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Abstract

Altered approach motivation is hypothesized to be critical for the maintenance of depression. Computer-administered approach-
avoidance training programs to increase approach action tendencies toward positive stimuli produce beneficial outcomes. However,
there have been few studies examining neural changes following approach-avoidance training. Participants with major depressive dis-
order were randomized to an approach-avoidance training (AAT) manipulation intended to increase approach tendencies for positive
social cues (n=13) or a control procedure (n=15). We examined changes in neural activation (primary outcome) and connectivity pat-
terns using Group Iterative Multiple Model Estimation during a social reward anticipation task (exploratory). A laboratory-based social
affiliation task was also administered following the manipulation to measure affect during anticipation of real-world social activity.
Individuals in the AAT group demonstrated increased activation in reward processing regions during social reward anticipation relative
to the control group from pre- to post-training. Following training, connectivity patterns across reward regions were observed in the
full sample and connectivity between the medial prefrontal cortex and caudate was associated with anticipatory positive affect before
the social interaction. Preliminary evidence of differential connectivity patterns between the two groups also emerged. Results support
models wherebymodifying approach-oriented behavioral tendencies with computerized training lead to alterations in reward circuitry
(NCT02330744).
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Introduction
Depression is a common mental health disorder associated
with significant functional disability (Pincus and Pettit, 2001;
Kessler et al., 2003; Dunlop et al., 2005). Essential features of
major depressive disorder (MDD) include loss of interest or plea-
sure, diminished energy and hopelessness (American Psychiatric
Association, 2013). Together, these symptoms point to potential
abnormalities in the approach system—a set of biobehavioral pro-
cesses thatmotivate the individual to seek out positive, rewarding
outcomes (American Psychiatric Association, 2013). Neural sub-
strates linked to the approach system include the basal ganglia
involved in reward signaling, orbitofrontal and medial prefrontal
cortex (PFC) that modulates behavioral responses and decision-
making, as well as a broader network involved in salience pro-
cessing and action planning, including the amygdala, insula and
anterior cingulate (Chau et al., 2004; Knutson and Greer, 2008;
Haber and Knutson, 2010). Individuals with MDD show deficits
in approach motivation and reward sensitivity (Trew, 2011; Dillon
et al., 2014; Nusslock and Alloy, 2017); they are less likely to

seek out rewarding experiences (Hopko and Mullane, 2008); are
less behaviorally responsive to reward than are non-depressed
individuals (Pizzagalli et al., 2008) and display abnormal neural
responsivity (Chau et al., 2004; Pizzagalli et al., 2009; Treadway
and Zald, 2011), including attenuated activation in fronto-striatal
circuits during reward processing (Pizzagalli et al., 2009; Dillon
et al., 2014; Hoflich et al., 2019). Identifying ways to directly modify
basic mechanisms of impaired approach motivation and reward
responsiveness in MDDmay inform new or complementary treat-
ment approaches.

Cognitive behavioral therapy is a first-line psychosocial treat-
ment for MDD that incorporates exercises to modify thinking
and/or behavioral patterns that may partially address approach
system dysfunction (Cuijpers et al., 2007, 2008; Mazzucchelli
et al., 2009; Ekers et al., 2014). For example, behavioral activa-
tion exercises emphasize structured increases in overt behaviors
that are likely to bring about reinforcing environmental con-
tingencies (Hopko et al., 2003). Several neuroimaging studies
point to treatment-related changes supporting the malleability
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of approach system functioning (Dichter et al., 2009, 2010; Mori
et al., 2017; Shiota et al., 2017; Yokoyama et al., 2018). However,
existing interventions are not universally effective and outcomes
regulated by the approach system (e.g. positive affect) appear dif-
ficult to change (Craske et al., 2016; Dunn et al., 2020). Given the
predominance and impact of approach-related deficits in depres-
sion, exploring innovative ways of targeting the approach system
may have clinical utility.

Computer-based paradigms that target approach-oriented
behavioral tendencies are an alternative way to reduce clin-
ical symptoms. Behavioral assessment of implicit approach-
avoidance tendencies was developed based on evidence that
positively evaluated stimuli typically automatically elicit motor
approach behaviors, whereas negative stimuli trigger avoidance
(Rinck and Becker, 2007). Standard approach-avoidance behav-
ioral assessments display valenced stimuli and ask the partici-
pant to pull a joystick (arm flexion; approach) or push it away
(arm extension; avoidance) with faster approach vs avoidance
movements typically seen for positive stimuli (Cacioppo et al.,
1993; Taylor and Amir, 2012). Using this paradigm, maladap-
tive automatic approach-avoidance tendencies characterized by
diminished approach of positive cues are apparent in anxiety and
depression (Heuer et al., 2007; Vrijsen et al., 2013; Radke et al.,
2014a; Bartoszek and Winer, 2015; Fleurkens et al., 2018; Struijs
et al., 2018; Loijen et al., 2020). The paradigm can be adapted for
training purposes by establishing a contingency between stim-
ulus valence and required responses to encourage the repeated
approach of positive cues (Amir et al., 2013; Kakoschke et al.,
2017). There is evidence that AAT can manipulate automatic
approach action tendencies of dysphoric individuals (Vrijsen et al.,
2018), with initial data suggesting potential clinical efficacy for
reducing depression symptoms (Becker et al., 2019). If effective,
AAT training holds promise as a complementary approach to
standard interventions that can be applied to enhance approach
behavior.

Assessment of approach-avoidance tendencies during func-
tional magnetic resonance imaging (fMRI) in participants with
major depression points to deficits in reward circuitry during
approach of positive social cues (Derntl et al., 2011). A behav-
ioral manipulation like the AAT that targets approach system
functioning would thus be anticipated to exert its effects through
key reward-related fronto-striatal regions. To date, information
about neural mechanisms of AAT are limited to effects observed
in relation to alcohol cues in individuals with alcohol use disor-
ders (Wiers et al., 2011, 2015). However, the question of how AAT
training exerts its clinical influence in depression, and specifically
how the approach system is engaged during training, remains
unanswered.

The goal of this study was to use a single-session experi-
mental AAT as an initial step toward understanding training-
related changes in brain function during social reward process-
ing in MDD. We utilized an AAT procedure designed to increase
approach for positive social cues by requiring participants to
repeatedly pull pictures of faces displaying positive expressions
toward them using a joystick. As these procedures were intended
to modify evaluative responses to positive social cues, antici-
pation of social reward was measured during fMRI before and
after the AAT using awell-establishedmeasure of reward process-
ing [Social Incentive Delay task (SID); Spreckelmeyer et al., 2009].
Prior work suggests that individuals with MDD show hypoconnec-
tivity within fronto-striatal regions, including less connectivity
between the ventromedial PFC and striatal regions implicated
in detecting and hedonic responding to rewards (Manelis et al.,

2016; Young et al., 2016). Moreover, functional connectivity
involving reward processing regions predicts real-world relation-
ships between approach behaviors and positive affect, suggest-
ing that it may provide a complementary source of clinically
relevant information (Heller et al., 2020). Thus, both neural
activity and functional connectivity were explored in order to
capitalize on the potential for connectivity data to better cap-
ture neural differences (Camara et al., 2009). We assessed social
approach functioning by administering a social affiliation task
in the laboratory with a trained confederate following the AAT
(Aron et al., 1997; Taylor and Amir, 2012). In keeping with pre-
vious findings that neural hyporesponse to positively valenced
social stimuli is observed in depression and is improved with
treatment (Schaefer et al., 2006), we hypothesized that AAT
would enhance approach system functioning, indexed by greater
responsivity of reward circuitry during social reward anticipation
(medial PFC, striatum and amygdala). We conducted exploratory
analyses to evaluate whether individuals in AAT vs the control
group differed in terms of strength or number of connections
in fronto-striatal regions following the experimental manipula-
tion and whether connectivity was associated with behavioral
indicators from the social interaction task (ClinicalTrials.gov:
NCT02330744).

Methods
Participants
The sample consisted of 32 individuals who met diagnostic cri-
teria for MDD according to the Mini International Neuropsychi-
atric Interview (MINI Version 7.0.0.0 (Sheehan, 2014)). Participants
were recruited through clinical referrals as well as posted
announcements in community and online settings (e.g. Research-
Match.org). Participants were required to be between the ages
of 18 and 55 and to score 10 or higher on the Patient Health
Questionnaire-9 (Kroenke et al., 2001). Exclusion criteria were
used to ensure that participants could safely complete the study
procedures and to minimize confounding interpretations of our
results: (i) pharmacological treatments that could affect brain
functioning; (ii) concurrent psychotherapy, or empirically sup-
ported treatments for anxiety or depression in the past 6weeks;
(iii) active suicidal ideation; (iv) history of major neurological dis-
order or moderate-to-severe traumatic brain injury; (v) moderate
alcohol or marijuana use disorder (past year); mild substance
use disorder (all other drugs in past year); (vi) bipolar I or psy-
chotic disorders and (vii) characteristics that compromise MRI
safety. Forty-two individuals were assessed and 32 were ran-
domized at the scan visit. Sample size was determined using a
power calculation (power>0.80 for two-sided P<0.05) for detect-
ing a between-within analysis of variance interaction term with
a large effect size range (d=1.2–1.6), which was based on our
earlier work using AAT, which found a large effect (Taylor et al.,
2013; d=1.58, Taylor et al., 2014) as well as earlier work that
found large neural effects of brief cognitive bias modification
treatments ranging from d=0.9 to 1.3 (Britton et al., 2015; Wiers
et al., 2015). Recruitment occurred from January 2015 to April
2017 and ended when the project target was met. The current
data reflect the primary outcomes measured for the trial; addi-
tional secondary outcomes weremeasured as reported in the trial
preregistration and will be reported elsewhere. The final sam-
ple included 28 individuals after attrition and quality control
checks (described below and Figure 1 CONSORT diagram). The
project was approved by the UCSD Human Research Protection
Program.
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Fig. 1. CONSORT diagram.

Procedure
The primary aimwas to evaluate the neural correlates of a single-
session approach/avoidance training manipulation completed
duringMRI. Potential participants provided written informed con-
sent and then completed a baseline eligibility session, followed
by a session that included questionnaire measures, fMRI and
out-of-scan social interaction task. The following questionnaire
assessments were administered:

Depression severity
Participants completed the Beck Depression Inventory-II (BDI-II)
(Beck et al., 1996) to assess depression symptoms during the past
2 weeks.

Positive and negative affect
Participants completed the Positive and Negative Affect Sched-
ule (PANAS; Watson et al., 1988), a 20-item self-report measure of
positive and negative affect over the past week.

Anhedonia
Participants completed the Mood and Symptom Anxiety Ques-
tionnaire (MASQ); the MASQ-Anhedonic Depression subscale
[MASQ-AD (Clark and Watson, 1991)] was used to assess symp-
toms of anhedonia during the past week (e.g. ‘felt like nothing
was very enjoyable’).

Anxiety
Participants completed the State Trait Anxiety Inventory-Trait
[STAI-T (Spielberger et al., 1983)] to measure general anxiety.

Experimental manipulation: fMRI approach/avoidance training.
During fMRI, participants viewed face images (Tottenham et al.,
2009) on a computer screen andwere instructed tomove a joystick
in response to the color of the border surrounding each image.
Response instructions were linked to the border color, rather than
the content of the images, which facilitates training. Face types
included positive or neutral expressions (Ferrari et al., 2018). The
pull motion made the image ‘zoom’ (i.e. become larger) to give
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Fig. 2. Depiction of AAT task trials.

Fig. 3. Depiction of the SID task.

the appearance of approach. Participants moved the joystick to
the right as a control motion (Taylor and Amir, 2012), which
did not alter the size of the image (Figure 2). To experimentally
manipulate automatic action tendencies, a contingency was set
between positive facial expressions and approach behaviors in the
active AAT condition but not in the control condition such that
the majority of positive images (92%) were presented with a green
border that indicated an instruction to pull, whereas the minor-
ity of neutral facial expression pictures (8%) were presented with
a beige border and associated right movement instruction. In the
control condition there was no contingency between instruction
type and positive vs neutral pictures (i.e. 50% pull across both pic-
ture types). Prior to training, participants completed 12 practice
trials that utilized different stimuli than those used during train-
ing. All participants saw four male and four female faces from
the NimStim set displaying positive (happy) and neutral expres-
sions during the training phase. During each training session,
participants completed two runs of 96 trials per facial expres-
sion (∼15min). Participants were randomized (parallel group 1:1
allocation) to complete the AAT training or control (2 runs) using
a computerized random number generation that created a con-
dition code corresponding to either the AAT training or control

condition. Approach bias was indexed by faster reaction times
to approach vs move positive cues to the right on the AAT task.
Experimenters and participants were blind to which condition
number was assigned to AAT vs the control condition.

Social incentive delay task. Participants completed the SID
(Spreckelmeyer et al., 2009) to measure pre–post change in social
reward anticipation across the AAT and control groups. In the
task, participants were given the opportunity to either gain social
reward or avoid social punishment (within separate trial blocks)
following a successful reaction to a target symbol. Distinct cues
preceding the target symbol indicated to the participant whether
to anticipate a social reward, punishment or a neutral outcome.
Low and high levels of reward or punishment were designated
via one or three lines, respectively, inside the appropriate cue
(Figure 3). Social reward and punishment were presented in the
form of pictures of individuals with varying intensities of positive
(smiling) and negative (angry) facial expressions, respectively. A
blurred facial control stimulus served as the neutral cue. Partici-
pants gained low and high levels of social reward if their reaction
to the target symbol was performed on time (i.e. hit response
during the target display) and received the control stimulus if
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they reacted too slowly (i.e. miss response after the target dis-
appeared). Reward and punishment cues were presented in two
separate blocks of 54 trials counterbalanced across participants;
within each block, the order of cues was pseudo-randomized.
Each trial began with a cue on the center of the screen (250ms
display), followed by a delay period (2250–2750ms, jittered), and
the target symbol (presented for 250ms at the start of the task and
individually adjusted thereafter depending on participant perfor-
mance). The reward or neutral outcome was presented on the
screen for 1650 and 300ms after the target onset. The task dif-
ficulty was adjusted based on the participant’s reaction time and
approximate hit rate of 66%. Analyses focused specifically on
change in responses to social reward anticipation in linewith prior
work and given the proposed mechanism of the AAT training pro-
cedures, i.e. inducing more positive valuations of target social
cues (smiling faces).

Social interaction task. The social interaction task was an abbre-
viated version of a previously validated task designed to facilitate
closeness between unacquainted partners (Aron et al., 1997). The
participant and a trained confederate alternated responses to a
series of questions that gradually increased in the depth of self-
disclosure they were designed to elicit (Taylor and Amir, 2012;
Taylor et al., 2017). Prior to the task, participants were informed
that they would be getting to know an assistant who worked in
the lab and, once the confederate was present, stated that the
purpose of the task was to get to know one another by answering
a series of questions about themselves (Aron et al., 1997). Confed-
erates were trained to deliver standardized responses to maintain
consistency across participants and to act warmly toward par-
ticipants using a scripted set of verbal and nonverbal behaviors.
Participants completed the following questionnaires in relation to
the interaction:

Positive affect
The PANAS-positive affect state scale was administered after
instructions were provided about the upcoming social interac-
tion task to provide a measure of anticipatory positive affect to
a real-world opportunity for social reward.

Desire for future interaction
The Desire for Future Interaction scale [DFI (Coyne, 1976)] was
administered to participants after completion of the task. The DFI
has well-established reliability and validity (Voncken and Dijk,
2013). The DFI consists of eight items that assess the extent to
which the rater would be willing to engage in a variety of social
activities with their interaction partner in the future. The DFI was
used as ameasure of the participant’s future approachmotivation
with respect to the social interaction task partner.

Analysis
fMRI acquisition and analysis
Participants were scanned in a 3T General Electric 750 scan-
ner using an 8-channel head array coil. Each scanning session
included a three-plane scout scan, a sagittally acquired spoiled
gradient recalled sequence for acquiring T1-weighted images (172
slices; thickness: 1mm; TI=450ms, repetition time (TR)=8ms,
echo time (TE)=3ms; matrix: acquired 192X256; field of view
(FOV)=256 cm; flip angle=12◦; sagittal plane) and T2*-weighted
axially acquired echo-planar imaging (EPI) scans to measure
blood-oxygen-level-dependent (BOLD) signals (parameters: slice
thickness=3mm; slice spacing=1mm; TR=1.5 s, TE=32ms,

flip angle=80◦; matrix=64 × 64, FOV=240mm). The SID task
was administered over two runs.

Single-subject analysis
Imaging analyses were conducted using Analysis of Func-
tional Images. Standard preprocessing steps were used with
the afni.proc.py tool including removal of outlying acquisitions,
despiking, slice time correction, co-registration of anatomical
and functional scans, spatial smoothing (6-mm half-maximum
smoothing kernel) and warping to standardizedMNI space. Visual
inspection of quality and motion parameters was also conducted
and identified two participants with excessive motion who were
removed from analysis. Preprocessed time-series data for each
individual were analyzed using a multiple regression model con-
taining motion and task response regressors. Specifically, trials
were coded on three levels (none, low and high), two type (reward
and punishment) and two phase (anticipation and outcome)
regressors. Regressors of no interest included motion parameters
and the rating phase. Regressors shifted by a hemodynamic wave-
form (AFNI:waver), and individual preprocessed EPI data were
entered into a general linear model.

Whole-brain analyses (primary outcome)
Whole-brain voxel-wise data were entered into a generalized lin-
ear model (3dLME) to evaluate regions of significant activation
(Cox, 2016). The generalized linear test of interest compared acti-
vation across groups (AAT and control) over time (pre and post)
to reward cues during anticipation (baseline vs any reward). Per-
mutation testing within AFNI’s 3dClustSim, which computes a
three-parameter spatial autocorrelation function from the model
residuals using 3dFHWMx to create an optimal smoothing kernel,
were used to guard against identifying false-positive activations
(voxel-wise a priori probability of 0.001 with corrected cluster-
wise activation probability of 0.05). Significant activations with
a minimum of 16 contiguous voxels were considered.

GIMME analysis (exploratory outcome)
Connectivity analysis was performed utilizing Group Iterative
Multiple Model Estimation (GIMME), a package in R (https://www.
nitrc.org/projects/gimme/) that models the directed functional
connectivity of fMRI BOLD signal from predefined brain region
of interest (ROI)s (Gates and Molenaar, 2012; Yang et al., 2015).
GIMME creates functional maps with sufficient model fit (2 or
more fit indices) using a data-driven model building/pruning
approach to estimate connectivity graphs and determine whether
a specific ROI path improves model fit to time-series data, and
estimates contemporaneous, lagged, and autoregressive paths
among each time series. GIMME first creates a functional network
map for the full sample, including group paths only if they are sig-
nificant for a specified percentage of individuals (75%; Gates and
Molenaar, 2012) to create a group-level map of contemporaneous
and lagged directed connections that are common to most indi-
viduals. After defining the group map, unnecessary group-level
paths are pruned and additional individual-level paths are imple-
mented to improve model fit for each participant using Lagrange
multiplier test equivalents. Then the common model is pruned
by removing paths that are no longer acceptable. We utilized a
confirmatory subgroup GIMME [CS-GIMME (Henry et al., 2019)]
analysis to explore potential group differences between individ-
uals randomized to AAT vs control. CS-GIMME performs well at
subgroup retrieval, even in small datasets (Gates et al., 2017).
Correlation matrices were created for each of the individual’s

https://www.nitrc.org/projects/gimme/
https://www.nitrc.org/projects/gimme/
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Table 1. Demographic and clinical characteristics

Patient demographic and clinical characteristics AAT (n=13) Control (n=15) Test statistic, P-value

Gender (% female) 69% 60% χ2 =0.26, P=0.61
Age, mean (s.d.) 25.69 (3.61) 28.60 (8.10) F(1, 26)=0.89, P=0.35, η2=0.03
Years of education, mean (s.d.) 15.61 (1.12) 15.86 (2.03) F(1, 26)=0.16, P=0.70, η2=0.01
Race (%) χ2 =2.12, P=0.83
Caucasian 50% 33%
Asian-American 8% 20%
African-American 8% 7%
Mixed race 25% 20%
Other 8% 13%
Unknown 0% 7%

PANAS-PA, mean (s.d.) 19.84 (6.86) 19.86 (5.35) F(1,26) <.01, P=0.99, η2 <0.01
MASQ-AD, mean (s.d.) 84.23 (10.02) 82.73 (10.87) F(1, 26)=0.14, P=0.71, η2=0.01
BDI-II, mean (s.d.) 25.75 (10.66) 27.50 (6.59) F(1, 24)=2.61, P=0.61, η2=0.01
STAI-T, mean (s.d.) 45.38 (2.56) 46.53 (5.47) F(1, 26)=0.48, P=0.50, η2=0.01
PANAS—social anticipation 20.08 (8.77) 19.07 (4.00) F(1,26)=0.15, P=0.70, η2 <0.01
DFI 40.23 (7.55) 41.79 (8.81) F(1,26)=0.24, P=0.63, η2=0.01
SID hit rate per trial type
Pre—no reward 0.46 (0.17) 0.57 (0.11)
Post—no reward 0.53 (0.15) 0.57 (0.07)
Pre—reward 0.51 (0.12) 0.60 (0.06)
Post—reward 0.56 (0.15) 0.62 (0.08)

AAT bias score reaction time
Run 1 43.38 (82.17) 33.83 (52.75)
Run 2 81.88 (131.17) 11.13 (63.36)

Table 2. Task-based whole-brain group× time interaction activations

ROI Volume x y z T value, P ROI BA

1 123 11 61 18 3.92, 8.9e-5 Right medial frontal gyrus/anterior frontal pole 10
2 77 −1 29 53 3.97, 7.2e-5 Left dorsomedial frontal cortex 8
3 44 −40 −70 36 3.85, 1.2e-4 Left precuneus 39
4 29 −4 54 40 4.19, 2.8e-5 Left medial frontal gyrus 9
5 25 29 −71 −23 3.65, 2.6e-4 Cerebellum 19
6 22 10 25 8 3.76, 1.47e-4 Right caudate
7 17 −6 −34 81 3.81, 1.4e-4 Left paracentral lobule
8 16 42 5 −10 3.90, 9.6e-5 Right insula 13
9 24 −9 2 50 −4.04, 5.3e-5 Left cingulate gyrus 24
10 24 18 −41 61 −3.78, 1.6e-4 Right postcentral gyrus 3
11 20 −27 −53 49 −3.78, 1.6e-4 Left precuneus 7

Note: Center of mass coordinates in MNI coordinate space; voxel-wise a priori probability of 0.001 with corrected cluster-wise activation probability of 0.05.

post-training time series (preprocessed with motion and censor
parameters regressed out) in the ROIs identified by the task-
based group-level analysis. Consistent with earlier work using
task-related designs (McCormick, 2014), we extracted measure-
ment occasions when participants were engaged in anticipation
of reward. We compared observed values for group-level paths
across the AAT and control conditions and also examined poten-
tial differences in the number of subgroup-level paths within
AAT vs control. We explored brain–behavior relationships by con-
ducting Spearman rank order correlations between the paths
identified in the sample and the self-report data from the social
interaction task (positive emotion in anticipation of the interac-
tion and desire to interact with one’s partner in the future).

Results
Demographic and behavioral data
Table 1 presents the demographic and clinical characteristics of
the sample. There were no statistically significant demographic
or clinical differences (i.e. positive affect, depression, anxiety and

anhedonia) between participants in conditions at baseline or after
the manipulation (Table 1).

fMRI whole-brain effects
Voxel-wise whole-brain analysis of the interaction effect of time
by group on anticipation of social reward revealed several statis-
tically significant clusters spanning reward-related brain regions.
Activation in the right medial frontal cortex extending into the
anterior frontal pole, left medial and dorsomedial PFC (dmPFC),
caudate, left precuneus, right insula, left paracentral lobule and
cerebellum increased over time for those in AAT relative to con-
trol, while activation in the regions including the postcentral
gyrus, precuneus and cingulate decreased (Table 2; Figures 4 and
5). Examination of the means suggested that at post-training,
individuals in the AAT group showed significantly greater acti-
vation in the right medial frontal gyrus/anterior frontal pole,
left medial frontal gyrus and right caudate, and lower activa-
tion in the cingulate gyrus relative to controls (see Supplemental
Figure S1 for full results of between-group t-tests at pre- and
post-timepoints, including effect sizes).
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Fig. 4. Neural response during social reward anticipation to AAT vs control over time (group× time interaction) in the caudate.

Fig. 5. Whole-brain activation during social reward anticipation (group× time interaction).

GIMME results
We first established the connectivity patterns that consistently
reflected connections across ROIs during anticipation of social
reward across both groups (Figure 5). Connections were observed
between the rightmedial frontal gyrus/anterior frontal pole to the
caudate and to the left medial frontal gyrus, as well as dmPFC
to the precuneus and to the right medial frontal gyrus/anterior
frontal pole (Table 5; Figure 6). Greater connectivity between
right medial frontal gyrus/anterior frontal pole and caudate was
significantly associated with higher PANAS-positive affect rat-
ings in anticipation of the social interaction (r2 =0.21, P=0.02)

but no statistically significant relationship with the DFI score
was observed (P values >0.1). We then examined group dif-
ferences in the connectivity graphs for individuals in AAT and
control groups to determine if there were differences in con-
nectivity strength, number or patterns following AAT relative
to the control condition. We did not observe any differences
between the AAT and control groups in the strength of paths that
were identified across participants (Table 3). Overall, the groups
had a similar number of unique additional paths but different
connectivity patterns. Individuals in the AAT condition demon-
strated additional paths connecting the precuneus–postcentral
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Table 3. Full group paths from GIMME connectivity analysis and between-group statistics

ROI (#) M s.d. F-stat P η2

(1) Right medial frontal gyrus/anterior frontal pole—(6) right caudate 0.38 0.2 0.08 0.78 <0.01
(1) Right medial frontal gyrus/anterior frontal pole—(4) left medial frontal gyrus 0.36 0.24 0.21 0.65 0.01
(2) Left dorsomedial frontal cortex—(1) right medial frontal gyrus/anterior
frontal pole

0.31 0.18 0.01 0.94 <0.001

(2) Left dorsomedial frontal cortex—(3) left precuneus 0.26 0.13 0.06 0.81 0.002
(1) Right medial frontal gyrus/anterior frontal pole (lag)—(1) right medial
frontal gyrus/anterior frontal pole

0.6 0.15 0.21 0.65 0.01

(9) Left cingulate (lag)—(9) left cingulate 0.38 0.14 0.97 0.34 0.04
(11) Left precuneus (lag)—(11) left precuneus 0.46 0.16 0.09 0.76 <0.01
(3) Left precuneus (lag)—(3) left precuneus 0.6 0.17 0.39 0.54 0.02
(7) Left paracentral lobule (lag)—(7) left paracentral lobule 0.47 0.17 0.15 0.7 0.01
(4) Left medial frontal (lag)—(4) left medial frontal 0.56 0.16 0.2 0.66 0.01
(6) Right caudate (lag)—(6) right caudate 0.34 0.18 0.38 0.55 0.02
(5) Right cerebellum (lag)—(5) right cerebellum 0.49 0.16 1.39 0.25 0.06
(8) Right insula (lag)—(8) right insula 0.029 0.24 1.98 0.17 0.08
(10) Right postcentral (lag)—(10) right postcentral 0.48 0.19 0.03 0.87 0.001
(2) Left Dorsomedial frontal cortex (lag)—(2) left dorsomedial frontal cortex 0.59 0.16 1.25 0.27 0.05

Fig. 6. ROI connectivity in the full sample.

gyrus, medial PFC–cerebellum and postcentral gyrus–cingulate
(Figure 7A, Table 4). Individuals in the control condition showed
additional paths between the cingulate–precuneus, cingulate–
postcentral gyrus, right cerebellum–paracentral lobule and
dmPFC–cerebellum (Figure 7B, Table 5).

Discussion
This study sought to examine neural mechanisms that might
account for effects of computerized AAT on approach system
functioning in individuals with MDD. Consistent with hypotheses,
individuals in the AAT training condition showed increased acti-
vation in the striatum andmedial PFC extending into the anterior
frontal pole during social reward anticipation relative to those in
the control condition. Additional reward-related regions (parietal
cortex and insula) were also differentially activated by the train-
ing vs control. Irrespective of group assignment, neural activation
during social reward anticipation was characterized by connec-
tivity across these reward regions, with outward hubs from the

right medial frontal gyrus/anterior frontal pole and dmPFC. The
magnitude of connectivity between a region of the medial PFC
extending into the anterior frontal pole and striatum was asso-
ciated with self-reported positive affect during anticipation of the
laboratory social interaction, suggesting that this path could be
relevant to understanding real-world social responsivity. The AAT
and control group each demonstrated additional unique group
connections across ROIs, but a similar number of paths. Taken
together, findings suggest that one potential effect of AAT may be
enhanced engagement of reward-related circuitry in individuals
with MDD and that distinct patterns of neural connectivity can
be observed across AAT vs a control comparator.

Individuals with MDD demonstrate dysfunction of approach
system functioning measured across biobehavioral domains,
including blunted affective response to pleasant cues and
rewards (Henriques and Davidson, 2000; Sloan and Sandt, 2010),
implicit approach action tendencies (Wang et al., 2006; Seidel
et al., 2010; Radke et al., 2014b; Bartoszek and Winer, 2015),
reward learning (Pizzagalli et al., 2008) and neural responsivity
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Fig. 7. ROI connectivity in the AAT (A) and control (B) subgroups.

Table 4. AAT group paths from GIMME connectivity analysis

ROI (#) M s.d.

(11) Left precuneus—(10) right postcentral gyrus 0.32 0.18
(1) Right medial frontal gyrus/anterior frontal pole—
(5) cerebellum

0.30 0.23

(10) Right postcentral gyrus—(9) left cingulate gyrus 0.31 0.12

Table 5. Control group paths from GIMME connectivity analysis

ROI (#) M s.d.

(9) Left cingulate gyrus—(11) left precuneus 0.29 0.21
(9) Left cingulate gyrus—(10) right postcentral gyrus 0.21 0.24
(5) Cerebellum—(7) left paracentral lobule 0.23 0.20
(2) Left dorsomedial frontal cortex—(5) cerebellum 0.21 0.15

(Schaefer et al., 2006; Derntl et al., 2011; Treadway and Zald, 2011;
Zhang et al., 2013; Nusslock et al., 2015). Approach-related neu-
ral systems include fronto-striatal circuitry implicated in plea-
sure and reward processing (Berridge et al., 2009; Haber and
Knutson, 2010; Kringelbach and Berridge, 2010), which operate
via dopaminergic projections along mesolimbic and mesocorti-
cal signaling pathways connecting midbrain nuclei to the ventral
striatum and to cortical regions (e.g. medial PFC, insular cor-
tex and anterior cingulate cortex) (Treadway and Zald, 2011;
Nusslock and Alloy, 2017). Observations of hyporesponsiveness
in key reward processing regions during anticipation of reward
(e.g. ventral striatum) (Forbes et al., 2009; Smoski et al., 2009;
Admon and Pizzagalli, 2015; Arrondo et al., 2015) and abnormal-
ities in fronto-striatal connectivity (Furman et al., 2011; Manelis
et al., 2016; Quevedo et al., 2017) in individuals with MDD highlight
this circuit as a potential neurobiological marker and treatment
target.

Enhanced neural responsivity in fronto-striatal regions to
social reward anticipation during the SID task for those in
AAT vs control provides preliminary evidence of malleability
of reward-related circuitry with repeated practice. Earlier work
demonstrates that anticipation of reward is associated with the

recruitment of striatal and PFC regions in healthy individuals
(Ernst et al., 2004; Liu et al., 2011). We observed that individuals
with depression who completed AAT showed increased activity
in the caudate as compared to those completing control training.
The caudate is considered to be a key hub for reward-related pro-
cessing (Chau et al., 2004; Haber and Knutson, 2010; Treadway
and Zald, 2011; Pizzagalli, 2014) and may have particular impor-
tance for shaping goal-directed behavior based on expectancies
(Grahn et al., 2008). Increased activation was also observed in
an anterior region of the frontal pole, a region thought to guide
attention and behavior in line with internal goals (Orr et al., 2015),
evaluate relationships between external stimuli and the self (e.g.
self-relatedness) (Phan et al., 2004; Lemogne et al., 2012) andmake
inferences about the knowledge and beliefs of others (cognitive
theory of mind processes) (Abu-Akel and Shamay-Tsoory, 2011;
De La Vega et al., 2016). To the extent that hypoactivation reflects
deficits in processing socially rewarding stimuli, changes follow-
ing AAT may reflect amelioration of reward responsivity deficits.
It may also reflect changes in social approach orientation poten-
tially via changes in self-referential evaluation of positive social
cues. We observed a relative decrease in activation in regions
including the cingulate and a region of the preceuneus incorpo-
rating the intraparietal sulcus following AAT as compared to the
control. Both regions are implicated in adaptive responding to
conflict and inhibitory functioning (Botvinick et al., 2004; Osada
et al., 2019). It is possible that reduced activation in these regions
reflects a shift in reward perceptions, such that the anticipa-
tion of receiving positive social feedback resulted in diminished
response conflict following repeated AAT wherein positive faces
were repeatedly paired with approach behavior.

The results of GIMME connectivity analysis suggest that AAT
vs control training results in different patterns of correlation
across reward-related regions and highlight the interconnectiv-
ity of fronto-striatal regions while anticipating social reward
cues. In particular, the observed connectivity between the medial
PFC/anterior frontal pole and caudate across both groups aligns
with earlier work demonstrating that reward anticipation is
associated with frontal-striatal connectivity (Mayer et al., 2011;
Cohen et al., 2012). PFC–caudate activity alongside connections
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bilaterally across medial PFC regions were noted for individuals
irrespective of randomization, suggesting that these pathways
are common during the anticipation condition of the SID task.
We observed that greater communication between the medial
PFC/anterior frontal pole and striatum when anticipating pos-
itive social rewards in the SID task was associated with more
positive emotion when anticipating a real-world social interac-
tion. Individuals with MDD have been shown to demonstrate
hypoconnectivity between the medial PFC and striatum (Young
et al., 2016); our observed findings point to a potentially impor-
tant role of this frontal-striatal connection in social approach
outcomes in depression. This region of the medial PFC is a core
node in the default mode network that plays a central role in
self-referential thinking, while the caudate is a key component
of salience detection. Connectivity in these regions during antic-
ipation of social reward during the SID may point to a greater
perceived self-relevance of impending positive social cues (e.g.
the positive feedback is for them) or a perceived link between
the social reward and their actions or characteristics that makes
the cues more salient. Translating to the social interaction, indi-
viduals who are more inclined to anticipate and link positive
social outcomes to themselves via self-referential processingmay
experience greater positive emotions prior to socializing. In sup-
plemental exploratory analyses using group randomization data,
GIMME analysis identified divergent patterns of communication
between ROIs across the AAT and control groups. The control
condition reflected patterns with central cingulate activation and
cerebellar activation, while the AAT group was characterized by
connectivity involving the postcentral gyrus and medial PFC to
the cerebellum. These patterns may reflect greater integration of
reward processing circuitry with motor responses in the AAT vs
control group (e.g. facilitated responding to reward based on prac-
ticed action tendencies during the AAT). Future replication will
be needed to clarify the role of differential connectivity in clinical
outcomes.

Evidence suggests that existing treatments for depression
might normalize approach system functioning (Dichter et al.,
2009); however, those treatments target evaluative processes
explicitly in comparison to AAT programs. AAT programs inter-
vene on a specific component of approach system functioning by
requiring individuals to repeatedly implement approach behav-
iors in the context of positive social stimuli, thus changing val-
uation and approach tendencies. AAT has shown promise as a
method for modifying approach behaviors in samples with psy-
chopathology (Loijen et al., 2020); yet to date, knowledge about
neurobiological effects of AAT on approach systems and the rela-
tionships between these systems and outcomes has been limited.
Our results offer initial evidence that completing AAT vs con-
trol paradigms exerts neural effects on a novel task assessing
social reward anticipation. Behavioral modification used in the
AAT program may elicit changes via modification of neural sub-
strates involved in processing social reward; however, future
work examining treatment-related change with AAT is needed
to fully elucidate neural mechanisms in the context of clinical
intervention.

These data have a number of caveats. The sample was small.
Future replication will be necessary to have confidence in the
robustness and replicability of observed effects. While incen-
tive delay tasks have been shown to produce reliable activa-
tions in regions including the striatum (Wu et al., 2014; Elliott
et al., 2020), the use of a small sample combined with the high

variability in neuroimaging data leads to the potential for mea-
surement error to influence findings, making replication critical.
Moreover, a larger sample size would permit the examination
of brain–behavior relationships within the training and control
groups separately, as well as more nuanced analysis of effects
within individuals with depression, who are likely to display
heterogeneity in approach system functioning (e.g. anhedonic
symptoms). The current study was designed to examine neu-
ral changes during a relatively brief experimental manipulation.
Controlled single-session paradigmsmay be useful in early stages
of intervention development to isolate neural circuits that are
and are not engaged in the absence of clinical symptom change,
but the data cannot definitely speak to what neural changes
might be observed over the course of AAT administered as an
intervention program. Results comparing groups on outcomes
obtained in the context of the social interaction task immedi-
ately following the 1-session program did not show statistically
significant differences, pointing to a potential need for longer
administrations to shift emotional/motivational reactivity and
symptoms. Social cues were used in the current version of the
AAT and SID consistent with prior literature in depressed sam-
ples (Radke et al., 2014a), and thus future research is needed
to evaluate reward response to other types of stimuli. Param-
eters of the AAT training and control programs (i.e. using a
control condition with 50/50 contingency, using visually enlarg-
ing images) were selected based on the prior literature to match
what would typically be administered in the course of a clini-
cal trial. However, using an active control wherein individuals
only pull stimuli (both positive and neutral) may not be truly
inert. For example, there is evidence in non-clinical samples that
implicit approach training for neutral faces shifts the valence of
that stimuli in a positive direction (Woud et al., 2011), suggest-
ing that approaching both positive and neutral faces—without
trained avoidance—may provide clinical benefit. We observed in
our data that in some brain regions changes occurred in both
groups in opposite directions, suggesting that the control condi-
tionmay have exerted a different but still impactful effect [see for
example (Blackwell et al., 2017; Tiggemann and Kemps, 2020) on
the impact of control group selection in cognitive bias modifica-
tion trials]. Despite these limitations, the current study points to
potential neural targets underlying AAT in MDD. Taken together,
these data reveal that AAT programs could operate via enhanc-
ing activity in or communication across reward-related circuitry,
which may relate to clinical and behavioral outcomes. The cur-
rent data suggest that AAT may be a viable method for restoring
neural functioning in reward-related circuitry in individuals with
depression.
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