu and Smith
(2011) and Yu et al. (2012) suggest that word-object mappings selectively guide attention,
in simulations of Smith and Yu (2013), novelty and working memory processes drove the
model’s attention more strongly than emerging word-object mappings. Thus, consistent with
empirical data, the model shows that moment-by-moment selective attention in CSWL tasks
is both dependent on and indicative of learning.

Two key implications follow from this. First, since information selection in the model

is determined by cycles of attention, varying the number of fixations possible per trial
affects how much information a learner takes in. More visual sampling, however, does not
necessarily lead to better learning. For example, in the simulations of Smith and Yu (2011),
we found faster oscillation cycles, that lead to more fixations per trial, resulted in less
learning. This is because learning in CSWL is also governed by when words are input to the
model and, thus, it is the information selected via real-time synchrony of word presentations
and fixations that drives learning. Gaze-patterns that are time-locked with word onset lead to
more robust memory traces. A second key implication from WOLVES is that bottom-up and
top-down attention processes active in CSWL work in a competitive manner. Object-based
visual attentional drives looking to novelty while word-based associative processes drive
looking to the referents of presented words. In this way, then, looking is multiply determined
and as Smith and Yu (2013) suggested, looking should be treated as an /ndicative, but not a
perfect, measure of learning in infants and adults.
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Learning machinery.—Memory lies at the core of the learning machinery necessary

for registering and updating word-object mappings. This is seen in recent studies of

CSWL (Vlach & DeBrock, 2017, 2019; Vlach & Johnson, 2013; Vlach & Sandhofer,

2014) but more generally in work that relates memory development to vocabulary growth
(Dapretto & Bjork, 2000; Gershkoff-Stowe, 2002). Some studies have also highlighted
multiple significant memory-based constraints on learning such as memory consolidation,
forgetting, and recall that directly regulate word learning and language acquisition (Barr,
2013; Endress, Nespor, & Mehler, 2009; Gathercole, 2000; Horst & Samuelson, 2008; Vlach
& Johnson, 2013).

Our simulations demonstrate that both memory formation and decay parameters play a key
role in flexible learning. Very fast values of the parameter regulating memory formation
(tau_Build) can cause encoding of too many incorrect associations, while fast values of

the decay parameter (fau_Decay) can cause quick forgetting. This is consistent with recent
arguments by Vlach (2019) that forgetting and other memory constraints can simultaneously
hinder and promote word learning. Likewise, we used changes in forgetting to simulate the
developmental trajectory of learning during infancy and childhood, which fits with Vlach’s
arguments that changes to memory systems are the key driver of CSWL in the toddler and
preschool years.

More generally, WOLVES provides the opportunity to look at how different memory
processes (working memory, recall, forgetting) that operate over different timescales (real-
time, the timescale of working memory, and the timescale of long-term learning) might
constrain word learning. Studies have indicated that early visual working memory strength
in children between 2- and 4-years-of-age is strongly correlated with later expressive and
receptive language (Archibald, 2017; Newbury, Klee, Stokes, & Moran, 2015; Vales &
Smith, 2015). Novel word learning abilities in children with specific language impairment
and in children with hearing impairment are also strongly predicted by complex working
memory capacities (Hansson, Forsberg, Lifqvist, Maki-Torkko, & Sahlén, 2004). This

is because working memory only holds a limited number of items at any one moment
(Baddeley, 2012, 2017), placing an upper bound on the number of words, objects, and
associations a learner can process in a moment.

A recent study showed that a working memory intervention program for children with
language disorders significantly increased performance in various memory and lexical-
semantic processing tasks (Acosta, Hernandez, & Ramirez, 2019). However, limits on
working memory have also been shown to be beneficial in adults (Decaro, Thomas, &
Beilock, 2008; Gaissmaier, Schooler, & Rieskamp, 2006). WOLVES provides a means
to explore the complex relationships between working memory and word learning. For
example, while increasing working memory might initially be thought to have a positive
effect on CSWL, the fact that increases in working memory cause object consolidation
to occur faster means it can subsequently change looking dynamics in ways that are not
conducive to learning (as we saw in Smith & Yu, 2013).

Decision making.—Simulations of the canonical infant CSWL task showed that the
structure of the test trials has a significant impact on performance. Recall that the model
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showed better performance at test with continuous word presentation or early word
presentation that preceded the first look. Thus, constraints on the processes of visual
exploration—time to initiate an eye movement, the cycle of looking, novelty biases,
habituation—affect test performance, suggesting that conclusions about what was learned
during training that are drawn from test performance need to be considered very carefully.
Indeed, the model continues to learn at test because the mappings presented—2 objects but
only one word—are less ambiguous than those presented during training. Such learning
during test could act to overcome incorrect mappings formed during training. We think it
is likely that this would apply to infants as well. These observations fit with prior studies
that highlight the possibility of learning on test trials in other infant looking paradigms (e.g.,
Schoner & Thelen, 2006).

Additional Implications for CSWL

HT vs AL debate.—Our simulations of adult data from Yu et al. (2012), Yu & Smith
2007, and Trueswell et al. (2013) suggest that the number of hypotheses/associations
created in a CSWL task is governed by the number of fixations made on learning trials.
On trials with longer durations, more fixations result in the formation of more hypotheses/
associations. Whether learners (adults or infants) form a single hypothesis or multiple
associations will, thus, depend on the structure of the task. In a task environment like
Trueswell et al. (2013) with forced-choice selections and short trial durations, learners
typically form one association and learning appears in line with HT accounts. In contrast,
in experiments like that of Yu and Smith (2007) and Yu et al. (2012), with longer trial
lengths, multiple associations are typically formed, consistent with AL accounts. Evidence
of multiple mappings is also more likely to be seen in studies with more trials that examine
performance during training (e.g., Roembke and McMurray, 2016), as opposed to only
probing mappings at test.

Critically, the strength of associations in WOLVES is also influenced by attentional and
memory constraints; objects that are not attended long enough create weaker traces. For
instance, in simulations of Smith and Yu (2011), infant models that produced fewer fixations
registered around two (strong) associations per trial and turned out to be strong learners.
Those that fixated more, formed around four associations that were weak and possibly
erroneous and turned out to be weak learners. This suggests that there is likely an optimal
setting for learning in the experiment that balances attentional and memory constraints.
However, this setting might differ for individuals and over the course of the experiment as
learning builds representations and changes the looking dynamics.

Mutual exclusivity and competition.—Our simulations of Yurovsky et al. (2013)
showed that multiple competitive processes influence cross-situational word learning, some
occurring within trials and some across trials. Yurovsky and colleagues ascribe these
competitive processes to mutual exclusivity constraints. WOLVES exhibits a form of
mutual exclusivity in that strong word-object memory traces can effectively ‘block’ new
associations due to the winner-take-all dynamics in the word-feature fields. This forms the
main mechanism underlying global competition (i.e., competition between mappings for the
same word presented on different trials) as reported in Yurovsky et al. (2013). Similarly, in
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simulations of Kachergis et al. (2012), this global competition resists the formation of cross-
stage associations during the latter part of the task. On the other hand, the attentional system
in VES leads to selective (one-by-one) attention to objects and this restricts the number of
associations formed for each object within a trial. Along with top-down influences, selective
attention therefore becomes the basis of /ocal competition between referents for a word
within a trial.

WOLVES also shows how these forms of competition emerge at multiple timescales (see
also McMurray, Horst, & Samuelson, 2012; Bhat, Mahajan, & Mehta, 2011; Bhat & Mehta,
2012). Local competition for attention to objects occurs on the short timescale of individual
trials, while global competition is a consequence of a building memories over the longer
timescale of multiple trials. In this sense, one could see the global versus local competition
as a competition for memory versus attention in the model. In line with this idea, Benitez,
Yurovsky, and Smith (2016) found that cross-trial competition is reduced as the separation
in time between trials containing competing associations is increased. This is also consistent
with WOLVES because time gaps will cause weaker associations to fade away and provide
less competition to new associations (Benitez et al., 2016).

Exploring the neural bases of CSWL.—Our use of winner-take-all field dynamics may
also be related to hippocampal systems that have been reported to form only one association
at a time in a recent CSWL task with adults (Berens, Horst, & Bird, 2018). Berens and
colleagues reported that hippocampal activity of adults indicated that they were storing

only a single hypothesis at each instant. However, Vlach (2019) has suggested that the

brain might be using different networks for storage and retrieval of information and certain
networks such as hippocampal networks may be less important for immediate word binding
but critical for long term retention and recall. Since children’s hippocampal systems are

still developing, this immaturity may be behind their failure to store associations for longer
periods. More generally, our use of Dynamic Field Theory opens up avenues to explore

the neural dynamics of CSWL directly. For instance, we have recently developed methods
to simulate hemodynamics from DF models, opening the door to test predictions of such
models directly from fMRI data (Buss et al., 2021; Buss & Spencer, 2018; Buss, Wifall,
Hazeltine, & Spencer, 2013; Wijeakumar, Ambrose, Spencer, & Curtu, 2017).

Beyond CSWL: General implications

Development.—The simulations we presented captured data from 7 CSWL studies with
children from 11 months to 8 years of age. We accounted for this wide developmental
age-range with changes to only two parameters related to the rate of memory formation

and decay. This is impressive coverage for such a simple account, but it is almost certainly
incomplete. We know that that there are substantial changes in children’s cognitive systems
in the age-range subsumed by the current work, and some of these are changes to processes
instantiated in the model. For instance, we know that the number of items children can hold
in working memory grows from 1 or 2 in infancy to 3 or 4 in the preschool years (Buss, Fox,
Boas, & Spencer, 2014; Simmering, 2016). Prior dynamic field models have captured these
changes with changes in the strength of excitation and inhibition in WM fields. However, we
did not need to impose these changes to WOLVES to capture a substantial number of studies
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in the developmental CSWL literature. This indicates that the current data do not provide
sufficient constraints to necessitate additional changes to the model. Future work will be
needed to explicitly examine how, for instance, changes in visual working memory capacity
impact CSWL.

Likewise, as development progresses, learners may employ their growing semantic and
causal knowledge to support learning via multiple cognitive strategies. However, it is also
possible that growing semantic networks can result in interference and retrieval issues,
particularly when the lexicon is growing rapidly (Gershkoff-Stowe, 2001). Furthermore,
the context of language learning changes dramatically from early to middle childhood and
adulthood (Anglin, Miller, & Wakefield, 1993; Karmiloff-Smith, 1986; Nippold, 2000).
Thus, it is clear that more work needs to be done to understand how the word learning
system is influenced by changes in component processes and the context in which word
learning occurs. This provides an opportunity to use WOLVES in a predictive manner by
implementing parameter changes related to known changes in component processes and
making predictions of how these changes will influence performance in CSWL-type tasks.

Autonomy and individual differences.—Prior CSWL studies have revealed individual
differences in looking behaviour during training that are strongly related to individuals’
learning performance. For instance, infants who look longer (Yu & Smith, 2011) or supress
novelty effects (Smith & Yu, 2013) during training are more likely to be classified as strong
learners at test. Similarly, adults who show word-cueing effects during training show better
performance at test (Yu et al., 2012). Simulations of WOLVES revealed some of these
same effects even from models that were not parametrically different. Rather, individual
differences emerged from autonomous visual exploration and learning. Thus, it is possible
that some of the effects reported in empirical studies may be emergent differences rather
than individual differences between subjects.

This poses a challenge for experiments in that it is critical to distinguish between emergent
and individual differences. We contend that WOLVES can help in this regard, predicting
behavioural patterns of infants and adults that should arise from parametric differences
between individuals. For instance, we could simulate how individual differences in, say,
working memory capacity should influence CSWL, and predict cross-task within-subject
correlations that should emerge when individuals are put in multiple tasks (similar to
simulations of Vlach & DeBrock, 2017). This approach might reveal empirical patterns
reflective of stable individual differences vs. emergent variations.

Generalizing to other phenomena via the predecessor models.—Because
WOLVES reflects the integration of prior models, in theory, all of the phenomena captured
by these predecessor models should ‘live’ in WOLVES; however, this remains to be
demonstrated. Specifically, the WOL part of WOLVES has captured multiple word learning
behaviours such as comprehension, production, referent selection, and both forced-choice
and yes/no novel noun generalization including children’s performance in these tasks
(Samuelson et al., 2013). The model also captures children’s generalization in hierarchical
naming tasks (Jenkins, Samuelson, Smith, & Spencer, 2015; Samuelson et al., 2017, 2013;
Spencer, Perone, Smith, & Samuelson, 2011) and the development of selective attention
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(Perry & Samuelson, 2013; Perry, 2012; Perry & Samuelson, 2014). The model has

been used to examine the influence of long-term learning on in-the-moment mapping

of novel names to novel objects and on the generalization of names to new instances
(Horst & Samuelson, 2008; Perry, Samuelson, & Burdinie, 2014; Samuelson & Smith,
1999). Through memory-trace bindings of space-feature fields, the model can emulate
the children’s use of memories to bind novel names to novel objects (Samuelson et al.,
2011). Finally, the model captures the development of the shape bias (Perone, Spencer, &
Samuelson, 2014). All of these phenomena should be within the purview of WOLVES.

The VES part of WOLVES has previously been used to simulate looking dynamics in adults
(Schneegans et al., 2016, 2014) and has also captured measures of infant visual exploration
including habituation, fixation dynamics, shift rates, recognition performance, and looking
times in preferential looking and habituation paradigms (Perone et al., 2011; Perone &
Spencer, 2013, 2014). VES has made novel predictions regarding the shared neurocognitive
basis of looking dynamics and discrimination, and their correlation within individuals
(Perone & Spencer, 2013; Perone et al., 2011; Perone & Spencer, 2014). The model also
captures individual differences in looking dynamics (Perone & Spencer, 2013, 2013a) and
shows how minor differences in autonomous visual exploration early in development can
cascade forward to create change over time in both typical and atypical populations (Perone
& Spencer, 2013). Relatedly, situating versions of a ‘preterm’ model in an intervention
context have raised the possibility that we can use the model as a clinical tool, predicting the
effectiveness of interventions (Perone & Spencer, 2013).

Furthermore, WOLVES readily generalized to other paradigms that examine the relationship
between word learning and visual exploration. For example, we have recently applied
WOLVES to three more empirical tasks that examine infants’ preference to look at novel
objects and how this can be manipulated by the presence of words (Bhat, Spencer, &
Samuelson, 2020b). Consistent with empirical data, WOLVES explains how familiar objects
attract less attention than novel ones (Mather & Plunkett, 2012) but how introducing a
familiar word to a looking task can reduce infants” bias to look at novel objects (Mather,
Schafer, & Houston-Price, 2011). It also shows how novel words can drive attention to novel
objects (Mather, 2013; Mather & Plunkett, 2012) and how looking and learning are affected
by the relative novelty of an object (Mather & Plunkett, 2010, 2012).

Future Directions

What WOLVES Does and Does Not Predict.—In the present report, we showed how
WOLVES can be used to generate novel predictions—a key metric in model evaluation.
WOLVES predicts that there is a sweet spot in the number of fixations on individual training
trials that maximizes infant learning (see Simulations 1 & 2). Next, adult learning should be
significantly reduced in the Yu and Smith (2007) task by reducing the trial length by 1/3.
WOLVES also predicts that extending the trial time and number of word repetitions in the
Trueswell et al. (2013) task would help participants remember prior incorrect hypotheses.
These three predictions stem from the real-time visual attention and fixation dynamics in the
model, dynamics that are not captured by ‘one-shot” CSWL models (see Table 1).
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Another unique feature of WOLVES is its use of metric feature and space dimensions.

This too can yield unique predicitons. For instance, the use of varying spatial locations or
small changes in object features should help infants overcome the “novelty trap” of repeated
objects in the Smith and Yu (2013) task. Likewise, WOLVES makes the counterintuitive
prediction that adult learning performance could be improved via the use of metric variations
that create highly similar stimuli (Bhat, Spencer, & Samuelson, 2020).

Importantly, there are also things WOLVES does not predict. For example, we tested
WOLVES in a pair of studies by Fitneva and Christiansen (2011, 2017) that explore the
role of accuracy in initial learning of word-object associations on later learning of same/
different associations (see Appendix D for task details and simulation results). Although
intuitively, initial accuracy of word-object pairings should be positively correlated with
learning performance in later pairs, Fitneva and Christiansen (2017) reported a complex
developmental pattern in that initial accuracy was positively related to learning outcomes in
4-year-olds, had no effect on 10-year-olds’ learning, and was inversely related to learning
outcomes in adults. While WOLVES replicates the findings that performance improves with
age significantly, it fails to reproduce the developmental reversal on the impact of initial
accuracy. This suggests that memory mechanisms beyond those explored here may act

in CSWL. That makes sense because developmental changes occur in multiple cognitive
systems including working memory. For instance, Fitneva and Christiansen (2017) have
suggested that cognitive control mechanisms related to error-control and feedback may be
involved in their findings, a potential future direction for WOLVES.

Limitations.—Testing novel predictions is a key part of theory development; given that

we did not test novel predictions here, WOLVES has not yet proven its full potential as a
theory of CSWL. This is important, particularly given the complexity of the model. It will be
important to show in future work that the model is not too flexible. That is, the model should
rule out specific patterns of results as well as ruling 77 specific findings.

Another key limitation with WOLVES is that the model parameters had to be ‘tuned’ by
hand instead of using an optimization procedure. The limits of this approach were evident
with the relatively high MAPE scores for simulations of data from Kachergis et al. (2012).
We suspect the parameters of WOLVES could be optimized to better capture data from this
experiment, but with a week of simulation time per run it was not feasible to do this work by
hand. Clearly, it will be important to develop optimization methods for this class of models
in future work, both to speed up simulation work and to ensure that optimized parameter
values are reproducible regardless of who does the optimizing.

Conclusions

Considered together, empirical and modelling work suggests that neither associative
learning nor hypothesis testing accounts provide a comprehensive understanding of how
infants, children and adults track and use co-occurrence statistics in the service of novel
word learning. WOLVES provides a formal implementation-level account of the real-time
processes of attention and memory and how these processes evolve over learning. We have
shown that WOLVES is a comprehensive theoretical account of CSWL by capturing data
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from multiple studies and tasks. Further, we have provided the first developmental account
that captures changes in CSWL from infancy to toddlerhood, childhood, and adulthood.
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Appendix A

Dynamic Field Theory (DFT) is a framework that provides an embodied, dynamic systems
approach to understanding and modelling cognitive-level processes and their interaction
with the external world via sensorimotor systems (Schoner, Spencer, & The DFT Research
Group, 2016; Spencer & Schoéner, 2003). In the sections below, we provide a primer on the
key concepts that underlie DFT (see Appendix B for mathematical formulations).

Dynamic fields.

DFT is grounded in the idea of neuronal population coding — that perception, cognition,
and action reflects the combined activation of populations of neurons moving into and out
of stable activation patterns through time (Erlhagen et al., 1999; Georgopoulos, Schwartz,
& Kettner, 1986). Neuro-computations within such populations can be modelled using
dynamic fields (DFs, Amari, 1977). In a DF, activation evolves continuously over time as
a function of the extrinsic signals input to the population as well as the intrinsic dynamic
neural interactions within the population. Neurons within the population with activations
above a certain threshold level transmit their activation ‘laterally’ to their neighbours in the
population as well as to neurons in other populations to which they are recurrently coupled.
Through these recurrent interactions, the DF autonomously creates evolving patterns of
activation within and between neural populations.

Within DFT, neural populations are distributed over metric features spaces and organized
such that neurons that ‘code’ for similar features are close together in the neural field. This
creates a functional topography where neighbouring neurons co-excite one another (local
excitation) and distant neighbours inhibit one another (surround inhibition). For instance,
dynamic fields can be defined over perceptual feature dimensions like colour, shape, or
spatial location, or over the metric dimensions of movement like heading direction, speed,
and so on. Note that some cortical fields in the brain retain this functional topography on the
anatomical surface ( e.g., visual cortex, see Jancke et al., 1999), while other cortical fields
retain this functional topography but are *‘scrambled’ on the anatomical surface (e.g., motor
cortex; see Georgopoulos et al., 1986).

An example of a dynamic field is shown in panel A of Figure 1. The blue line shows
the pattern of activation across the cortical field with a bump on the left side of the field
reflecting a weak input (green line) on that side of the feature space. This might reflect the
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detection of a weak perceptual input on the left side of visual space. The sub-panel below it
shows the lateral interaction function (interaction kernel) with local excitation and surround
inhibition. In this example, the weak input is not strong enough to activate any of the neural
sites above threshold (above 0). Consequently, none of the neural sites in the population are
generating output (red line). Instead, the neural population remains stably near its ‘resting’
level.

Peaks as the unit of representation-in-the-moment.

Strong stimulation to a local collection of neurons causes some neurons to go above
threshold (i.e., above 0). When this occurs, they pass excitation to their local neighbours
and inhibit neurons far away (Amari, 1977; Dehghani et al., 2016; Fuster, 1973; Jancke

et al., 1999; Spencer, Austin, & Schutte, 2012). This results in a localized peak of
activation (also referred to as a ‘bump attractor’; see Edin et al., 2007; Wei, Wang, &
Wang, 2012). Localized peaks stably represent a type of neural decision in the field, for
instance, an estimate of the current spatial location of input to the field. The local excitatory
interaction stabilizes such peaks against decay, while surround inhibition keeps excitation
from spreading laterally in the field.

Figure A1(B) shows the emergence of an activation peak at location 25 in response to a
boost in the input at this location. The blue activation line shows strong excitation centred at
this location (see red ‘output’ line), with strong inhibition extending to sites 10 and 40. Panel
C shows how activity in this field evolves over time. The field stays at the resting level until
a stimulus is applied around the 40t time step. Thereafter, the activity at location 25 grows
strongly to produce a peak that stably represents the location of the input.
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Figure Al.

Neuronal activation, output and input to a one-dimensional DF (upper subpanel) and
interaction kernel in the field (lower subpanel). (A) DF with no neural peaks, (B) a
self-stabilizing peak, (C) history of neural activity in the DF of panel B over time, (D) a
self-sustaining peak, (E) multi-peak DF with two peaks, and (F) a winner-take-all DF

Peaks as attractor states.

Excitatory and inhibitory recurrent neural interactions in DFs give rise to different types

of stable states of activation. The resting stateis a stable non-peak attractor state in a

DF where the neural population remains stably at rest in the absence of external inputs
(panel A). When the input is sufficiently strong, a se/f-stabilizing peak is formed (panel B).
A self-stabilizing peak is robust to noise fluctuations but dies out after some time if the
corresponding input to the field is removed. If, however, the excitatory interactions between
the neurons are very strong (see interaction kernel in panel D), strong recurrent activations
help peaks sustain even if input is removed. These self-sustaining peaks can therefore act
as a form of working memory to maintain recent information that is no longer available as
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input to the field. Panel D shows a working memory peak in a field surviving even after the
input to the field has been removed (see flat green input line).

In addition, multiple inputs can be presented to a single field, resulting in the activation of
multiple corresponding regions in a field (panel E). Whether one or multiple peaks form

in such a case depends on the form of inhibitory interaction in the field. With the type

of surround inhibition shown in the subpanel below panel E, multiple peaks can be stably
activated in a field. These peaks will compete if they are close enough to share surround
inhibition. In such cases, the competition between the sites will be decided by differences in
input strength, differences in the timing of the input, or by noise in the field.

If inhibitory interactions also have a global component where every site inhibits every other
site in the field (see subpanel below panel F), only one peak will win the competition and a
single stabilized peak of activation at that location will form (panel F). Such fields are thus
winner-take-all fields. Note that these different peak attractor states are mutually exclusive
and determined by the structure of the interaction kernel.

Multi-dimensional DFs.

All the above properties of one-dimensional fields can be extended to multi-dimensional
fields that enable integration of multiple types of information. For example, Figure A2(A)
shows a 2D dynamic neural field (J) representing two different metric dimensions, say
colour and space. Each location within such a field responds to a particular colour when
detected at a particular location. For example, the peak in Figure A2(A) might represent the
detection of a blue item (hue 75) at spatial position 25. Peaks in 2D fields can enter the same
collection of attractor states discussed previously (e.g., self-stabilized vs self-sustaining
peaks) based on the properties of local excitation and surround inhibition which now extend
across both feature dimensions.
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Figure A2:
(a) A 2D DF (J) representing colour and spatial location of objects. A peak in J signifies

detection of a blue item (hue 75) at spatial position 25. A 1D DF (l) is coupled to J and
activity across J is summed up and forwarded to | to select the colour of the detected object.
(b) A 2D field F binds together information about colour of an object in the field I (hue

50) and its spatial location in field B (location 50) through excitatory projections (yellow
arrows).

The increase in the dimensionality of neural fields requires some theoretical commitments.
If we simply let dimensions increase to 3D, 4D, and 5D, we quickly run out of neurons

in the brain! Thus, prior work developing DFT — including work using the models we
integrate here — has proposed the use of common binding dimensions such as space (Perone
& Spencer, 2013) and words (Samuelson, Smith, Perry, & Spencer, 2011). Thus, rather than
representing individual objects via a 3D colour-shape-space representation, WOLVES uses
two 2D representations, colour-space and shape-space, bound via a common 1D spatial field.
This results in substantial neural savings: if each field has 100 neural sites (that is, 100
neurons in the population devoted to this neural representation), the 3D field would have
1002 = 1 million neurons whereas the binding solution has 1002 + 1002 + 100 = 20,100
neurons (see Schneegans, Lins, & Spencer, 2016 for discussion).

Note that this binding solution works quite effectively in DFT because higher-dimensional
fields can be reciprocally coupled to lower-dimensional fields to move ‘information’ into
and out of different states. For instance, the 2D peak in Figure A2(a) represents the blue item
at position 25. We can select just the colour of this peak by coupling the 2D field to a 1D
field (1). Thus, the creation of the 2D peak via the detection of the blue item can give rise

to activation in the 1D field (l) at the associated colour value (site 70 along the colour axis).
This allows the neural system to simultaneously ‘represent’ that there is a blue item to the
left, but also to selectively attend to the colour ‘blue’ independent of its spatial position.

Binding of information across dynamic fields of different dimensionality is done by
connecting fields via excitatory projections. This is highlighted in Figure A2(b) which shows
a top-down view of a 2D colour-space field coupled to two, 1D fields - one for space (field
B, top subpanel) and one for colour (field I, right subpanel). The yellow arrows highlight

the vertical and horizontal ‘ridges’ that project activation between the 1D and 2D fields. For
instance, the detection of an item in the middle of the spatial field (location 50) builds a
peak of activation in the 1D field. This, in turn, projects a vertical ridge of activation through
the colour-space field at location 50. Similarly, detection of a red item (hue 50) in the 1D
colour field projects a horizontal ridge of activation through the colour-space field at this hue
value. The figure shows that at the intersection of the two ridges in the 2D field (F), the field
sites get enough input to cross threshold resulting in the formation of a peak. The 2D peak
‘binds’ the information together, representing that the red item is in the middle. Note that
the strength of the projections can be modulated to bias the formation of peaks based on one
type of information. For instance, the colour ridge might be stronger that the spatial ridge
helping the model *attend” more to colour than to spatial position.
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Memory traces.

Thus far, we have focused on the formation of peaks within dynamic fields that represent
real-time decision-making — the detection of the blue item to the left or the formation of

a working memory for the red item in the middle that is retained for, say, 10 seconds.
Dynamic fields can also learn over a longer, trial-to-trial timescale using a variant of
Hebbian learning called memory traces (e.g., Buss & Spencer, 2014; Lipinski, Simmering,
Johnson, & Spencer, 2010; Perone, Simmering, & Spencer, 2011; Samuelson, Jenkins, &
Spencer, 2015).

Memory traces in DFT have the same dimensionality as the fields to which they are coupled,
essentially adding a layer that captures synaptic plasticity within the field. An example is
shown in Figure A3. Here, we show a 1D field, but now we are simulating a sequence of

3 trials. In the first trial, we present an input on the left (site 25) for 1000 time steps (see
bottom-left and centre panels) that builds a peak on the left. Next, we remove this input and
after a gap of 1500 time steps we present an input to the right (site 75) for 2000 time steps
and build a peak there (left-middle panel). Finally, after a gap of 1000 time steps, we present
an input on the left again for the final 1500 time steps (top-left panel). Note that the three red
hot spots of activation in the centre panel show the building of peaks in the 1D field when
the input is ‘on’; the cyan ‘tails’ show activation relaxing back below threshold when the
input is ‘off’.

The rightmost panel shows the memory trace dynamics. Whenever a peak builds in the 1D
field, this boosts the strength of the memory trace at all memory trace sites associated with
above-threshold activity in the 1D field. The memory trace strengths can vary between 0
and 1 (akin to weights in a connectionist network). Memory traces build according to a
build timescale (tau_Build) that is typically much slower than the timescale of the activation
dynamics within the 1D field. For instance, in WOLVES, the dynamic fields have an
activation timescale of 5; by contrast, the build timescale is usually 1000. Thus, memory
traces build 100 times slower than activation peaks. Memory traces also decay whenever
activation in a field is detected. This decay timescale is typically slower than the build
timescale (e.g., 15000). Note that in practice, these parameter values can be adjusted to fit
empirical data although it is good modelling practice to keep these timescales comparable
across different dynamic field architectures.
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Figure A3.
(Bottom-left /15t trial) A 1D field detects an input at a location on left; (Middle-left /2nd

trial) no input on left but a memory trace left and input detected at a location on right;
(Top-left /3rd trial) input removed from right and presented at left location again. (Middle
panel) shows the history of activations in the field over time, and (Rightmost panel) shows
the changing strengths of memory traces on left and right over the three trials.

What is the function of memory traces? Memory traces boost excitation locally in a field.
Thus, in the sequence of trials in Figure A3, the memory trace is boosting excitation around
the left and right locations as the field learns that these two spatial locations are the ones
used in this experiment. Memory traces reflect a form of statistical learning; in particular,
the field is learning the statistics of its own decisions, that is, which peaks were formed and
for how long. The local boosts in excitation caused by memory traces can lead to priming
effects, speeding up peak-formation and, consequently, faster reaction times for frequently
visited sites in the field. It is also possible to build peaks from memory traces by boosting
the resting level in a field, effectively recalling an item from memory. Finally, memory
traces can support working memory formation, effectively moving a self-stabilized peak
into the self-sustaining state by locally boosting excitation (see Perone & Spencer, 2014 for
discussion).

Appendix B

The text below provides the mathematical formulation of major concepts used in Dynamic
Field Theory (DFT). Readers are referred to Schoner, Spencer & The DFT Research Group
(2016) for a broader understanding of DFT concepts and applications.
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Dynamic Neural Field:

In DFT, activation fields are postulated to form dynamical systems. Therefore, an activation
field «(x, & defined over dimensional vector, X, evolves in time tas described by a
differential equation. The general formulation for such a differential equation of a dynamic
field over a multi-dimensional space Fis as follows:

Tu(x, 1) = —u(x, 1)+ h+s(x,1) + /c(x —x))g(u(x/V1))dx| + q&(x, 1)
F

where is the relaxation timescale of the field dynamics, u(x, ?) is the rate of change in
activation at location vector x at time £ t(X, 9 is the current level of activation, /is the
resting level of the field, (x, 4 is the localized input at location x, o(x — x”) defines the
interaction kernel between location x and other sites x” in the field, g is the sigmoidal
threshold function that regulates the contribution of other sites, and &(x, §) is the Gaussian
white noise added to the field with variance g.

The above equation has the same form as for the one-dimensional field, but the position in
the field is now described by a vector x € £ If we break up this vector, we can describe the
activation of a two-dimensional field as a function of two scalar parameters xand y. This
yields a field equation of the form as below:

ri(x.3) = —u(ry)+ h+s(en)+ [ f clemxiyy—yi)elueiy i) dxlas| + ad(x1)

Interaction Kernel:

A typical lateral interaction kernel (with a Mexican hat shape) in two dimensions can be
described as a difference of two Gaussians, a narrow excitatory component and a wider
inhibitory component, with an optional global inhibition term:

1l x2 y2 1l x2 y2
] D R >t
0x,exc Oy,exc

c(x,y) = agxc - exp ~ dinh " €Xp|—7 5 — dglob

%x,inh  %y,inh

Here, gy is the strength of the lateral excitation, and oyexc and oy exc are the width
parameters along each dimension. Remember that these width parameters may be chosen
independently of each other — the interactions may be broad along one dimension, but sharp
along the other. The parameters &jnh, ox;inh, and oy,jnn analogously describe the inhibitory
Gaussian component, and ggop is the strength of global inhibition.

External Input:

The external input s(x;, )) for such a field can in the simplest case be specified using
two-dimensional Gaussian patterns. For a single localized stimulus at a location [py, p)], the
input can be given as:
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2 2
1|x=p0)"  (y—py)
s(x,y)=as-exp _E 2 b}
o5, X o5,y

with parameters o yand o, specifying the width of the stimulus and a, specifying stimulus
strength.

Sigmoidal Function:

The threshold function is given by:

Memory Traces:

Memory traces invoke a second layer of dynamics for activity contribution to a field with
memory traces. This dynamics is added to the field as follows:

i(x,1) = —u(x,1) + h+s(x,1) + /c(x—x[)g(u(x” 1))dx| + /cmem(x—x’)umem(x, 1)dx| 4 g&(x}1)
F F

Where ¢em(x — X”) determines the strength and width of the projection from the memory
trace into the field. The dynamics of memory trace is divided into two components that
capture the build and decay dynamics of the memory trace separately as following:

lmem(X. 1) = tipyild(X. 1) + tidecay(X. 1)
Thuildibuild®: 1) = [~ umem(%. 1) + gu(x, 1))] - O(u(x, 1))
Tdecaylidecay(X: 1) = — umem(X, 1) - [1 = 6(u(x, 1))]

The shunting term @ gates the activation from the field into the memory trace (6= 1 when
ux, § >0, and 6= 0 otherwise). Thus memory trace only builds at sites where there

is supra-threshold levels of activation (6= 1) at a build timescale . By contrast, at
locations where 6= 0, the memory trace decays at decay timescale of 7y Both z,7and
Tgecay are significantly slower that the relaxation timescale of the field dynamics, z.

Appendix C

Parameter Tuning.

The final parameter values in Table C1 below were arrived at via a process of iterative
tuning starting from the WOL and VES model parameters from prior work (Samuelson et
al., 2011; Schneegans, Spencer, & Schoner, 2016). First, the feature dimensions of the fields
were increased from the 100 sites used in prior models to 306 sites to allow simulation of
up to 18 input stimuli that each generate a peak about 17 sites wide, with a 17-site gap in
between every two feature values to prevent peaks from blending. The spatial dimension
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was set to 100 sites to allow between 1-5 stable non-coalescing peaks (corresponding to the
object locations). A linear spatial dimension is used for all simulations to keep the fields in
two dimensions at maximum; hence, objects presented in the model are all along a single
dimension. The word-field dimension was set to 20 sites to keep the simulations tractable
computationally, each site corresponding to a word peak represented by a delta function.
The timescale dynamics was set to 5 (same as VES model) across all fields to keep the
simulation time tractable.

Various behavioral requirements impose constraints on the parameterization of the model.
Parameters were modified in an iterative fashion to get the different fields to desired states
in CSWL tasks (as inspected via a Graphical User Interface). As described in the main
text, we first started with the canonical CSWL task (Yu & Smith, 2011) and tuned VES

to hold af /east one object in feature and spatial working memory (to mimic the limited
working memory abilities of infants; see Simmering (2016)). This included changes to
the local excitation, local inhibition, and global inhibition parameters in these fields. Too
much excitation leads to uncontrolled hyper-activity in a field (akin to a brain seizure)
and too little excitation leads to no or unstable peaks. The working memory parameters
were adjusted to allow peaks to form reliably in all WM fields. The dynamics between the
contrast, attention and WM field were then tuned to allow the model to shift looking to
another object after having looked at one object. Considering the looking dynamics from
empirical infant data (Smith & Yu, 2013; Yu & Smith, 2011), we then modulated the
parameters in the attention fields and the connectivity between them such that the model
generated a similar number of fixations and total looking times as infants. We then increased
local excitation and decreased global inhibition in the 1D WM fields so that the model could
hold on to its working memories from one trial to another. This also allowed the model to
choose to look first at novel object on subsequent trials. We adjusted the influence of the
traces formed by these WMs to speed up the formation of working memories for familiar
objects in comparison to unfamiliar ones. We also balanced the influence of WM’s from
spatial and feature pathways on scene working memory. We then strengthened the effect
of scene memory traces on the current scene WM activity, causing the model to show
habituation in looking over trials, as do infants (Buss, Ross-Sheehy, & Reynolds, 2018;
Schoner & Thelen, 2006; Simmering, 2016; Turk-Browne, Scholl, & Chun, 2008).

In the WOL part of the model, we regulated the activity in the word-feature fields to arrive
at two parameter sets; one in which the model generates a winner-take-all behavior and

the other in which multiple peaks can co-exist in the field (see ‘Interim Summary’ in main
text). The simulations reported in this paper are conducted using the winner-take-all word-
feature field settings. To stabilize peaks in word-feature fields, the parameters controlling the
influence of word input (word -> wf) and feature input (atn_f -> wf) were modulated. We
then fine-tuned the front-end dynamics to make sure the autonomous looks generated by the
model were long enough to support the formation of stable peaks in word-feature fields. We
then set hwf -> wf controlling the influence of word-feature traces such that memory traces
have a moderate effect on the re-activation of previously encoded associations. Pre-shaping
of the field activity due to these traces cannot be too strong as their influence beyond a
certain level can lead to hyperactivity in the field.
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At this point the model explored objects in the scene and formed memory traces reliably

but looking was not influenced by word-feature peaks and thus the model would not be able
to demonstrate what it had learned. To correct this, we modulated the top-down connection
from word-feature fields to feature contrast fields (wf -> con_f). This was set so that
initially, when the traces are weak, the top-down influence is also weak and the model keeps
exploring but later, when strong associations have formed, traces are able to direct attention
to associated objects.

Once the right balance for the top-down attention was achieved, the memory formation

and decay timescale parameters were tuned to quantitatively fit empirical data from the
infant studies (Smith & Yu, 2008, 2013; Yu & Smith, 2011). Following this, we applied this
parameter set to all developmental and adult studies to look for memory parameters that
would capture participant behaviors while help conceive a consistent theory of development
as discussed under ‘Tuning parameters iteratively across CSWL paradigms’ section. These
memory parameters are reported in Table 4 in the article. These memory parameters differ
slightly from those used to capture the initial infant studies (Smith & Yu, 2008, 2013; Yu &
Smith, 2011).

We conducted all simulations at a consistent normal noise (noise amplitude = 1) in all
fields of the model and ran each simulation that we report in results for a minimum of

300 runs (= individuals). Looking times are measured via activation in spatial attention
field. Specifically, we take total above-threshold activation in the spatial attention field
(atn_sr) convolved with a spatial template to distinguish looking at/attending to different
spatial positions. Finally, to evaluate the model’s performance across all the data points we
quantitatively fit, we computed the root mean squared error (RMSE) between the simulated
and empirical data as well as the mean average percent error (MAPE). These accuracy
measures are reported in the main text in Table 3.

Table C1 below lists the elements (left column) that WOLVES model is composed of and
details the final parameter set used in all simulations. Readers are referred to COSIVINA
documentation (Schneegans, 2012) for details and implementations of these elements.
Values for “free” parameters that we arrived at after tuning are shown in red. Parameter
values shown in black color were carried over from VES model. Parameter values shown
in blue color were carried over from the WOL model. In addition, several values from VES
were applied uniformly, including all 1D kernel widths (o= 4) and 2D kernel widths, both
excitatory (ogy = 4) and inhibitory (o, = 8). The one exception is for the word field (o,
=0 and oj,,=1) and associated 1D kernels (word -> wf, hword -> word, hwf -> wf) which
all had a width of 0 reflecting our use of a Dirac function to create discrete word units.
Finally, all noise kernels were set to a constant amplitude strength (a = 1).

Table C1:

WOLVES elements and parameter value

Element Parameter Values

Neural Field T h B
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Element Parameter Values

All 5 -5 47
Memory Traces Thuild Tdecay e
Al 1200 5500 0.8

Lateral Interactions
1D Kernel

atn_sr -> atn_sr
ior_s->ior_s
atn_sa -> atn_sa
con_s ->con_s
wm_s ->wm_s
atn_f ->atn_f
con_f ->con_f
wm_f ->wm_f

word -> word

Qexc  Anh Qglob

11 0 -0.5
16 15 0
6 0 -0.5
20 20 0
20 8 -0.5
8 0 -1
8 0 0

24 23 -0.125

Lateral Interactions
2D Kernel

Oxexc  Oyexc  Oxinh  Oyinh 8exc  Aglob

wf ->wf 0 10 4 4 33 -13
Gaussian Kernel 1D a
atn_sr -> atn_sa 11
atn_sr -> vis_f 2.25
atn_sr ->ior_s 13
ior_s->atn_sr -16
ior_s->atn_sa -14
atn_sa -> atn_sr 4
atn_sa ->con_s 25
atn_sa ->wm_s 35
atn_sa ->wm_c 1
atn_sa->atn_c 4.8
con_s -> atn_sa 3
Wm_s ->con_s -10
wm_s ->wm_c 1.85
vis_f -> atn_sr 0.55
vis_f->ior_s 0.125
vis_f->con_s 0.625
vis_f->wm_s 0.2
vis_f -> atn_f 0.8
vis_f ->con_f 25
vis_f ->wm_f 0.3
atn_f -> vis_f 1.25
atn_f -> con_f 4.7
atn_f ->wm_f 35
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Gaussian Kernel 1D a
atn_f->atn_c

atn_f->wm_c 1.2
con_f ->atn_f 4
wm_f ->con_f -25
wm_f ->wm_c 1.75
atn_c -> atn_sa 0.75
atn_c ->con_s -0.375
atn_c ->wm_s 0.2
atn_c -> con_f -0.75
atn_c ->wm_f 0.4
wm_c ->wm_s 0.3
wm_c ->wm_f 0.3
word -> wf 4.25
atn_f -> wf 1
atn_c -> wf 0.25
wf -> word 0.05
wf->con_f 15
Hebbians 0.1
(hword -> word;

hcon_s ->con_s;

hwm_s ->wm_s;

hcon_f -> con_f;

hwm_f ->wm_f)

Gaussian Kernel 2D a
wm_c ->atn_c 55
vis_f -> vis_f (exc.) 6
vis_f -> vis_f (inh.) -75
atn_c -> atn_c (exc.) 25
wm_c ->wm_c (exc.) 145
wm_c ->wm_c (inh.) -16.5
hwm_c ->wm_c 15
hwf -> wf 4
noise kernels 1
Scale Input Factor a
€OS -> COS 4
€0S_m ->c0s_m 4
wm_c ->wm_c -0.05
pd_c->pd_c 2
scale atn_sr -> 1
atn_sa

scale ior_s ->atn_sa 1
cos -> ior_s 3
cos ->atn_c -2
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Scale Input Factor a
cos -> atn_f -7
scale atn_sa -> 1
atn_sr
atn_c->pd_c 0.035
pd_c -> cos 3
vis_f ->vis_f (global)  —0.00025
atn_c ->atn_c (global)  -0. 0265
+Except for front-end fields atn_srand vis_fwhere =2
**See Table 4 in the article for developmental variations
Appendix D

WOLVES Simulations of Fitneva and Christiansen (2017):

This study investigated how the accuracy of initial word-referent mappings affected learning
outcomes in CSWL tasks over the course of development. Intuitively, initial accuracy of
word-object pairings should be positively correlated with learning performance, however, an
earlier study by the authors (Fitneva & Christiansen, 2011) showed that greater accuracy in
adults was associated with poorerfinal performance. To examine this developmentally, 4-
and 10-year-old children and adults were presented with a familiarization phase that exposed
all the participants to 10 word-object pairings. Thereafter, participants were randomly
assigned to two conditions (6-Pairs Changed and 4-Pairs Changed Conditions) that differed
in the number of changes made to the pairings to be learnt in the next learning phase. For
participants in the 4-Pairs Changed (high initial accuracy) Condition, six of the initially
familiarized pairings were included in the to-be-learnt set. For the other four pairings, the
words and pictures were mismatched (4-Pairs Changed) and then added to the to-be-learnt
set. In the 6-Pairs Changed Condition, four pairs from the familiarization phase were part of
the to-be-learnt set and six were mismatched. The new to-be-learnt pairings were presented
during a learning phase. A test phase followed in which participants were presented with

a target object and a foil object while the word was heard. Participants had to select the
object corresponding to the word. To ensure test trials were independent, participants were
tested on five objects only while the other five objects served as foils. Each of the five tested
objects was tested three times, each time with a different foil.

As can be seen in Figure D1 (top panels), participants performed better on word object-pairs
that were initially accurate (unchanged), in both conditions and overall performance got
better with age. However, there was a developmental trend such that 4-year-old children
performed better in the high initial accuracy condition, 10-year-old children performed
similarly in both conditions, and adults were better in the 6-pair changed condition.
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FigureD1:
Top row (empirical data) plots the mean accuracy at test of 4-year olds (left panel), 10-year

olds (middle panel) and adults (right panel) grouped by the two change conditions (4-Pairs,
6-Pairs) and pair category (changed, unchanged). The bottom panel shows the corresponding
WOLVES simulation results for the three different age groups.

WOLVES was situated in the same task using memory-related parametric settings for

the age groups consistent with other simulations (for 4-year olds: tau_Build = 1200 and
tau_Decay = 3000; for 10-year olds: tau_Build = 1200 and tau_Decay = 5500; for adults:
tau_Build = 1000 and tau_Decay = 15000). The model replicates the finding (see Figure
D1 bottom panels) that the number of correct responses improve with age, that is, each bar
in the bottom panel grows taller as we go from the left panel to the right panel. Consistent
with the empirical data, the model performs better on unchanged pairs (initially accurate
items) than the changed pairs (initially inaccurate items). This is reflected in each panel with
the left-side bars always taller than the bars on the right side of each panel. The model did
not show any significant difference between the high and low initial accuracy conditions,
however.
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Fitneva and Christainsen (2017) concluded that the improvement in performance over

age must be related to the role of gradually growing memory as indicated by other cross-
situational word learning studies on adults and infants. Our simulation results confirm

this hypothesis as the only change made to capture age differences was to memory
parameters. Furthermore, the model consistently shows the more intuitive direct effect

of initial accuracy: the model learns the unchanged pairs better than the changed pairs
regardless of condition. This makes intuitive sense: the memory traces for the initially
accurate pairs learned before the CSWL task are reinforced in the learning phase of CSWL,
whereas there are no such traces to reinforce for the initially inaccurate pairs. Fitneva &
Christiansen found children’s performance to be in line with this expectation; they learned
best when only 4 pairs changed. However, adults did not fit this expectation, they learned
best when 6 pairs changed. Fitneva and Christiansen did not offer any direct evidence of
the underlying mechanism for this inverse effect of initial accuracy, but suggested that
trial-by-trial modelling may help understand it. Contrary to this expectation, our trial-by-trial
modelling does not reproduce the inverse effect. This suggests that WOLVES may be
missing some critical ingredient, such as additional cognitive control mechanisms related
to error-control and feedback (Boksman et al., 2005; Rushworth, Behrens, Rudebeck, &
Walton, 2007). This is a direction for future empirical and modelling work.
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Figure 1:

A schematic of WOLVES which integrates two previous models: the Word-Object Learning
(WOL; green box) model and the Visual Exploration in Space (VES; red box) model. Note
that the VES model is also an integration of earlier models of visual processing, including
models of the neural dynamics in early visual fields, spatial attention, visual working
memory (VWM) and spatial working memory (SWM).
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Figure 2:
Operation of the WOL part of the model. In the top panel, input from the word field

and scene attention field intersect in the word-feature field and form a new memory trace
(indicated by the yellow arrow) in the memory trace field. The bottom panel shows a later
time-point when the word corresponding to this trace is again presented to the model.
The word input activates the trace forming a peak that signifies a recall of the encoded
association and drives attention to the corresponding object.
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Figure 3:

VES model in four stages of an autonomous looking cycle. The top-left panel shows the
model detecting novel objects in the scene. The top-right panel shows the model attending
to one object. The bottom-left panel shows the model having consolidated the object in
working memory. The bottom-right panel show model releasing attention to begin a new
looking cycle.
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Figure 4:
The overall architecture of WOLVES. Scene WMSs and memory traces are not shown

for representational simplicity. Arrows represent uni-/bi-directional (green: excitatory, red:
inhibitory) connectivity in the model. See text for additional details.
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Figure5.
Top: early in training the model registers an ‘incorrect’ association between the red object

and the word ‘bosa’ (word 1). Middle: snapshots of the model’s memory traces taken every
5 training trials show gradual learning of the correct associations. Bottom: late in training
the model does not form the incorrect association as in the top panel.
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Figure®6:
The effect of spatial attention on fixation dynamics during Smith & Yu’s CSWL task. We

varied the strength of spatial attention which increased the number of looks made by the
model thereby changing how many words were learned. After classifying models as strong
(red) and weak (blue) learners as Yu and Smith (2011) did in their experiment, we see that
these models have different numbers of fixations per training trial.
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Figure7.

Left: Relation between the number of fixations a model makes during a training trial and
the average strength of the word-feature associations formed by the model. The blue line
shows a linear fit of the data with an RMSE=0.11. Right: Growth of the average number

of erroneous associations formed with increasing fixations at training. The red line shows a
linear fit of the data with an RMSE=0.16. Other statistical measures are indicated in both
plots. Note that each value plotted on the Y-axis is averaged (after binning) over models
within a bin-width of 0.03 in fixation counts.
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Figure8:

Relation between mean proportion of preferential looking to the target at test (left panel),
mean proportion of words learned (right panel), and the number of fixations during training.
Note that each value plotted on Y-axes is averaged (after binning) over models within a
bin-width of 0.03 in fixation counts.
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Figure9:

Model looking trial by trial over the course of training. Each row shows the looking patterns
of a particular run of the model, blue indicates looks to the left and yellow to the right of

the scene. White indicates off/centre looking. Both runs included the same model parameters
and the same fixed order of object presentations. Differences arise due to noise in the system
and the autonomous learning of the model.

Psychol Rev. Author manuscript; available in PMC 2023 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Bhat et al. Page 81

word dimension

(c) Bl Multi-peak (wf)
| |Winner Take All (wf)

uolisuawip ainjea)
Proportion

© © o o

%] w £ UI

e
-

0!

5 = " S " ns - - J
Looking e targe;;rect assocta'-\c-,\-rat‘»e streng"“

(a) multi-peak (b) winner-take-all el

Figure 10.
The left panel shows a snapshot of the memory trace laid down in the word-feature field in

two different parametric settings: (a) multi-peak and (b) winner-take-all. Panel (c) shows the
proportion looking to target, incorrect associations in memory traces, and overall memory
trace strengths laid down by the word-feature fields when they are configured to work as a
multipeak field (blue bars) versus a winner-take-all fashion (yellow bars). Models run with a
winner-take-all word-feature field show better performance.
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(Left Panel): Proportion of words classified as learned at test as the strengths of words
on word feature fields (word ->wf, yellow curve) and top-down attention (wf->con_f, red
curve) are varied. Right Panel: The influence of the strength of the memory trace input (hwf)

to word-feature fields (wf) on proportion of words learned.
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Figure 12.
The effect of parameters controlling memory build and decay on the proportion of words
learned.
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Figure 13:
Average proportion of correct responses by adult participants (left, blue), WOLVES (left,

red), and Kachergis model (left, green) as a function of learning instance and (right) as

a function of whether the participant/model had been correct or incorrect on the previous
learning instance for that word. Error bars indicate + 95% confidence interval and black,
dashed lines indicate the chance level of performance.
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Panels A & B adapted from Trueswell et al. (2013): (A) Average proportion of adult looks
to the target referent (triangles) and a randomly selected competitor referent (circles) plotted
over time from word onset. Curves with dark filled symbols represent instances on which
the participant had been correct on the previous instance. Curves with light filled symbols
represent instances on which the participant had been incorrect on the previous instance.

(B) Target Advantage Scores (TASS): Proportion of participant looks to the target minus
proportion of looks to the competitor. Right Panels (C & D) show corresponding looking
trajectories (C->A and D->B) of the WOLVES model over time.
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Figure 15:

Previous Learning Instance

Average proportion correct responses as a function of whether the prior choice for that word
had been correct or incorrect for instances 2-5 separately (both panels). Error bars indicate
+ 95% confidence interval, dashed lines indicate chance level. (a) WOLVES predictions in

a modified version of Trueswell et al. task with longer trial durations (6 secs). WOLVES
predicts that participants will be above chance even in case of previously incorrect instances.
(b) WOLVES accuracy measures in the original Trueswell et al. task showing chance-level
accuracy for previously incorrect responses and steady improvement for previously correct

responses.
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Figure 16:
(a): mean proportion of words learned by adults in Smith and Yu (2007; yellow bars), by

WOLVES (blue bars), and by the Kachergis model (green bars). The black dotted line shows
the chance level. (b): mean number of incorrect associations WOLVES remembers at the
end of training in different conditions of training. (c): average strength of associations in
WOLVES’s memory at the end of training for three different conditions. (d) WOLVES
prediction in a modified version of Smith & Yu task where trial durations are reduced to
one-third. (€) mean number of incorrect associations WOLVES and (f) average strength of
associations in WOLVES’s memory at the end of training in the modified task.
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Figure 17.

(a): mean proportion correct responses at test by adults (blue bars), by WOLVES (yellow
bars), and by the Kachergis model (green bars) for the three pre-trained words and the
other fifteen to-be-learned words. (b & d): Proportion looking time to target after word
presentation by adults and (d) the WOLVES model against word occurrence as each word
appeared 6 times throughout training. (c): number of incorrect associations per word for
the different types of learners. Weak learners have the maximum number of incorrect
associations indicating greater uncertainty in their word knowledge.
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Figure 18:
The trial structure for Yurovsky, Yu and Smith, 2013 (adapted). On each trial, participants

encountered four words and four referents, but the number of correct mappings for each
word varied by type. Capital letters indicate words and lowercase letters indicate referents.
Single words each had one correct mapping per trial (e.g., B - b, C - ¢), double words each
had two correct mappings per trial (e.g., A - al and A - a2, F - f1 and F - f2) and noise words
were not mapped to any referent (e.g., D, G). Single words and their referents are depicted in
black, double words and referents in gray, and noise words in white.
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Figure 19:

(a) Adult and model accuracy at test for each word type. Both Adults and WOLVES learned
not only the referents of single words but also both referents for double words, although the
two referents of double words are learned significantly less well than the single referents of
single words. Dotted lines indicate chance levels and error bars are SE. (b) average strength
of correct association traces of the single and double words laid down by the word-feature
field at the end of the learning phase.
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Figure 20:

Top panels: learning performance at test for adults in the 3-late, 6-Late and 9-late pairs
conditions. Data subdivided according to the four early conditions with 0, 3, 6 or 9
presentations of the early pairs. Lines represent data for each type of pairing tested (i.e.,
the correct early pairings wl-w1). The single dot shows the performance for the condition
with no early-stage pairs. Bottom panels: Data from WOLVES.
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Figure 21:
(Adapted from Smith and Yu (2013)) Proportion of 14-month-old infants in Smith and Yu

(2013) looking at the target (dark line) and distractor following word presentation during
test for learners (a) and nonlearners (b). Learners looked more to the target after the word,
whereas nonleaners looked slightly more to distractor. Mean proportion of looking (and
standard deviations) to the varying objects and the repeated object in each block for the
learners (c) and nonlearners (d). Both groups looked more to the non-repeating (varying)
object and showed habituation, although habituation was less for the nonlearners.
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Figure 22:
Habituation in the WOLVES model as training progresses. The mean length of looks

decreases as traces created by the working memory peaks grow.
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(a) Comparison of WOLVES learning in Smith & Yu (2013, yellow bars) and Yu & Smith
(2011, blue bars) in terms of proportion of time looking to the target (left bars), proportion
of words learned (middle bars) and proportion of models classified as learners. Green bar
shows identical proportion of words learned for the Kachergis model in both experiments.
(b) Proportion looking to varying object versus the repeated objects over the 30 training
trials of Smith & Yu (2013). The training trials are split into six blocks shaded with different
colours. Looking to the repeating objects (blue line) drops within each training block and
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jumps up when a new repeating object is presented at the start of each block. (¢ & d):
Proportion looking to target (blue) v. distractor (red) following word presentation at test for
WOLVES model runs classified as learners (c) and nonlearners (d). (e & f): Mean proportion
of looking (and standard deviations) to the varying and repeated object as a function of block
for the learner and nonlearner models.
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Figure 24:
The time course plot shows the proportion of looking to target for WOLVES over the 8

seconds of the test trial for three different conditions: when no word was presented during
the tests (red curve); when the word was presented as per the Smith & Yu (2011) task (blue
curve) and when the word was presented for the full duration of the test (green curve). The
grey rectangular columns specify time windows during which word was presented according
to the Smith & Yu (2011) test paradigm.
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tests

(Left panel) Time course plots showing proportion of looking to target for WOLVES over
the 8 seconds of the test trial using test formats of Yu & Smith (2011) task (blue curve)
and that of Smith & Yu (2013) task (red curve). The grey rectangular columns specify time
windows during which word was presented in each test paradigm. (Right panel): Average

proportion looking to target in the two test paradigms.
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Figure 26.
(Adapted from Vlach & Johnson 2013): Toddlers were presented with a CSWL in

which presentations of 12 word-object mappings were either grouped together (Massed
Condition) or distributed (Interleaved Condition). In the Massed Condition, all six trials in
a block included one of the six pairings. In the Interleaved Condition, a particular pairing
was presented in the same ordinal position in every block (i.e., second trial in block).

Thus, massed pairings were presented in immediate succession within blocks while each
interleaved pairing had an equal amount of delay (26 s) between presentations. The 12

test trials presented a word, its target object and a distractor randomly chosen from the
other objects. Vlach & Johnson (2013) measured preferential looking to the target over an
8-second duration for each test trial during which each word was presented four times as in
Yu & Smith (2008). Vlach & DeBrock (2019) used forced-choice responses as a measure of
children’s’ learning and also introduced a 5-minute delay period between the training and
the test phase during which children participated in a task-unrelated play activity.
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(a) & (b): learning performance of 16- and 20-month-old infants (blue bars) and WOLVES
(yellow bars; tau_Decay=1000 and 1500) in Vlach et al. in terms of proportion looking time
to the target at test. Panel (c) plots the number of correct responses of 47-58 months (blue
bars) against WOLVES’ performance (yellow bars; tau_Decay=3000). The model results
closely match the empirical data. Panel (d): relationship between memory decay timescale
and learning of massed and interleaved pairings. Error bars indicate SE. (e) Simulations

of the Kachergis model showing the proportion correct in the massed and interleaved
conditions as the alpha (forgetting) parameter is manipulated over ‘development’.
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Figure 28:
Memory strength of correct massed and interleaved associations laid down by the word-

feature field after training. The three panels show results from simulations with three
different values (1000, 1500, 3000) of memory decay parameter (tau_Decay) corresponding
to the three different age groups — 16m, 20m and 47-58m, respectively. The massed/
interleaved pairings in the temporal order of their presentation during the training phase

are on the x-axis.
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Figure 29:
(a) Relationship between performance in CSWL and a word-object binding task via a

regression fit (red line) on empirical data from 22- to 68- month-old children Vlach

& DeBrock (2017). The blue dotted line plots the same relationship from WOLVES
simulations of the two tasks under a steady parametric change in the memory decay
timescale from 800 to 5000. The model data follows the same systemic upward trend

as suggested by the empirical data fit. (b) Comparable simulations of the Kachergis
model (green) and Pursuit (cyan) showing how model performance varies as a candidate
developmental parameter is changed (alpha in the Kachergis model; the ‘remember’
parameter in Pursuit).
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Figure 30:

Adapted from Suanda, Mugwanya, & Namy, 2014. Total frequencies of word (columns)
co-occurrences with pictures (rows) in each condition of Suanda et al. (2014) E1. For
example, in the High CD condition, Word 1 (W1) co-occurred with its referent (P1) on

all four trials in which it occurred. W1-P1 was accompanied by W2-P2 on one of those
trials, W3-P3 on a different trial, W4—P4 on another trial, and W5-P5 on yet another trial,
resulting in maximal contextual diversity. After the 16 learning trials children were tested on
eight four-alternative force-choice test trials, one per target word. On each test trial, a target
referent was presented along with three foils randomly selected from the set of objects that
had never co-occurred with the target during the learning phase. Children were presented
with a word and were asked to indicate which of the four pictures the word referred to.
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Figure 31.
(a) Accuracy of children (yellow bars), WOLVES (blue bars), and the Kachergis model

(green bars) in the three different conditions of Suanda et al. (2014). (b) Shows the
proportion of children (and model runs) that performed at above-chance across levels of
contextual diversity. The figures show that performance of WOLVES and the children in
the task is comparable, with both showing a descending pattern across levels of contextual
diversity. Error bars indicate SE.
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Table 2:

Summary of Infant and WOLVES model performance in a canonical CSWL task

Page 107

Measure Sm(i;gogé)Y“ Yu& Smith (2011)  Range ~ WOLVES RMSE MAPE
TEST TRIALS
Mean looking time per 8s trial 6.10 5.92 5.92-6.10 6.26 0.26 4.22
Preferential looking time ratio 0.60 0.54 0.54 - 0.60 0.54 0.04 6.10
Mean words learned (of 6) 4.0 35 35-4 4.0 0.35 7.14
Proportion of Strong (S) vs Weak (W) Learners N/A 0.67 N/A 0.74 0.07 10.45
Mean looking per trial to Target 3.6 3.25 3.25-3.6 3.36 0.19 5.03
Mean looking per trial to Distractor 25 2.67 25-2.67 2.89 0.32 11.92
TRAINING TRIALS S w
Mean looking time per 4s trial 3.04 2.96 3.07 2.96 - 3.07 3.01 0.02 0.71
Mean fixations per trial N/A 2.75 3.82 2.75-3.82 2.89 0.22 6.98
Mean fixation duration N/A 1.69 1.21 1.21-1.69 131 0.22 14.38
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Table 3:

Summary of model fits to empirical data. #DP indicates number of data points.

Exp. No. WOLVES Kachergiset al Pur suit
Measure DP RMSE MAPE RMSE MAPE RMSE MAPE
1,2: Smith & Yu (2008, 2011)

Proportion Correct 2 0.04 6.10 0.09 11.84 0.37 59.97
Miscellaneous (See Table 1) 15 0.18 7.32

3: Trueswell, Medina, Hafri, & Gleitman (2013))

Prop. correct at a learning instance 5 0.01 1.86 0.19 69.73 0.09 31.34
Prop. correct at current versus previous learning instance 2 0.03 3.81 0.22 80.90 0.26 45.22
4: Yu & Smith (2007)

Proportion Correct 3 0.05 4.20 0.08 9.43 0.17 24.38
5: Yu, Zhong, & Fricker (2012)

Proportion Correct 2 0.03 5.44 0.18 24.32 0.16 22.61
Prop. of time on target 18 0.13 17.00

6: Yurovsky, Yu, & Smith (2013)

Proportion Correct 3 0.03 6.71

7: Kachergis, Yu, & Shiffrin (2012)

Prop. Correct: Within-stage (3-Late) 6 0.01 1.33 0.03 4.38 0.28 38.98
Prop. Correct: Within-stage (6-Late) 6 0.06 8.16 0.03 4.59 0.25 33.93
Prop. Correct: Within-stage (9-Late) 6 0.15 17.88 0.02 1.94 0.15 17.99
Prop. Correct: Cross-stage (3-Late) 6 0.11 71.91 0.06 41.12 0.05 35.05
Prop. Correct: Cross-stage (6-Late) 6 0.04 13.26 0.02 5.85 0.18 64.36
Prop. Correct: Cross-stage (9-Late) 6 0.03 9.99 0.02 6.60 0.24 70.56
Prop. Correct: No-early Stage 3 0.01 311 0.09 19.47 0.02 4.87
8: Smith & Yu (2013)

Prop. Correct 1 0.01 1.07 0.08 12.87 0.37 58.42
Proportion looking to varying and repeated 24 0.15 24.85

9: Vlach & Johnson (2013)

Prop. Correct (Looking): 16-month-olds 2 0.02 3.98 0.03 6.27 0.48 94.80
Prop. Correct (Looking): 20-month-olds 2 0.02 2.58 0.02 3.92 0.45 83.26
10: Vlach & DeBrock (2019)

Prop. Correct: 47-58-month-olds 2 0.03 3.46 0.13 17.57 0.36 57.14
11: Vlach & DeBrock (2017)

Prop. Correct (against scatter fit) 6 0.06 5.49 0.23 25.37 0.10 11.06
12: Suanda, Mugwanya, & Namy (2014)

Proportion Correct 3 0.14 27.07 0.15 33.30 0.36 82.58
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Exp. No. WOLVES Kachergiset al Pur suit
Measure DP RMSE MAPE RMSE MAPE RMSE MAPE
Prop. of subjects looking correctly 3 0.29 40.44
Grand Mean 11 exp 69 0.05 13.51 0.08 19.95 0.20 42.13
Std Deviations 11 exp 69 0.04 15.79 0.07 21.99 0.13 25.52
Grand Mean 3gen exp 15  0.03 4.05 0.21 4742 013 2391
Overall AIC 69 -239.67 -295.78 -193.32
Overall BIC 69 -96.69 -289.08 -186.62
Grand Mean all 12 exp 132 0.10 15.80

*
generalization exps = Trueswell et al (2013), Yu, Zhong & Fricker (2012), and Vlach & DeBrock (2017).
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Table 4:

Age-specific variation for the memory timescale parameters.

Experiment Age tau_Build  tau_Decay
Smith & Yu (2008, 2013) 12m 1200 700
Smith & Yu (2008, 2011 2013) 14 m 1200 800
Vlach & Johnson (2013) 16m 1200 1000
Vlach & Johnson (2013) 20m 1200 1500
Vlach & DeBrock (2017) 22-68 m 1200 800-5000
Vlach & DeBrock (2019) 47-58 m 1200 3000
Suanda, Mugwanya, & Namy (2014)  57-95m 1200 3100
Adults 1000 15000
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